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Abstract

The modified zeta functions
∑

n∈K n−s , where K ⊂ N, converge absolutely for Re s > 1. These gen-
eralise the Riemann zeta function which is known to have a meromorphic continuation to all of C with a
single pole at s = 1. Our main result is a characterisation of the modified zeta functions that have pole-like
behaviour at this point. This behaviour is defined by considering the modified zeta functions as kernels of
certain integral operators on the spaces L2(I ) for symmetric and bounded intervals I ⊂ R. We also consider
the special case when the set K ⊂ N is assumed to have arithmetic structure. In particular, we look at local
Lp integrability properties of the modified zeta functions on the abscissa Re s = 1 for p ∈ [1,∞].
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the behaviour of the modified zeta functions defined by

ζK(s) =
∑
n∈K

1

ns
, K ⊂ N, (1.1)

near the point s = 1. Here s = σ + it denotes the complex variable. The infinite series defin-
ing these functions converge absolutely in the half-plane σ > 1. We refer to these as K-zeta
functions. Note that for K = N, the formula (1.1) defines the Riemann zeta function.

E-mail address: janfreol@math.ntnu.no.
1 The author is supported by the Research Council of Norway grant 160192/V30.
0022-1236/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2010.04.009

https://core.ac.uk/display/81936512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


360 J.-F. Olsen / Journal of Functional Analysis 259 (2010) 359–383
The main objective of this paper is, for general K ⊂ N, to find an operator-theoretic generali-
sation of the classical result, due to B. Riemann, that the Riemann zeta function can be expressed
as

ζ(s) = 1

s − 1
+ ψ(s), (1.2)

where ψ is an entire function. (See [5] for an extensive discussion, as well as an English transla-
tion, of Riemann’s original paper.)

To motivate this approach, we note that although N. Kurokawa [16] found sufficient conditions
on the sets K for ζK to have an analytic continuation across the abscissa σ = 1, it was shown by
J.-P. Kahane and H. Queffelec [11,26] that for most choices of the subset K , in the sense of Baire
categories, the K-zeta functions have the abscissa σ = 1 as a natural boundary. So, instead of
looking at the formula (1.2) as a statement about analytic continuation, we consider it as saying
that the local behaviour of ζ(s) at s = 1 is an analytic, and therefore small, perturbation of a pole
with residue one.

To interpret this in operator-theoretic terms, we define, for K ⊂ N and intervals I of the form
(−T ,T ) with finite T > 0, the family of operators

ZK,I : g ∈ L2(I ) �−→ lim
δ→0

χI (t)

π

∫
I

g(τ )Re ζK

(
1 + δ + i(t − τ)

)
dτ ∈ L2(I ).

Here the characteristic function χI is applied to emphasise that we look at L2(I ) as a subspace
of L2(R). To understand these operators, we consider the example K = N. The formula (1.2)
implies

Re ζN(1 + δ + it) = δ

δ2 + t2
+ Reψ(1 + δ + it),

whence

ZN,I = Id+ΨN,I , (1.3)

for a compact operator ΨN,I and the identity operator Id. Indeed, the term π−1δ/(δ2 + t2) is the
Poisson kernel which, under convolution, gives rise to the identity operator, while convolution
with continuous kernels give compact operators (see Lemma 2). Hence, ZN,I is a compact, and
therefore a small perturbation of the identity operator.

In Theorem 1, we generalise the above formula in the following manner. We show that given
K ⊂ N, and a bounded and symmetric interval I ⊂ R, there exist a subset L ⊂ R and a compact
operator ΦK,I such that

ZK,I = χI F −1χLF + ΦK,I .

We remark that, intuitively, large K ⊂ N should correspond to large L ⊂ R. In fact, it follows
from our construction (see (2.1) below) that if K = N then L = R. Hence, χI F −1χLF = Id and
we obtain again the formula (1.3).
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For general K we present two additional results. In Theorem 2, we characterise for which K

the operator ZK,I is bounded below. By a stability theorem of semi-Fredholm theory, it turns out
that this takes place if and only if the principal term of (2.2), the operator χI F −1χLF , is bounded
below. So, heuristically, a lower norm bound may be thought of as detecting the presence of a
mass in the kernel of the integral operator ZK,I . Along with a result by B. Panejah [25], this
enables us to show that the operator ZK,I is bounded below in norm exactly for the sets K for
which

lim inf
x→∞

πK(x)

x
> 0, (1.4)

where πK(x) is the counting function of K . Note that this condition is independent of the inter-
val I . In Theorem 3, we obtain a complete characterisation of when ZK,I satisfies a formula of
the type (1.3), in the sense that it is a compact perturbations of a scalar multiple of the identity
operator; this happens if and only if the limit

lim
x→∞

πK(x)

x
(1.5)

exists. Theorem 3 closely mirrors a recent generalisation, due to J. Korevaar, of a classical taube-
rian result of S. Ikehara [10]. Indeed, a formula of the type (1.3) holds if and only if a formula of
the type (1.2) holds, where the appropriate substitute for ψ extends to a nicely behaved distribu-
tion on the abscissa σ = 1.

We also consider K-zeta functions for which K ⊂ N is assumed to have arithmetic struc-
ture. More specifically, we look at the case when K consists exactly of the integers whose prime
number decomposition contain only factors belonging to some specified subset Q of the prime
numbers P. In this setting, the limit (1.5) always exists, implying that Theorems 1 to 3 are sim-
plified. We state this as Theorem 4. The condition (1.4) is now expressed as

∑
p∈P\Q

1

p
< ∞.

Also, more detailed information about the K-zeta functions, in terms of certain Lp estimates on
the abscissa σ = 1, is obtained. This is stated in Theorem 5. Finally, in Theorem 6, we show that
a prime number theorem for the subset of the primes Q, in a sense to be defined, neither implies,
nor is implied by, a lower norm bound for the operators ZK,I .

We make some remarks on related work. The operator ZN,I appears in the context of Hilbert
spaces of Dirichlet series in a paper by J.-F. Olsen and E. Saksman [23] (see also Section 7).
In work done by J.-P. Kahane [12], a closely related functional is used to give a proof of the
classical prime number theorem. Also, F. Moricz [21] found precise estimates of the Lp norms
of a class of functions containing the K-zeta functions, along the segment s ∈ (1,2) in terms of
the counting functions πK .

