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Abstract

Let K be a closed convex subset of a real uniformly smooth Banach gpa8appose
K is a nonexpansive retract & with P as the nonexpansive retraction. etk — E
be ad-weakly contractive map such that a fixed poifite int(K) of T exists. It is proved
that a descent-like approximation sequence converges strongly. feurthermore, ifK
is a nonempty closed convex subset of an arbitrary real Banach spade: &he> K is
a uniformly continuousi-weakly contractive map witlF(T) := {x € K: Tx = x} # @,
it is proved that a descent-like approximation sequence converges strongheté (7).
0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let E be a real normed linear space with duat. We denote byJ the
normalized duality mapping frors to 2£* defined by

Jx={f*ex* (x, ) =IxI>= I},
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where(., .) denotes the generalized duality pairing. It is well known that’ifis
strictly convex then/ is single-valued and iE* is uniformly convex thern/ is
uniformly continuous on bounded subsetsiofsee, e.g., [1]). We shall denote the
single-valued duality mapping by. Themodulus of smoothnes$ E is defined

by

lx + Il + llx = ¥l
PE(T) ::sup{ 5 —Lxl=1 Iyl=7¢,. >0

E is said to be uniformly smooth if limg (t) /t = 0 ast — 0. Typical examples
of such spaces are thebesgue. ,, the sequenck,, and theSoboleWw ) spaces,
l<p<oo.

Let K C E be closed convex and It be a mapping off onto K. ThenP is
said to besunny if P(Px +t(x — Px)) = Px for all x € E andt > 0. A map-
ping P of E to E is said to be aetractionif P2 = P. A subseX of E is said to be
asunny nonexpnsive retraof E if there exists a sunny nonexpansive retraction
of E onto K. If E = H, the metric projectionPx is a sunny nonexpansive
retraction fromH to any closed convex subsetff

A mappingT with domain D(T) and rangeR(T) in E is calledd-weakly
contractiveif there exists a continuous and nondecreasing funaiof0, co) :=
RT — MT such thaw is positive o™ \ {0}, @(0) =0, lim;_, o @ (t) = 0o and
for x, y € D(T) there existg (x — y) € J(x — y) such that

[(Tx =Ty, j(x =) < llx =12 =@ (Ilx — yI1?). (1.1)

It is calledweakly contractivésee, e.g., [2—4]) if for alk, y € D(T) there exist
jx —y)eJ(x—y)and® as above such that

ITx =Tyl < llx = yll = @(llx = ylI). (1.2)

If F(T) # @ and inequalities (1.1) and (1.2) hold fere D(T) andx™ € F(T),
then the operators will be calledtweakly hemi-contractivand weakly hemi-
contractive respectively. Note that, if we sét(r2) = v (¢), theny is a continuous
and nondecreasing function fra#t" to ™ such thaty is positive oni™ \ {0},
¥ (0) =0, lim,— 5 ¥ (¢) = c0. Thus, the above definition a@Fweakly contractive
map can be restated as follows: for ally € D(T), there existj(x — y) €
J(x — y) andy, as above such that

(Tx — Ty, j(x — )| <llx = ylIIZ = v (Ilx — yl). (1.3)

The d-weakly contractive operators were first introduced and studied by Alber
and Guerre-Delabriere [3] and include several important classes of nonlinear
operators. In particular, they include the weakly contractive operators.

In [3], Alber and Guerre-Delabriere proved the following theorem.
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Theorem AG. LetT : G — H be ad-weakly contractive mag; a closed convex
boundedsubset of a Hilbert spac#l and suppose that a fixed point € int(G)
of T exists. Then the sequeniog } defined by

x1 € G; xpy1:= Pg (x,, — oy (X, — Tx,,)), n=12 ..., (1.4)

where Pg is the metric projection onto the s&, {«,} is a sequence of positive
numbers such thazcl>O a, = oo andlim,_oa, = 0 converges strongly ta*.
Moreover, there exist a constait > 0 and a bounded sequenge,,} C {x,},
[=1,2,...suchthat

