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Introduction

Let A be a category with finite limits, or equivalently, finite products and
equalizers. An object Y is cartesian if the functor - x Y: A— A has a right adjoint.
We begin with a brief discussion of cartesian objects in a general category A. In
Sections 2—-4 we give complete characterizations in three cases, namely, the category
Top/T of topological spaces over a fixed space 7, the category Un/T of uniform
spaces over a fixed uniform space 7, and the category of affine schemes over a fixed
affine scheme. (This last category is, of course, the dual of the category of com-
mutative K-algebras for some fixed commutative ring K.)

If Y is a cartesian topological space, then the right adjoint to -x Y can be
expressed as a function space Top(Y,-), where Top(Y,Z) denotes the set of
continuous maps from Y to Z. Cartesian objects in Top were characterized by Day
and Kelly [2] as those spaces Y such that the lattice O(Y) of open subsets of Y is a
continuous lattice (in the sense of Scott [12]). More recently, Hofmann and Lawson
showed that every distributive continuous lattice is isomorphic to O(Y) for some
cartesian space Y [6].

In Section 2, we characterize cartesian objects in Top/7T. Among corollaries, we
show that an object p: Y— T is cartesian in Top/T whenever Y is locally compact
and 7 is Hausdorff. We also deduce that the inclusion of a subspace Y of T is
cartesian in Top/T if and only if Y is a locally closed subset of 7.

As a consequence of the theorem we obtain for Un/7, we establish a somewhat
surprising connection between cartesian uniform spaces over T and covering spaces
of T (or more specifically, overlays of 7 in the sense of Fox {4]). In addition, when T
is a one point space, we see that Y is cartesian in Un if and only if its uniformity has
a least member.

We conclude our discussion of cartesianness in Section 4, by showing that a
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scheme Spec A over Spec K is cartesian in the category of affine schemes over Spec K
if and only if A is finitely generated and projective as a K-module.

This work is a part of a Ph.D. thesis [11] written under the direction of Professor
Barry Mitchell at Rutgers University. The author would like to express her
appreciation to Professor Mitchell for his constant support and encouragement.

1. Cartesian objects

Throughout this section all categories will have finite limits (equivalently, finite
products and equalizers). If A is a category, then |A| denotes the class of objects of
A, and A(X, Y) denotes the set of morphisms from X to Y in A.

Given Y,Ze|A|, we define ZY to be any object of A representing A(-x Y, Z). An
object Y is cartesian if ZY exists for all Ze |A|, or equivalently if -x Y: A~ A hasa
right adjoint. A is cartesian closed if every object of A is cartesian. If A is pointed
(in particular, abelien), then the only cartesian objects are the zero objects, for if Y
is cartesian, then A(Y, Y)=AOX Y, Y)=A(0, YY), a one element set. It is also not
difficult to show that ZY* Y =(Z¥)" and Z' = Z, where | is the terminal object of A.

If Te|A|, then the category A/T of objects of A over T is the category whose
objects are A-morphisms py: X—7, and morphisms f: py—py are commutative
triangles in A of the form
X f

X

N o

A product X X T becomes an object over T via the projection n,: XX T—T. This
induces a functor 7*: A—A/T which is clearly right adjoint to the forgetful functor
ZriA/T—A,

We note that A/T has finite limits, since A does, and they are determined as
follows. Equalizers in A/7T are formed as in A, i.e. the forgetful functor
Zr:A/T—A creates them. The terminal object of A/T is the identity morphism
17: T—T. The product of py:X—T and py:Y—T in A/T is given by
Px XDPy: XXy Y—T, where X x7 Y is the pullback of py and pyin A, and py X py is
the obvious projection.

If py: Y= T is an object of A/T, consider the functor py: A/T—(A/T)/py. An
object f:px—py of (A/T)/py is completely determined by the A-morphism
f:X—Y, i.e. by an object of A/Y. In particular, this correspondence yields an
isomorphism of categories (A/T)/py=A/Y. Thus, a morphism p: Y—=>T of A
(considered as an object of A/T) induces a functor A/T—A/Y, which we shall also
denote by p*. Its left adjoint is given by composition with p, and is denoted (via a
similar abuse of notation) by Z,.
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Given an object py: Y—T of A/T, we can consider the following functors

-Xpy:A/T-A/T, Pr A/T—A/Y, -xrY:A/T—A.

They are sometimes referred to as the product, change of base, and the pullback
functors, respectively. If py is a cartesian object of A/7, then by definition - X py
has a right adjoint. If p¥ has a right adjoint, it is denoted by /7, . We shall see that
any one of the above three functors has a right adjoint if and only if they all do.
First, we prove a general proposition.

If a functor F is left adjoint to G, we write F4G. If f: FX—Y and g: X—>GY
correspond via the adjunction, we say that g is the right adjunct of f.

Proposition 1.1. A functor F: B~ A/T has a right adjoint if and only if Zro F has a
right adjoint.