The structure of this paper is as follows. In Sections 2 and 3 we state and prove, respectively,
Theorems 1 and 2. In the latter section, we also make some comments relating our results to
frame theory. Next, the Ikehara–Korevaar theorem is stated along with Theorem 3 and its proof
in Section 4. In Sections 5 and 6 we present results obtained under the additional assumption
that K has arithmetic structure. These are Theorems 4 and 5 and 6. Finally, in Section 7, we give
some concluding remarks.
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2. A generalisation of Riemann’s formula

In this section we give a generalisation of the formula (1.2). Note that we use the convention

F : g �−→ ĝ(t) = 1√
2π

∫
R

g(ξ)e−iξ t dξ

for the Fourier transform on L2(R). Moreover, for I ⊂ R we identify the space L2(I ) with the
subspace of L2(R) consisting of functions with support in I . In this way, we give sense to the
expression F g for g ∈ L2(I ).

Theorem 1. Let K ⊂ N be arbitrary, I ⊂ R be a bounded and symmetric interval, and

L =
⋃
n∈K

((− log(n + 1),− logn] ∪ [logn, log(n + 1)
))

. (2.1)

Then there exists a compact operator ΦK,I such that

ZK,I = χI F −1χLF + ΦK,I . (2.2)

Proof. The theorem is essentially the observation that by expanding the Dirichlet series of
2 Re ζK(s) = ζK(s) + ζK(s), we get

ZK,I g(t) = χI (t)√
2π

∑
n∈K

(
ĝ(logn)

n
nit + ĝ(− logn)

n
n−it

)
. (2.3)

Indeed, the formula (2.2) follows if we show that for g ∈ C∞
0 (I ) the difference

∑
n∈K

(
ĝ(logn)

n
nit + ĝ(− logn)

n
n−it

)
−

∫
L

ĝ(ξ)eitξ dξ

is given by a compact operator Φ . Note that for g ∈ C∞
0 (I ) this sum converges absolutely since

ĝ(ξ) = O((1 + ξ2)−1). In particular, since the Fourier transform is bounded, this implies that
ZK,I is bounded as an operator on L2(I ). (This also follows from the fact that ZN,I is bounded
and the remarks following Theorem 2 relating these operators to frame theory.)

Recall that for K ⊂ N,

L =
⋃
n∈K

((− log(n + 1),− logn] ∪ [logn, log(n + 1)
))

.

In order to simplify notation, we set L+ = L ∩ (0,∞) and consider the difference of only the
positive frequencies,

∑
n∈K

ĝ(logn)

n
nit −

∫
ĝ(ξ)eitξ dξ. (2.4)
L+
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It suffices to show that this is given by a compact operator, say 2πΦ+. The same argument then
works on the negative frequencies by taking complex conjugates, giving us a compact operator
2πΦ−. With the choice Φ = Φ+ + Φ−, the proof is complete.

By adding and subtracting intermediate terms, we see that the difference (2.4) can be ex-
pressed as

∑
n∈K

1

n log(1 + 1
n
)

∫
Ln

(
ĝ(logn)nit − ĝ(ξ)eitξ )dξ

︸ ︷︷ ︸
(I )

+
∑
n∈K

(
1

n log(1 + 1
n
)

− 1

)∫
Ln

ĝ(ξ)eitξ dξ

︸ ︷︷ ︸
(II)

.

We want to interchange the integral and sum signs in these expressions. For (I ), it suffices to
show that ∑

n∈K

∫
Ln

∣∣ĝ(logn)nit − ĝ(ξ)eiξ t
∣∣dξ � C‖g‖L2(I ). (2.5)

for some constant C > 0. Note that by expressing the difference inside the absolute value as a
definite integral, we have ∫

Ln

∣∣nit − eitξ
∣∣dξ � |t | 1

n2
.

Pulling the absolute value sign inside of the expression for the Fourier transforms in combination
with this inequality, gives us the bound∫

Ln

∣∣ĝ(logn)nit − ĝ(ξ)eiξ t
∣∣dξ �

∫
I

∣∣g(τ)
∣∣ ∫
Ln

∣∣ni(t−τ) − ei(t−τ)ξ
∣∣dξ dτ

� 1

n2

∫
I

|t − τ |∣∣g(τ)
∣∣dτ

� 2|I |
n2

(∫
I

∣∣g(τ)
∣∣2 dτ

)1/2

.

Taking the sum, and using the Cauchy–Schwarz inequality, we get (2.5) with constant C =
2|I |ζ(4)1/2. Interchanging the integral and sum signs, we get

(I ) =
∫

g(τ)α(t − τ)dτ,
I
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where

α(τ) = 1√
2π

∑
K

1

n log(1 + 1/n)

∫
Ln

(
niτ − eiξτ

)
dξ.

By the same bound we used above, this sum converges absolutely and therefore the function α(t)

is continuous on I . Similar arguments show that

(II) =
∫
I

g(τ )β(t − τ)dτ,

where

β(τ) =
∑
K

(
1

n log(1 + 1/n)
− 1

)∫
Ln

eitξ dξ

is a continuous function on I . Hence,

2πΦ+g(t) = 1√
2π

∫
I

g(τ )
(
α(t − τ) + β(t − τ)

)
dτ,

and so the compactness of Φ+ follows from Lemma 2. By the comments of the first half of the
proof this implies that Φ is also a compact operator. �
3. Characterisation of ZK,I that are bounded below in norm

The following theorem explains when the operator ZK,I is bounded below.

Theorem 2. Let K ⊂ N be arbitrary, I ⊂ R be a bounded and symmetric interval, and L ⊂ R be
given by the relation (2.1). Then the following conditions are equivalent.

ZK,I is bounded below on L2(I ), (a)

χI F −1χLF is bounded below on L2(I ), (b)

there exists δ ∈ (0,1) such that lim inf
x→∞

πK(x) − πK(δx)

x
> 0, (c)

lim inf
x→∞

πK(x)

x
> 0. (d)

Before we give the proof, we mention a corollary of Theorem 2. Recall that a sequence of
vectors (fn) in some Hilbert space H is called a frame if for all f ∈ H there exists constants
such that

∑ |〈f |fn〉|2 
 ‖f ‖2. It is a basic result of frame theory that such a sequence of vectors
is a frame if and only if the operator defined by

g �−→
∑

〈g|fn〉fn
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is bounded and bounded below in norm (see e.g. [4]). With this in mind, we define the sequence

GK =
(

. . . ,
3it

√
3
,

2it

√
2
,1,1,

2−it

√
2

,
3−it

√
3

, . . .