_ 1
”xnl _x*||2<¢ 1< n/ +K2anl)a (15)
1 %m
Furthermore,
1
2_ -1 2 2 .2
||xn/+l - X*H < ¢ ( nj + K am) + K an/’ (16)
1 %m
n—l o
2 2 m
e — x* 112 < 14 — 517 = > STy
n+1 4~1 aj
n+1<n<n+1, 1.7)
n a
m
Prna = x*1% < g — 617 = Y ——— < llxa — x*|1%,
1 19
1<n<n1—1, (1.8)
N
(07
1< n1 < Smax= maxi s: Z < lxr —x*)1%}. (1.9)
1 21

From Theorem AG, two questions arise quite naturally.
Question 1. Can the boundedness condition@rin Theorem AG be dropped?

Question 2. Can Theorem AG be extended to Banach spaces more general than
Hilbert spaces?

It is our purpose in this paper to give affirmative answers to these questions.
In particular, we prove that Theorem AG remains true rgal uniformly
smooth Banach spacesd without the boundedness condition imposed on G
Furthermore, we prove a related convergence theorem in our more general setting
when the fixed poink* of T exists but is not necessarily in the interior Gf
Finally, we prove a convergence theorem for approximating a fixed point of a
uniformly continuousi-weakly contractive and boundeelf mapT of G with
F(T) # @, in arbitrary real Banach spaces
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2. Preliminaries
In the sequel we shall use the following well known lemmas.

Lemma 2.1 (see, e.g., [5])Let E be a real Banach space and J the normalized
duality map onE. Then for any given, y € E, the following inequality holds

Ix + yI2 < IxlP+ 20y, jx + ), Vi +y)ed(x+y).

Lemma AG [2]. Let {A¢} and {yx} be sequences of nonnegative numbers and
{ax} be a sequence of positive numbers satisfying the condifioftsy, = oo
andy,/a, — 0, asn — oo. Let the recursive inequality

An+1<)¥n _an¢()\n)+yna I’l:]., 2,-.-, (21)

be given wherep is a continuous and nondecreasing function fréih to R+
such that it is positive ofi™ \ {0}, ¢(0) =0, lim;_ ¢(t) =oco. Then

(@) A, — 0,asn — oo;
(b) there exists a subsequen@g, } C {1,},/=1,2,..., such that

_ 1 ¥
oy <& 1( i +i>, (2.2)
19 n
1 1 Vny
A+l < P +— )+ vu. (2.3)
1 Om Oy
n—l o m—1
An <A+l — ia n+1<n<nm+1, Am:Zaia (2.4)
Ap
nj+1 1
" (07
g1 <A1— Y —<Ar, 1<n<ni—1, 2.5
nl <A1 Xl:Am 1 n<ny (2.5)
N
m

We shall also need the following lemma whose proofis identical with the proof
of Lemma 5.6 of [3]. However, for completeness, we give a sketch of the proof.

Lemma 2.2. Let E be an arbitrary real Banach space and [Et D(T) CE — E
be ad-weakly contractive map, and suppose that a fixed pdirt int(K) of T
exists. Them :=1 — T is bounded.
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Proof. ClearlyA is accretive. Then by Lemma 5.5 of [3] (see also [6]) there exists
a constantg > 0 and a closed balf(rg, x*) C D(A) such thafor all x € D(A)
we have

(Ax — Ax*, j(x — x*)) > rol||Ax|| — co(||x — x| + ro), 2.7)

whereco = SUR,cs .1+ Al < co. On the other hand, for somgx — x*) €
J(x — x*) we have that

(Ax — Ax*, j(x — x*)) = (x —x* jx - x*)) - (Tx —Tx* j(x— x*))
<lx =¥+ [(Tx — Tx*, j(x — x*))|

<2)x — x*|% (2.8)
Thus from (2.7) and (2.8) we get that
IAx | < rgt(2lx — x* 112 + co(llx — x*|l + ro)). (2.9)