Proof. If F has a right adjoint, then since 2'; has a right adjoint, so does Zr° F.

Conversely, suppose Zro F+G'. If X € |B|, let gy : X— G'T be the right adjunct of
FX considered as a morphism Z7(FX)—T. Then, if f: X— X' is a B-morphism, the
diagram

is commutative. In other words, o is a natural transformation from the identity
functor on B to the constant G'T-valued functor. If py: Y— T is an object of A/T,
let Gpy be the following equalizer in B

’ G‘py ’
Gpy—G'Y—=G'T.
Gy

Using naturality of g, it is clear how G: A/T—B becomes a functor. Applying
B(X, -) we get an equalizer of sets

B(X, Gpy)—B(X,G'Y) %y’)’:_; B(X,G'T)

AEHFX),py)
AQCT(FX), Y) :0———‘———»*Y ACHEX),T)
where ¢ is the map that makes the diagram commute in the obvious sense. By
naturality of g, B(X, g5-y) takes everything to 5. Hence, o takes everything to FX
considered as a morphism of A. It follows that A/T(FX, py) is the equalizer of the
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bottom row. Therefore, we obtain a natural bijection
B(X,Gpy)=A/T(FX,py)

showing that F4G.

Corollary 1.2. The following are equivalent for an object py: Y—T of A/T:
@) -xXpy: A/T—A/T has a right adjoint (i.e. py is cartesian in A/T);
(b) py:A/T—A/Y has a right adjoint;
(c) -X3Y:A/T— A has a right adjoint.

Proof. Consider the commutative diagram

A/T—28Y , AyT

Py xrY Zr

A/Y XXA

Applying Proposition 1.1 to the top (respectively, bottom) triangle yields the
equivalence of (a) and (c) (respectively, (b) and (c)).

If T=1, the terminal object of A, then there is an isomorphism of categories
A/1=A, and hence Corollary 1.2 says that -x ¥Y: A— A has a right adjoint if and
only if Y*: A—A/Y has a right adjoint.

Corollary 1.3. If gx: XY is cartesian in A/Y and py: Y= T is cartesian in A/T,
then X —¥— Y —2— T s cartesian in A/T.

Proof. By Corollary 1.2(a)=(b), we know that py:A/T—A/Y and gf:A/Y—
A/X have right adjoints. Therefore, their composite g¥op3: A/T—A/X has a right
adjoint, and so by Corollary 1.2(b) = (a) X —=— Y —2'— T'is cartesian in A/7.

Corollary 1.4. Suppose that py:Y—T is cartesian in A/T, and f:S—T is a
morphism of A. Then f*(py) is cartesian in A/S.

Proof. By Corollary 1.2(a)=(c), it suffices to show that - x5 (Y X;S): A/S—A has
a right adjoint, where Y xS is an object over S via f*(py). If g, : X—S is an object
of A/S, then the juxtaposition of pullbacks

Xxs(YX78)—2— Yx7§—— Y

m SXpy) Py

ax S S T

X
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is a pullback in A, and hence induces an isomorphism X X Y= X x5 (Y x+S), which
is clearly natural in X. Thus, we have a diagram

-xs(YxrS)
————————eri

A/S A

2z -xrY

A/T

of functors which commutes up to natural isomorbhism. Therefore, - Xy (Y x7S)
has a right adjoint since X, does, in general, and -x;Y does by Corollary
1.2(a)=(c).

2. Cartesian objects of Top/T

Let py: Y—T be an object of Top/T. Then, Y is the toral space, T is the base
space, and py is the projection. By a space Y over T, we shall mean a topological
space Y together with a particular projection py: Y—T.

Suppose that € 7. Then the one point space 1 becomes a space over 7T via the
constant ¢-valued map, which we shall denote by t: 1= T. If py: Y= Tis continuous
and A is a subset of Y, let A,=ANpy '(¢). The fiber of Y over t is the set Y, with the
subspace topology. It is not difficult to see that as a set Y, can be identified with
Top/T(¢t,py), and as a space Y, is homeomorphic to the total space of py X .

Let py: Y—T and p;: Z—T be objects of Top/T. If (p,)r exists in Top/T, we
have a bijection

[’
Top/T(px Xpy,pz) — Top/T(px, (pz¥")

which is natural in py. Taking py to be constant 7-vaiued maps, we see that the total
space of (pz)Pr can be identified with the set of pairs (g,¢), where : Y,—Z, is a
continuous map. If x€ X,, then applying naturality to one point inclusions x: 1 =X
(considered as morphisms t—py) and using the above identification, we obtain

(6N =f(x,y)

where f: X X7 Y—Z is a continuous map over 7, and ye Y0

Now, if py: Y—T and p;:Z—T are any objects of Top/T, motivated by the
above, we define (py,pz) to be the collection of pairs (g,?) with g:Y,—Z,
continuous. We are going to topologize (py, pz) so that ( , ) (with the obvious
projection) becomes a functor (Top/T)°° X Top/T—Top/T. Moreover, when (p)?¥
exists in Top/7, it will turn out that its total space has the same topology as
(pY9pZ)-

Let H be a subset of the collection O(Y) of open subsets of Y. We say that H is
saturated if, Ue H, UC V= Ve H, and H has the finite union property (fup) if,
Us U,e H={Jr U, € H, for some finite FC A. The family of saturated H with fup
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defines a topology which is known as the Scott-topology on the lattice O(Y) [12].