)
, (3.1)

where n is understood to run through K ∪ (−K). It is readily checked that Eq. (2.3) says exactly
that 2π ZK,I is the frame operator of the sequence GK when restricted to the space L2(I ). Hence,
we get the following.

Corollary 1. Let K ⊂ N be arbitrary and I ⊂ R be a bounded and symmetric interval. Then the
sequence of vectors GK given by (3.1), restricted to the interval I , forms a frame for L2(I ) if and
only if any of the conditions of Theorem 2 holds.

Our proof of Theorem 2 is based on the two following results (an alternative approach based
on Corollary 1 is outlined in Section 7). The first is a theorem due to B. Panejah [25].

Theorem (Panejah, 1966). Let L ⊂ R be measurable and I ⊂ R an interval. Then the operator
χLF is bounded below in norm from L2(I ) to L2(R) if and only if there exists a δ > 0 such that

inf
ξ∈R

∣∣L ∩ (ξ − δ, ξ)
∣∣ > 0. (3.2)

The second result is a simple lemma (see e.g. [13, p. 238, Theorem 5.26]), for which we
provide a simple proof.

Lemma 1. Let X,Y be Banach spaces, let Z : X → Y a continuous linear operator that is
bounded below and Φ : X → Y be a compact operator. If Z + Φ is injective, then Z + Φ is
bounded below.

Proof. If Z +Φ is not bounded below, there exists a sequence of numbers xn such that ‖xn‖ = 1
for all n ∈ N while ‖(Z + Φ)xn‖ → 0. Since Φ is a compact operator, we may assume that Φxn

is a Cauchy sequence. This implies that Zxn is also a Cauchy sequence, whence xn itself is a
Cauchy sequence since Z is assumed to be bounded below in norm. Therefore, xn converges
to some element x with ‖x‖ = 1, whereas (Z + Φ)x = 0. This contradicts the injectivity of
Z + Φ . �
Proof of Theorem 2. We proceed to show the equivalences (b) ⇔ (c), (c) ⇔ (d) and (a) ⇔ (b).

(b) ⇔ (c): Condition (b) says that F −1χLF is bounded below on L2(I ). We begin by estab-
lishing that this is equivalent to χLF being bounded below from L2(I ) to L2(R). Indeed, one
direction is clear since

‖χLF g‖L2(R) = ∥∥F −1χLF g
∥∥

L2(R)
�

∥∥χI F −1χLF g
∥∥

L2(I )
.

To prove the converse, assume that there exists some δ > 0 such that for g ∈ L2(I )

‖χLF g‖L2(R) � δ‖g‖L2(I ). (3.3)
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Moreover, assume that for all ε > 0 there exists a gε ∈ L2(I ) such that

∥∥χI F −1χLF gε

∥∥
L2(I )

� ε2‖gε‖L2(I ).

This implies that

∥∥χI F −1χLC F gε

∥∥
L2(I )

� ‖gε‖L2(I ) − ∥∥χI F −1χLF gε

∥∥
L2(I )

�
(
1 − ε2)‖gε‖L2(I ).

On the other hand, the inequality (3.3) implies that

∥∥χI F −1χLC F gε

∥∥2
L2(I )

�
∥∥F −1χLC F gε

∥∥2
L2(R)

= ‖gε‖2
L2(I )

− ∥∥F −1χLF gε

∥∥2
L2(R)

�
(
1 − δ2)‖gε‖2

L2(I )
.

Combining these two inequalities, we find that ε � δ. This leads to a contradiction since we may
choose ε = δ/2.

We now invoke Panejah’s theorem. For our set L, the condition (3.2) is equivalent to

lim inf
ξ→∞

πK(eξ ) − πK(eξ−δ)

eξ
> 0,

which is exactly condition (c). Indeed, this is just a matter of observing that

πK(eξ ) − πK(eξ−δ)

eξ
�

∑
log k∈(ξ−δ,ξ)

1

k
� eδ πK(eξ ) − πK(eξ−δ)

eξ
.

(c) ⇔ (d): It is clear that (c) implies (d). To see the converse, we need to use the fact that
πK(x)/x � 1. So assume that (d) holds, but not (c). Then for all δ ∈ (0,1) there exists a sequence
xn such that

lim
n→∞

πK(xn) − πK(δxn)

xn

= 0,

whence

lim sup
n→∞

πK(xn)

xn

= lim
n→∞

πK(xn) − πK(δxn)

xn

+ lim sup
n→∞

δ
πK(δxn)

δxn

� δ.

Since δ ∈ (0,1) is arbitrary, this contradicts (d).
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(a) ⇔ (b): This equivalence follows essentially from the result from Lemma 1 and the identity
Z = F −1χLF +Φ , where Φ is a compact operator on L2(I ) and L is given by (2.1). What needs
to be checked is that the lower bound of Z implies the injectivity of χI F −1χLF , and vice versa.

By the equivalence of (b) and (c), we know that if the operator F −1χLF is bounded below,
then there exists δ ∈ (0,1) such that infx∈R(πK(x) − πK(δx))/x > 0. This is readily seen to
imply that

∑
n∈K n−1 = ∞. We show that this is sufficient for the operator Z to be injective.

Indeed, define the operator

R : g �−→
(

. . . ,
ĝ(− log 3)√

3
,
ĝ(− log 2)√

2
, ĝ(0), ĝ(0),

ĝ(log 2)√
2

,
ĝ(log 3)√

3
, . . .

)
.

By an easy computation we have Z = (2π)−1R∗R. Since an operator is always injective on the
image of its adjoint it suffices to check that the hypothesis implies that R is injective, i.e. that for
g ∈ L2(I ) then ĝ(± logn) = 0 for all n ∈ K implies g = 0. To get a contradiction, assume that
the function g is non-zero. The function ĝ is entire and of exponential type |I |/2. In particular,
as follows from Jensen’s inequality, the number of zeroes with modulus less than r > 0, which
we denote by λ(r), has to satisfy

lim sup
r→∞

λ(r)

r
< ∞.