Hence the conclusion holds o

3. Main results
Now, we state and prove the following theorems.

Theorem 3.1. Let E be a real uniformly smooth Banach space. Supgose
a closed convex subset &f which is a nonexpansive retract & with P as
the nonexpansive retraction. Suppdsek — E is a d-weakly contractive map
such that a fixed point* € int(K) of T exists. For arbitraryx; € K, define the
sequencéx, } iteratively by

Xp41 = P(xn — oty (xy — Txn)), n>1, (3.2)

wherelima, =0and} o, = co. Then, there exists a constafit > 0 such that
if 0 < a, <dp, {x,} converges strongly ta* € F(T). Moreover, there exist a
constant > 0 and a subsequende,, } C {x,} such that

_ 1 _
[l 2, —x*2< o 1< . +dJ/n,), (3.2)

1 m
wherey, .= ||j(pn — x*) — j(x, — x™)| and p,, :== x,, — a, Ax,. Furthermore,

_ 1 _ _
||xnl+1 - x*”z <@ l(T + d)/m) + danlynla (33)
1 ¥m

n—I

2 2
ot =212 < lonr =212 = Y =
m+1 X1 T

n+1l1<n<n+1, (3.4)

Om

9
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n

o2 = 5412 < g = 212 = Y- i <l — x4,
121 @
1<n<n—-1, (3.5)
s
1<n1 < Smax= max:s: Z % < x —X*IIZ ] (3.6)
1 1%

Proof. Observe that the recursion formula (3.1) can be written as follows:
Xp+1= P(xp —ayAx,), n>=0, whereA:={ —T). (3.7)

Moreover, we have thatAx — Ax*, j(x — x*)) > ®(||x — y||?), where® is

as in (1.1). Now, choose sufficiently large such that; € B, (x*). Let G :=
B.(x*) N K, then since by Lemma 2.2 is bounded we have thai(G) is
bounded. Let diam (G) = o. As j is uniformly continuous on bounded subsets
of E, for e = ®@((r/2)%)/(20) there exists & > 0 such thatx,y € D(T),

lx — y|l <éimplies|j(x) — j(y)| <e&. Setdop=min{1,5/(20),r/(20)}.

Claim: {x,} is bounded Suffices to show that, is in G for all » > 1. The
proof is by induction. By our assumption € G. Supposex, € G. We prove
that x,+1 € G. Assume for contradiction that,1 ¢ G. Then, sincex,+1 € K
Vn > 1, we have thaf/x,+1 — x*|| > r. Thus we have the following estimates:

xp+1 — x*|| = ”P(xn —anAxy) — Px*”
< Hxn —x* — oy (Ax, — Ax™) H
and hence

llx, — x| > %51 — x| —anllAxy, — Ax|

ror
>r—ana>r—§=—,

2
Setp, :=x, — ay,Ax,. Then from (3.1), Lemma 2.1 and the above estimates we
have that

st — 2512 = | PGrn — n(Axy — Ax®)) — Px*|?
< Hxn —x* — o, (Ax, — Ax™) ||2
< llxn = x*)1 = 20, Axy — Ax*, j (p — x¥)
= Jlxn — x*[|% — 200{Ax, — Ax*, j (xy — x™))
— 2ap(Axy — Ax™, j(pn —x*) — j(xy — x¥))
< lxn = x*)12 = 200, @ ([l — x*[1?)
+ 20 | Axpl|| j (pn = x*) = j (xn — x| (3.8)

Since”pn — x|l < o l|Axy || € apo < § we have thamj(l% —x*) — J G —
)| < @((r/2)?)/(20). Thus (3.8) gives that
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2 r\2
(p r

nst — 112 < fxn — 212 — 200 ( (=) ) + 20000 20
2 20

-temett=ze((5) ) ree((5))
=[x, — x*|1% — ozn@((%)z) <2, @9

i.e., lx,+1 — x*|| < r, a contradiction. Therefore, 1 € G. Thus by induction
{x,} is bounded. Now we show that — x*. Note thatp,, — x, — 0 asn — oo
and hence by the uniform continuity gfon bounded subsets &f we have that

Y= Hj(pn —x*) — jxy — x*)” — 0 asn— 0. (3.10)

Let A, := ||lx, — x*||? and y, := 2,0 7,, then from inequality (3.8) we obtain
that

Mgl < Ap — 20, D (M) + Vi, (3.11)

wherey,, /a, — 0 asn — oco. Thus, the conclusions of the theorem follow from
Lemma AG, completing the proof of the theorenta

If x* € F(T)is an arbitrary point oD(T) then we have the following theorem.