Let πK(x) be the counting function for K . Then λ(r) � πK(er ). The existence of the limit
implies that πK(n) � C logn for some C > 0. Summing by parts and using this estimate, we see
that

N∑
n∈K

1

n
= πK(N)

N
+

N−1∑
n=1

πK(n)

n(n + 1)
� 1 + C

N∑
n=1

logn

(n + 1)2
, (3.4)

which converges as N → +∞. Hence, we have a contradiction and so g has to equal zero, as
was to be shown. We can now apply Lemma 1 to conclude that Z is bounded below on all of
L2(I ).

The same argument holds if we reverse the roles of Z and χI F −1χLF since the latter operator
is injective whenever K is non-empty. Indeed, assume that K �= ∅ and let g ∈ L2(I ) be such that
g �= 0. It is clear that neither χLF g nor F −1χLF g can be equal to zero almost everywhere
as functions in L2(R). To conclude, we use the Plancherel–Parseval formula. For suppose that
χI F −1χLF g = 0. Since g = χI F −1χLC F g + χI F −1χLF g, this implies χI F −1χLC F g = g.
And so

‖g‖2
L2(I )

= ∥∥F −1χLF g
∥∥2

L2(R)
+ ∥∥F −1χLC F g

∥∥2
L2(R)

�
∥∥F −1χLF g

∥∥2
L2(R)

+ ∥∥χI F −1χLC F g
∥∥2

L2(I )

= ∥∥F −1χLF g
∥∥2

L2(R)
+ ‖g‖2

L2(R)
.

But from what is already established ‖F −1χLF g‖L2(R) > 0, which leads to a contradiction. This
concludes the proof of the theorem. �
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4. Characterisation of ZK,I that behave like the identity operator

The following result describes when ZK,I is a compact perturbation of a scalar multiple of
the identity operator.

Theorem 3. Suppose K ⊂ N and A � 0. Then for all bounded and symmetric intervals I ⊂ R,
the operator defined by

ΨK,I = ZK,I − A Id

is compact if and only if

lim
x→∞

πK(x)

x
= A. (4.1)

As mentioned in the introduction, this theorem should be compared to the following tauberian
result due to S. Ikehara [10] and J. Korevaar [15]. Indeed, the sufficiency of the condition (4.1) in
Theorem 3 follows directly from it. Note that we call the distributional Fourier transform of L∞
functions which decay to zero at infinity pseudo-functions. These are in general distributions.

Theorem (Ikehara 1931, Korevaar 2005). Let S(t) be a non-decreasing function with support
in (0,∞), and suppose that the Laplace transform

F(s) = Lf (s) =
∞∫

0

S(u)

eu
e−(s−1)u du

exists for σ > 1. For some constant A, let

g(s) = F(s) − A

s − 1
.

If g(s) coincides with a pseudo-function on every bounded interval on the abscissa σ = 1 then

lim
t→∞

S(u)

eu
= A.

Conversely, if this limit holds, then g extends to a pseudo-function on σ = 1.

We remark that it follows from the Ikehara–Korevaar theorem that g extends to a pseudo-
function on σ = 1 if and only if e−uS(u) tends to A.

The significance of pseudo-functions is that they are the class of distributions that satisfy,
by definition, the Riemann–Lebesgue lemma. In particular, this implies that the convolution-
type operators they give rise to are compact operators. To make this more precise, we give the
following lemma.
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Lemma 2. Let I ⊂ R be a bounded and symmetric interval and k ∈ L1(2I ). Then the operator
defined by

Λ : g ∈ L2(I ) �−→ χI

∫
I

g(τ )k(t − τ)dτ ∈ L2(I ),

is a compact operator on L2(I ). More generally, if (kδ)δ∈(0,1) is a net of functions in L1
loc(R)

converging in the sense of distributions to a pseudo-function k, then the operator

Λ̃ : g ∈ L2(I ) �−→ lim
δ→0

χI

∫
I

g(τ )kδ(t − τ)dτ

is bounded and compact on L2(I ).

Proof. Let en(t) denote the Fourier characters of L2(2I ), and let the Fourier expansion of k on
L2(2I ) be given by

k(t) =
∑
n∈Z

cnen(t).

Hence, for g ∈ L2(I ),

Λg(t) = |2I |1/2
∑
n∈Z

cn(g, en)L2(I )en(t).

By the Riemann–Lebesgue lemma it follows that |cn| → 0 as |n| → ∞ and the operator Λ is
seen to be compact.

We turn to the second part of the statement. Let g ∈ C∞
0 (I ). Then

lim
δ→0

∫
R

g(t − τ)kδ(τ )dτ = (
g(t − ·), k) =

∫
R

ĝ(ξ)k̂(ξ)eitξ dξ.

By the dual expression of the L2(I ) norm this is seen to be bounded by some constant times the
L2 norm of g. To see that it is compact, define an operator on C∞

0 (I ) by

ΛNg(t) =
∫
R

ĝ(ξ)k̂N (ξ)eitξ dξ,

where the functions kN are defined by setting k̂N = χN k̂. Since F k̂N ∈ L1(2I ) this is a compact
operator by the first part of the lemma. Moreover,

‖Λ̃g − ΛNg‖L2 � ‖g‖L2‖k̂‖L∞(|ξ |>N).

Hence the sequence of compact operators ΛN approximates Λ̃ in the uniform operator topology
as N → ∞. �
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Proof of Theorem 3. We use Lemma 2 to check the sufficiency of the condition (4.1). Recall
that πK(x) is the counting function of the integers K . If we set S(u) = πK(eu) then Korevaar’s
result says that the density condition (4.1) implies that the function

ψK(s) = 1

s
ζK(s) − A

s − 1
, (4.2)

extends to a pseudo-function on σ = 1. In fact, it is straight-forward to check this implication
directly since

1

s
ζK(s) − A

s − 1
=

∞∫
0

e−itue−(σ−1)u

(
πK(eu)

eu
− A

)
du.

In any case, by (4.2) it follows that

Re ζK(1 + δ + it) = Aδ

δ2 + t2
+ ReφK(1 + δ + it),

where φK = ν(s)ψK(s), with ν(s) being a smooth function with fast decay such that ν(s) = s

in the strip t ∈ (−2,2). This ensures that ReφK extends to a pseudo-function on σ = 1/2. Since
convolution operators with pseudo-functions as kernels give compact operators, the sufficiency
now follows.

The converse is more delicate since it is possible for a convolution operator to be compact
with a kernel that is not a pseudo-function. For instance, the indicator function χY , where Y ⊂ R

is unbounded but has finite Lebesgue measure, gives rise to such an operator. By Theorem 1 we
have the identity

ZK,I − A Id = χI F −1χLF − A Id︸ ︷︷ ︸
(∗)

+ΦK,I ,

for some compact operator ΦK,I . Since the identity operator on L2(I ) can be expressed as Id =
χI F F −1, it follows from the hypothesis that

√
2π · (∗) = χI

∫
R

(χL − A)ĝ(ξ)eiξ t dξ

defines a compact operator on L2(I ) for all bounded and symmetric I ⊂ R. We denote it by Ψ̃ . It
is known that compact operators map sequences that converge weakly to zero to sequences that
converge to zero in norm. We use this to show that for all δ > 0,

|L ∩ (ξ − δ, ξ)| − A → 0, as ξ → ∞. (4.3)

δ
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To that effect, let ε > 0, write I = (−T ,T ), for some T > 0, and for ξ ∈ R define the
L2(−T ,T ) functions

gξ (t) = χ(−T ,T )F −1{χ(ξ−δ,ξ)}(t) =
√

2

π
eit (ξ− δ

2 )
sin( δ

2 t)

t
.

It is clear that for T > 0 large enough, the real valued functions ĝξ approximate the characteristic
functions χ(ξ−δ,ξ) to an arbitrary degree of accuracy in L2(R). This approximation is uniform
in ξ . In particular, we may choose T > 0 so that

1

2
δ � ‖gξ‖L2(I ) � 2δ.

Fix some sequence |ξn| → ∞. It follows readily that the functions gξn converge weakly to zero
in L2(I ), whence ‖Ψgξn‖ → 0 as n → ∞. To obtain the connection to the set L, we use the dual
expression for the norm of Ψ̃ gξn .

‖Ψ̃ gξn‖L2(I ) � 1

‖gn‖L2(I )

∣∣∣∣∫
R

(χL − A)ĝξn(ξ)2 dξ

∣∣∣∣
� 1

2δ

∣∣∣∣∫
R

(χL − A)χ(ξn−δ,ξn)(ξ)dξ

∣∣∣∣︸ ︷︷ ︸
(∗∗)

− 1

2δ

∣∣∣∣∫
R

(χL − A)
(
ĝξn(ξ)2 − χ(ξn−δ,ξn)(ξ)

)
dξ

∣∣∣∣︸ ︷︷ ︸
(∗∗∗)

.

It is clear that

(∗∗) = 1

2

∣∣∣∣ |L ∩ (ξn − δ, ξn)|
δ

− A

∣∣∣∣.
Since |χL − A| � 1 and χ(ξn−δ,ξn) = χ2

(ξn−δ,ξn), we use the formula (a2 − b2) = (a + b)(a − b)

and the Cauchy–Schwarz inequality to find

(∗ ∗ ∗) � 1

2δ
‖ĝξn + χ(ξn−δ,ξn)‖L2(I )‖ĝξn − χ(ξn−δ,ξn)‖L2(I )

� 3

2
‖ĝξn − χ(ξn−δ,ξn)‖L2(I ).

By choosing T > 0 large enough, we have (∗ ∗ ∗) � ε/6. Hence,∣∣∣∣ |L ∩ (ξn − δ, ξn)|
δ

− A

∣∣∣∣ � 2‖Ψ̃ gξn‖L2(I ) + ε

2
.

Since ‖Ψ̃ gξn‖L2(I ) < ε/4 for large enough n, this establishes (4.3).
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To get a contradiction, we assume that πK(x)/x does not tend to the limit A. Without loss of
generality, we assume that there exists a number κ > 0 such that

lim sup
x→∞

πK(x)

x
= A + κ.

This means that for any number η ∈ (0,1) we may find a strictly increasing sequence of positive
numbers ξn, with arbitrarily large separation, such that ξn → ∞ as n → ∞ and

πK(eξn)

eξn
> A + ηκ for n ∈ N.

Moreover, since the counting function πK changes slowly, there exists a number δ0 > 0 such that
for n ∈ N and ξ ∈ (ξn − δ0, ξn) we have

πK(eξ )

eξ
− A > κ/2.

Next, for ξn > 2,

∣∣L ∩ (ξn − δ0, ξn)
∣∣ �

∑
n∈K

n∈(eξn−δ0 ,eξn−1)

log

(
1 + 1

n

)

�
∑
n∈K

n∈(eξn−δ0 ,eξn )

1

n

=
eξn∫

eξn−δ0

1

x
dπK(x)

= πK(eξn)

eξn
− πK(eξn−δ0)

eξn−δ0
+

eξn∫
eξn−δ0

1

x

πK(x)

x
dx.

The last line follows from partial integration, and the implicit constants are absolute. By the
properties of ξn, this implies that

∣∣L ∩ (ξn − δ0, ξn)
∣∣ � −(1 − η)κ +

(
A + κ

2

)
δ = Aδ +

(
η + δ

2
− 1

)
κ.

By choosing η = (4 − δ)/4, we find that for ξn > 2,

|L ∩ (ξn − δ0, ξn)|
δ0

− A >
κ

4
.

This contradicts (4.3). �
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5. Two results in the case when K has arithmetic structure

Assume that K ⊂ N has arithmetic structure in the sense that it is the semi-group generated
by a subset Q of the prime numbers, which we denote by P, i.e. K consists of the integers that
are only divisible by primes in Q. It follows that we may write

ζK(s) =
∏
p∈Q

(
1

1 − p−s

)
.

In other words, ζK admits an Euler product. A fundamental fact is that such K always admit
an asymptotic density. We give a proof of this fact, no doubt well-known to specialists, before
turning to Theorems 4 and 5.

Lemma 3. Let Q ⊂ P generate the integers K ⊂ N, and J be the integers generated by the
primes not in Q. Then

lim
x→∞

πK(x)

x
= lim

σ→1+
1

ζJ (σ )
.

Proof. This lemma seems to be folklore, indeed for finite P\Q it is readily known that it holds.
See for instance [20, Theorem 3.1]. An immediate consequence is that for infinite P\Q, then

lim sup
x→∞

πK(x)

x
� lim

σ→1+
1

ζJ (σ )
.