Theorem 3.2. LetK be a closed convex subset of a real uniformly smooth Banach
space. SUppoOsK is a nonexpansive retract & with P as the nonexpansive
retraction. LetT : K — E be ad-weakly contractive bounded map wiktT) :=
{x € K: Tx =x}#0. For arbitrary x1 € K, define the sequende, } iteratively
by

Xp41 = P(xn — oty (X — Txn)), n>1, (3.12)

wherelim o, = 0 and ) «, = co. Then, there exists a constafit > 0 such that
if 0 < a,, < do, then,{x,} converges strongly to* € F(T). Moreover, there exist
a constant/ > 0 and a subsequende,, } < {x,} such that

1
||xn,—x*||2<¢—1< " +d7n,), (3.13)

1 %m
wherey, is as defined i1§3.10) Furthermore,

1
||xnl+1 - X*HZ < ¢_1(TO[ + d7n1> + danl Y (314)

1 m

n—I

2 2
e =212 < lonr =212 = Y
n+1 X1 T

n+1l1<n<n+1, (3.15)

Om

9
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n
(67

o1 = 512 < v = 12 = )t <l = x¥)1%
121 @
1<n<n—-1, (3.16)
s
1<n1<smax:max{s: Z Zi’,"a < Jlxg — x*|1% . (3.17)
1 1%y

Proof. Since we have by hypothesis thatis bounded, the proof follows as in
the proof of Theorem 3.1 without the use of Lemma 2.2

If T is aself mapand 0< «, < 1, the use of the operata? will not be
necessary. To present our next theorem, we shall need the following lemma.

Lemma 3.3. Let {1} and {yx} be sequences of honnegative numbers and
a sequence of positive numbers satisfying the condit®ifSe, = co and
vn/o, — 0, asn — oo. Let the recursive inequality

Al <A — 20,0 (A1) + v, n=12,..., (3.18)

be given wherep is a nondecreasing function froth™ to "+ such that it is
positive ot ™ \ {0}, ¢(0) =0, lim;_ o0 ¢ (t) = co. Thenr, — 0, asn — co.

Proof. Let liminfi, = a > 0. Claim: ¢ = 0. Suppose not. Then there exists
N1 > 0 such thaty, > a/2 Vn > Ni. Sincey,/a, — 0, there existsN2 > 0
such thaty, /a, < ¢(a/2) which impliesy, < a,¢(a/2) Vn > N>. Then for

n > N = max N1, N2} we have from (3.18) that

a a a
)Ln+1<)\n_2an¢<§> +an¢(§> z)hn_an¢<§>y Vn> N,

which implies thatp(a/2) Y, < oo, a contradiction. Therefore, = 0. Thus,
there exists a subsequer{(z@j} C {An} such that Iimknj =0. For arbitrarys > 0
let N3 > 0 such that.,; < /4 V,j > N3 and N4 > 0 such tha, < 2a,¢(s/4).
Let N, := maxNs, Na} and fix j. > N.. Then we show thak,; +r < ¢/4
Vk € N U {0}. Fork = 0 the result clearly holds. Suppose it holds for &ny 0.
Then we show that it holds fdr+ 1. Suppose not. Then we hakig, i1 > ¢/4
and hence from (3.18) we get that

& £
Z < )Lnj*+k+1 < )"n_/* +k — 2an¢()\‘l’lj* tkt1) + 20,0 Z

P P
S Anj,+k — 200, +k¢<Z) + 20, +k¢(z> = Anj,+ho

a contradiction. Thereforanj* +x <&/4Vk € N U{0} and hence., — 0 asn —
oo, O
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Theorem 3.4. Let K be a closed convex subset of a real Banach space. Suppose
T:K — K is a uniformly continuoug-weakly contractive map witlh'(T") :=
{x e K: Tx =x} #(. For arbitrary x1 € K, define the sequende, } iteratively
by
Xptl:=Xp —on(xy — Txy), n>=1, (3.19)

wherelima, =0and}_«, = co. Then, there exists a constafig > 0 such that
if 0 < a,, <do, then,{x,} converges strongly to* € F(T). Moreover, there exist
a constant/ > 0 and a subsequende,, } < {x,} such that