In particular, if ζJ (σ ) diverges as σ → 1+, then πK(x)/x tends to zero. However, the remaining
part of the lemma seems to be more difficult, and no analytic proof, or indication thereof, seems
to be readily available in the literature. Therefore we show how one follows from the Ikehara–
Korevaar theorem above.

Assume that ζJ (1) < ∞ and recall that ζ(s) = (s − 1)−1 + ψ(s) for some entire function ψ .
By the Ikehara–Korevaar theorem, it suffices to show that the following function coincides with
a pseudo-function on finite intervals along the abscissa σ = 1,

ζK(s)

s
− 1

ζJ (1)

1

s − 1
= ζ(s)

sζJ (s)
− 1

ζJ (1)

1

s − 1

= 1

s − 1

(
1

sζJ (s)
− 1

ζJ (1)

)
+ ψ(s)

sζJ (s)
.

Since ζJ (1) < ∞ it is not hard to use the Euler product formula to see that ζJ (1 + it) is bounded
above and below in absolute value for all R. This means that the last term coincides with a
pseudo-function on finite intervals along the abscissa σ = 1. Hence, the same is true for the left-
hand side if and only if it holds true for the first term on the right-hand side. It is readily seen that
this function extends to a pseudo-function on σ = 1 if and only if the same is true for

1
(

ζJ (s) − ζJ (1)

)
. (5.1)
s − 1 s
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We calculate its distributional Fourier transform. Let φ be a test function. Since we may write

ζJ (s)

s
= 1

s

∞∫
1

x−sdπJ (x) =
∞∫

0

πJ (eu)

eu
e−(σ−1)−itu du,

it follows that

lim
δ→0

∫
R

φ̂(t)
1

δ + it

(
ζJ (1 + δ + it)

1 + δ + it
− ζJ (1)

)
dt

= lim
δ→0

∫
R

1

δ + it
φ̂(t)

∞∫
0

g(u)
(
e−δu−iut − 1

)
dudt,

where g(u) = πJ (eu)e−u. Using the smoothness of φ, we change the order of integration,

lim
δ→0

∞∫
0

g(u)

∫
R

φ̂(t)
e−δu−iut − 1

δ + it
dt du =

∞∫
0

g(u) lim
δ→0

∫
R

φ̂(t)
e−δu−iut − 1

δ + it
dt du

=
∞∫

0

g(u)Φ(u)du,

where Φ ′(u) = −2πφ(u) and Φ(0) = 0. This means that

Φ(u) = −2π

u∫
0

φ(x)dx for u � 0.

So,

lim
δ→0

∫
R

φ̂(t)
1

δ + it

(
ζJ (1 + δ + it)

1 + δ + it
− ζJ (1)

)
dt = −2π

∞∫
0

g(u)

u∫
0

φ(x)dx du

= −2π

∫
R

φ(x)χ(0,∞)(x)

∞∫
x

g(u)dudx.

Since g(u) is integrable, this implies that

χ(0,∞)(x)

∞∫
x

g(u)du

decays as |x| → ∞ and so the function (5.1) extends to a pseudo-function on the abscissa
σ = 1. �
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Hence, if J denotes the integers generated by the primes not in Q, then the condition (4.1)
always holds with A = limσ→1+ ζ−1

J (σ ). By the Euler product representation of ζJ it is seen that
ζJ (1) < ∞ if and only if

∑
p∈P\Q

p−1 < ∞. (5.2)

Under these conditions (c) is equivalent to (5.2). This means that we get the following simpler
form of Theorems 1 to 3.

Theorem 4. Let I ⊂ R be a bounded symmetric interval, Q ⊂ P generate the integers K , and J

be the integers generated by the primes not in Q. Then

ZK,I = ζ−1
J (1) Id+ΨK,I , (5.3)

for a compact operator ΨK,I . Moreover, the operator ZK,I is bounded below on L2(I ) if and
only if

∑
p∈P\Q

1

p
< ∞.

Proof. By Lemma 3 the limit

lim
x→∞

πK(x)

x
= A

always holds with A = ζ−1
J (σ ). With this, Theorem 3 implies the formula for ZK,I .

Finally, Theorem 2 says that ZK,I is bounded below if and only if A > 0. By considering the
Euler product of ζJ (s) it follows that ζJ (1) < +∞ is exactly the condition of the theorem. �

Since (5.2) is equivalent to (4.2) with A > 0, the formula (5.3) may be seen as a direct conse-
quence of the Ikehara–Korevaar theorem. However, more can be said in relation to the formula
(4.2). Note that f ∈ L

p

loc if f ∈ Lp(E) for any compact E ⊂ R.

Theorem 5. Let Q ⊂ P generate the integers K , and J be the integers generated by the primes
not in Q, and assume that (5.2) holds. Then

ψK(s) := 1

s
ζK(s) − ζ−1

J (1)

s − 1

extends, in the sense of distributions, to a function in L1
loc on the abscissa σ = 1 if and only if

∑ log logp

p
< ∞.
p∈P\Q
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For q > 1, the extension is in L
q

loc on the abscissa σ = 1 if

∑
p∈P\Q

log1/q ′
p

p
< ∞,

where q ′ > 1 is the real number satisfying q−1 + q ′−1 = 1. Conversely, if

∑
p∈P\Q

log1/q ′
p

p
= ∞,

then the extension of ψ on σ = 1 is not in Lr
loc for r > q .

Before the proof of the theorem, which follows an argument similar to that of Lemma 3, we
give a lemma which ties together summability conditions on subsets of integers and their gener-
ating prime numbers. It follows easily by using the measure calculus described by P. Malliavin
in [17], however we provide a more elementary argument for the readers convenience.

Lemma 4. Let f : N → R+ satisfy f (nm) � f (n) + f (m), f (1) = 0 and f (n) � 1 for n big
enough. If the primes P generate the integers J then

∑
n∈J

f (n)

n
< ∞ ⇐⇒

∑
p∈P

f (p)

p
< ∞.

Proof. One way to prove this is, for σ > 1, to establish the inequality

∑
n∈J

f (n)n−σ �
( ∑

p∈P

f (p)p−σ

)
e
∑

p p−σ

,

and then conclude by the monotone convergence theorem. To achieve this we study the linear map
Df : ∑ann

−σ → ∑
anf (n)n−σ . It is not hard to show that the abscissa of absolute convergence

is invariant under Df . Moreover, for Dirichlet series F,G with positive coefficients, it holds that
Df (FG)(σ ) � Df (F)G(σ) + FDf (G)(σ ). We use this on the identity∑

n∈J

n−σ = e
∑

p∈P p−σ

R(σ ),

where the function

R(σ) = e−∑
p∈P log(1−p−σ )−∑

p∈P p−σ

is given by a Dirichlet series that converges absolutely for σ > 1/2. Here we used the Euler
product formula for the function ζJ . The desired inequality is now seen to hold since

Df

(
e
∑

p∈P p−σ )
�

( ∑
f (p)p−σ

)
e
∑

p∈P p−σ

. �

p∈P
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Proof of Theorem 5. Both the formula

ZK,I = ζ−1
J (1) Id+ΨK,I ,

where ΨK,I is a compact operator, and the statement that ψK extends to a pseudo-function on
σ = 1, follow immediately from Theorem 3.

As in the hypothesis, assume that ζ−1
J (1) > 0. By the factorisation ζ(s) = ζK(s)ζJ (s) and the

formula (1.2) for the Riemann zeta function we have the identity

ψK(s) = ζK(s)

s
− 1

ζJ (1)

1

s − 1

= 1

s − 1

(
1

sζJ (s)
− 1

ζJ (1)

)
+ ψ(s)

s
.

Under our assumption, it follows from the Euler product formula that ζJ (1 + it) is a continuous
function bounded away from zero. Therefore

1

t

(
1

(1 + it)ζJ (1 + it)
− 1

ζJ (1)

)
∈ L

q

loc(R) ⇐⇒ ζJ (1 + it) − ζJ (1)

t
∈ L

q

loc(R).

Let q ′ ∈ [1,∞] be such that q−1 + q ′−1 = 1. Hence, by duality∥∥∥∥ζJ (1 + it) − ζJ (1)

t

∥∥∥∥
Lq(I)

= sup
φ∈Lq′

(I )

∣∣∣∣∫
I

φ(t)
ζJ (1 + it) − ζJ (1)

t
dt

∣∣∣∣.
A brief calculation, where we use Fubini’s theorem twice along with the properties of the count-
ing measure dπJ , shows that

∫
I

φ(t)
ζJ (1 + it) − ζJ (1)

t
dt =

∞∫
1

∫
I

φ(t)
x−it − 1

t
dt

dπJ (x)

x

= √
2π

∞∫
1

logx∫
0

φ̂(ξ)dξ
πJ (x)

x

= √
2π

∑
n∈J

1

n

logn∫
0

φ̂(ξ)dξ

︸ ︷︷ ︸
(∗)

.

We proceed to estimate (∗) for φ in Lq ′
(I ). First we let q = 1. Then q ′ = ∞. Recall that I is a

bounded and symmetric interval, hence I = (−T ,T ) for some T > 0. By Fubini’s theorem and
a change of variables,
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∣∣∣∣∣
u∫

0

φ̂(ξ)dξ

∣∣∣∣∣ = 1√
2π

∣∣∣∣∣
T∫

−T

φ(t)
e−itu − 1

t
dt

∣∣∣∣∣
= 1√

2π

∣∣∣∣∣
uT∫

−uT

φ

(
t

u

)
e−it − 1

t
dt

∣∣∣∣∣
� ‖φ‖L∞(I )√

2π

uT∫
−uT

|e−it − 1|
t

dt.

The integral in the last expression is clearly O(logu). It now follows that

∥∥∥∥ζJ (1 + it) − ζJ (1)

t

∥∥∥∥
L1(I )

�
∑
n∈J

1

n
log logn.

By Lemma 4,

∑
n∈J

log logn

n
< ∞ ⇐⇒

∑
p∈P\Q

log logp

p
< ∞.

This proves the sufficiency for q = 1. As for the necessity, assume that∑
p∈P\Q

p−1 log logp = ∞

and set φ = χI (x). With this choice

u∫
0

φ̂(ξ)dξ = 1√
2π

T∫
−T

e−itu − 1

it
dt =

uT∫
−uT

e−it − 1

it
dt.

The result now follows since it is clear that

1∫
0

|e−it − 1|
t

dt < ∞,

while as u grows we have

∣∣∣∣∣
u∫

e−it

t
dt

∣∣∣∣∣ < ∞ and

u∫
dt

t
= logu.
1 1
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For q > 1, the necessity is proved by using the fact that for φ ∈ Lq ′
(I ) we have∣∣∣∣∣

u∫
0

φ̂(ξ)dξ

∣∣∣∣∣ � ‖φ‖q ′u1/q ′
.

The sufficiency follows since for all r > q ′ there exists φ ∈ Lq ′
(I ) for which

u∫
0

φ̂(ξ)dξ = x1/r + O(1).

We leave the details to the reader. �
6. Remarks on the relation to the prime number theorem

In this section, we present our final result on the operator ZK,I . Let R = (ri) be an increasing
sequence of real numbers greater than one and let N be the multiplicative semi-group it generates.
We say that R is the Beurling prime numbers for the Beurling integers N . This point of view
leads to a generalised type of number theory, initiated by A. Beurling in [3]. The focus of the
theory is to investigate how the asymptotic structure of R relates to that of N . For more on
Beurling primes see [20, Chapter 8.4] and the references therein. In our case, Q corresponds to
the Beurling primes and K to the Beurling integers. We say that the prime number theorem holds
for Q if

πQ(x) ∼ x

logx
.

The symbol f (x) ∼ g(x) is taken to mean f (x)/g(x) → 1 as x → ∞.
The following is now true.

Theorem 6. Let Q ⊂ P generate K ⊂ N. Then the prime number theorem for Q neither implies
nor is implied by the lower boundedness of the operator ZK,I .

To prove the theorem, we need a lemma.

Lemma 5. Let Q ⊂ P generate K ⊂ N and let J denote the integers generated by the primes not
in Q. Then the prime number theorem holds for the set K if and only if

∑
p∈P\Q∩(δx,x)

logp

p
= o(1), for all δ ∈ (0,1). (6.1)

Proof. Let P = P\Q. It is clear that the prime number theorem holds for K if and only if
πP (x) = o(x/ logx). Moreover, it is readily seen that

logx

x

(
πP (x) − πP (δx)

)
�

∑ logp

p
� log δx

δx

(
πP (x) − πP (δx)

)
.

p∈(δx,x)
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So we have to show that πP (x) = o(x/ logx) is equivalent to the statement that for all δ > 0 it
holds that πP (x)−πP (δx) = o(x/ logx). One direction is immediate. For the other, assume that
πP (x) − πP (δx) = o(x/ logx). Rewrite this assumption in the form

πP (x)
logx

x
= δ

(
πP (δx)

log δx

δx

)
logx

log δx
+ o(1).