_ 1 _
”xnl _x*”Z <¢ 1< o +dynl)~ (3-20)
1 m
wherey, .= ||(I — T)xp+1 — (I — T)x,||. Furthermore,
“2 — -1 1 _ _
||xn/+l —x7°< 9 e +dyn/ +d)/n/’ (3-21)
1 %m
n—l o
lbtw — x*[12 < flan s — x¥ 1% = ) Z’"—ma n+1<n<n+1, (3.22)
n/+l 1%
" (07
1 — X2 < flxg — x* )12 — P < g — x|
' 25t
1<n<n -1, (3.23)
A
1< n1 < Smax=max{ s: Z Z(jlnma. < ||x1—x*||2 . (3.24)
1 1%

Proof. Let x* € F(T) and letG,r ando be as in the proof of Theorem 3.1.
By uniform continuity of A, for ¢ = @ (r2)/(4r), there exists, > 0 such that
lx — yll < &« implies||Ax — Ay|| < e forall x, y € D(T). Choose any & § < 3,
and setdp:=min{1, §/20,r/c}.

Claim: x, € G Vn > 1. We show this by induction. By our choiog € G.
Suppose;, € G. We show thak, ;1 € G. Suppose not, thelix,+1 —x*| > r and
from (3.19) we havex,+1 — x*|| < ||x, — x™|| + @u | Ax, || <7+ doo < 2.

Now, by Lemma 2.1 and the above estimates we have that

Ixn1 — X% < llxn — 2112 = 20 (Axy — Ax*, j(xp41 — x¥))
= [l — x*1? = 200 Axng1, j (¥ng1 — X))
+ 200y (Axn 1 — Axn, j (Xny1 — X))
< Nty — 2117 = 20, @ (1 xn1 — x*I1%)

+ 20 | Axpt1 — Axp | lIXn42 — x*|
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*

2 2 lxnr1 — x*l
< lon — x*1° = 20, @ (Il xpg1 — x| )T
+ 20 | Axpy1 — Axp || 1 xn 41 — X" ||

<l — x%)|2

@ (r?)
- 20511( 2 — [Axp41 — Axn”) llxn+1 — x|

& (r?)
< ||xn_x*||2_2an( — & ||xn+l_x*||
2r
& (r? _ & (r?
<y — x*)1% — ay v )len+1—x*||, sinces = )
2r 4r
< o — x*)1% < r?, (3.25)

and hencdx,+1 — x*|| < r, a contradiction. Therefore, the claim holds. Now we
show thatr,, — x*. Sincex,+1—x, — 0, by the uniform continuity ofi we have
that

Y = Il1Axy41 — Ax,|| = 0 asn — oo.
Leth, =[xy — x*|12, yu := 20,0 ¥, . Then, (3.24) gives
Al S Ap — 200, P (Apt1) + V-

Thus, the conclusion follows from Lemma 3.30

Remark 3.5. Theorem 3.1 extends Theorem AG from real Hilbert spaces
to the more general real uniformly smooth Banach spaces. Furthermore, the
boundednesassumption imposed oK in Theorem AG is not needed in our
more general setting.

Remark 3.6. Theorems 3.1 and 3.2 also hold, without any modification in the
proofs, ford-weakly hemi-contractive maps.

Remark 3.7. Observe that ifl" is weakly contractive then clearly it is uniformly
continuous and is hence bounded. Moreover, if4@eakly contractive and in
Hilbert spaces,F(T) # ¥ (see, e.g., [4,7]). Therefore, Theorem 3.4 extends
Theorem 6.1 of [3] from the class of weakly contractive maps to the class of
d-weakly contractive maps.
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