Hence, for all δ > 0, we have

lim sup
x→∞

πP (x)
logx

x
< δ. �

Proof of Theorem 6. Recall that by Theorem 4, the lower boundedness of the operator ZK,I is
equivalent to the condition

∑
p∈P\Q

1

p
< ∞. (6.2)

First we seek a set of primes Q for which Panejah’s condition holds but the prime number
theorem does not. This part of the theorem follows by comparing the condition (6.2) to the
condition (6.1) of Lemma 5 in combination with a variant of Merten’s formula (see e.g. [20,
p. 50]):

∑
p�x

logp

p
= logx + O(1). (6.3)

One the one hand, (6.3) implies that for δ > 0 small enough, then

lim inf
x→∞

∑
δx�p�x

logp

p
> 0.

We choose a sequence (xn)n∈N which realises this condition and for which the intervals (δxn, xn)

do not overlap. On the other hand, (6.3) implies that

∑
δx�p�x

1

p
� 1

log δx
.

Choose a sub-sequence of (xnk
) for which

∑
k(logxnk

)−1 < ∞. Let P = P ∩ (
⋃

(δxnk
, xnk

)),
and set Q = P\P . This set does the job.

Next, we seek a set Q for which the prime number theorem holds, but Panejah’s condition
fails. For M > 0, consider the consecutive intervals Ik = (Mk,Mk+1). By Merten’s formula (6.3)
it holds that

∑
k k+1

logp

p
= logM + O(1).
M �p�M
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So, for large enough M and k ∈ N we can choose a set of primes Pk from each of the intervals
Ik in such a way that

∑
Mk�p�Mk+1

logp

p
= C

logk
+ O

(
k

Mk

)
.

Set P = ⋃
Pk and let Q = P\P . It now follows that the condition (6.2) does not hold, since

∑
p∈P

1

p
=

∑
k∈N

∑
p∈P∩(Mk,Mk+1)

1

p
�

∑
k∈N

1

k log k
= ∞.

Let n ∈ N be a number such that M−n � δ, and assume that x > 0 is large enough for the relation
Mn+j < x � Mn+j+1 to hold for some integer j � 2. Then

∑
p∈P∩(δx,x)

logp

p
�

∑
p∈P∩(Mj ,Mn+j+1)

logp

p
� n

log j
.

Since n is fixed and j → ∞ as x → ∞, the condition (6.1) holds. �
Remark 1. In the first half of the proof of the above theorem, we actually show that the relation

πQ(x) ∼ C
x

logx
(6.4)

need not be true for any C > 0 even though (6.2) holds. This is holds since we can let the
sequence xn increase arbitrarily fast, while keeping δ fixed. This illustrates that it is not enough
for ζJ to be continuous and bounded away from zero on the abscissa σ = 1 for the usual proof
of the prime number theorem using Ikehara’s theorem to work on the function ζK = ζ/ζJ (see
e.g. [31]). Indeed, if this was the case then (6.4) would hold for some C > 0.

7. Concluding remarks

The theory of sampling measures offer an alternative to Panejah’s theorem in proving the
equivalence (a) ⇔ (c) of Theorem 2. Indeed, given a measure μ on R, J. Ortega-Cerda and
K. Seip [24, Proposition 1] give a necessary and sufficient condition in terms of sampling se-
quences on the Paley–Wiener space PW(I) for

∫
I
|f (t)|2 dt 
 ∫

R
|f̂ (ξ)|2 dμ to hold for all

f ∈ L2(I ). In light of this, Corollary 1 connects the classical density results on sampling se-
quences for Paley–Wiener spaces [29, Chapter 6], which depend on the interval I , to the counting
function πN . Additional arguments, which use regularity properties of the measure μ, show that
the description obtained is independent of I , both necessary and sufficient, and can be expressed
as (c).

The connection between the operator ZK,I and the frame (3.1) was essentially observed in
the paper [23]. There the operator ZN,I was used to study the Dirichlet–Hardy space

H 2 =
{∑

ann
−s :

∑
|an|2 < +∞

}
.

n∈N n∈N
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By the Cauchy–Schwarz inequality, the functions in this space are analytic for σ > 1/2. It has
been shown [19,7] that for a bounded interval I there exists a constant C > 0, only depending on
the length of the interval I , such that for every F ∈ H 2,∫

I

∣∣∣∣F(
1

2
+ it

)∣∣∣∣2

dt � C‖F‖2
H 2 .

This implies that for F ∈ H 2 then F(s)/s is in the classical Hardy space H 2 on the half-plane
σ > 1/2. In particular, it follows that functions in H 2 have non-tangential boundary values
almost everywhere on the abscissa σ = 1/2. This gives meaning to the notation F(1/2 + it) for
F ∈ H 2. A special case of the main result of [23] is now stated as follows.

Theorem (Olsen and Saksman 2009). Let I be some bounded interval in R and v ∈ L2(R). Then
there exists a function F ∈ H 2 such that ReF(1/2 + it) = v(t) almost everywhere in L2(I ).

This result may be reformulated as saying that GN, as defined in (3.1), forms a frame for
L2(I ). As a consequence, Corollary 1 implies that we can replace H 2 by any of the subspaces

H 2
K =

{∑
n∈K

ann
−s :

∑
n∈K

|an|2 < +∞
}

for which K satisfies condition (c) of Theorem 2. For more on the emerging theory of the
space H 2, see [7,6,1,14,8,2,18,9,27,28,30].

Finally we mention that the spaces H p were defined for arbitrary p > 0 by F. Bayart in [1].
By an idea of H. Bohr, they are defined to be the Dirichlet series for which the coefficients are
Fourier coefficients of functions in the Hardy space Hp(T∞), where T∞ = {(z1, z2, . . .): zj ∈ T}
is equipped with the product topology. For p = 2 this definition coincides with the definition of
H 2 given above. The behaviour of functions in these spaces is for the most part unknown.
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