Lemma 2.1 (Day and Kelly (2]). If Y is a Hausdorff space, then the compact subsets
of Y are precisely those of the form ﬂH, where H is a nonempty Scott-open subset
of O(Y).

Proof. If C is a compact subset of Y, then clearly the collection of open subsets
containing C is saturated with fup. But in a T, space, any subset C is of the form
(VH where H is the collection of open subsets containing C. This proves one
direction.

For the converse, suppose H is a nonempty Scott-open subset of O(Y). First we
show that [|H is closed. If y¢(H, then ye¢ V for some Ve H. For every ve V
choose nonintersecting open neighborhoods U, and ¥, of y and v, respectively. Then
(Uve v V, € H and hence some finite union of the V, is in H. Let U be the intersection
of the corresponding U,. Then ye UC Y\ ﬂH, and it follows that ﬂH is closed.
Now, suppose H is nonempty and let {U,},c4 be an open cover for {|H. Then
UaU)U(Y\ H)=YeH since H is nonempty and saturated, so by the fup
(UrU)U(Y\[H) € H for some finite FC A., Therefore, [JH < JrU,, showing -
that (A is compact.

If py: Y- Tis an object of Top/T, let O(py) denote the collection of pairs (U, ¢)
where te 7 and Ue O(Y,), with the obvious projection O(py)— 7. In the following,
we shall identify O(py), with O(Y,). If HC O(py), we say that H is saturated or has
Sfup if H, does for all te T. We say that H is binding if {¢t|(U,,t)eH,} isopenin T
whenever U is open in Y. The collection of saturated, binding A with fup is denoted
by .#,,. Thus, every open subset of O(Y,) is Scott-open.

Suppose Z is a space over T with projection p,. For He .#,, and W open in Z,
define (H, W) C (py, pz) by

(HW)y={(o,){(c"'W,,t)eH,}.

We give (py, pz) the topology whose subbase is the collection of all such (H, W). It
is routine to check that the projection (py, pz)— T is continuous and ( , ) definesa
functor (Top/T)° x Top/T—Top/T. The latter fact uses the following principle. If
f:Y=Y'is amorphism of spaces over T and He #,,, define H'={(U,1)| Ue O(Y))
and (f~'U,t)e H}. Then H'e £,

Suppose py: X—T and py: Y—T are spaces over T. If xe X, let (x,-): Y,
X, xY, be given by y~—(x,y). Composing with the obvious isomorphism
X, x Y,»(XxrY), we obtain a continuous map Y, —(X X7 Y), which we shall also
denote by (x,-). Define n: X—(py, Px XPy) by n(x) =((x,-), t) where px(x)=t.

Lemma 2.2. If py:X—T and py: Y—T are objects of Top/T, then n:X—
(py,Dx X py) defined above is continuous.
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Proof. Let He .#,, and let W be open in X X Y. Suppose n(x) e (H, W), where
xeX,. Then ({y|(xy)e W}, t)e H. For each such y, there exist open neighbor-
hoods M, and N, of x and y in X and Y, respectively, with M, x; N, C W. Since
{ylxx»)ew}c Uy (N,);, by Scott-openness of H,, the union of a finite number of
the (N,), is in H, (abuse of notation). Let N be the union of the corresponding N,
and M the intersection of the corresponding M, . Suppose G = {se T|(N;,s)€ H,}.
By the binding property G is open. Furthermore, fe G. Consider V=M Npx'G.
Clearly, xe V. If x’e V,, then ({y|(x,y)e W;},s)e H since the first coordinate
contains N;. Therefore, nV ¢ (H, W), and it follows that # is continuous.

Let 2 denote the Sierpinski space, i.e., the two-point space {0,1} with {1} open
but not {0}. A continuous map f: Y—2 can be identified with an open subset of ¥,
namely f~!(1). More generally, (py,7;:2x T—T) can be identified with O(py). If
H is a subset of O(py), we let ﬂH be the subset of Y whose fiber over ¢ is ﬂH,,
where H, is considered as a subset of O(Y,) and it is understood that if H, =8, then
(H,is all of Y,.

Theorem 2.3. The following are equivalent for an object py: Y- T of Top/T

(@ -xpy—(py,-).

(b) py is cartesian in Top/T.

(¢) (m:2XT—=T)Pr exists in Top/T.

(d) Given ye Ue O(Y,), there exists He #,, such that (U,t)eH and (\H is a
neighborhood of y in Y.

(e) py:Top/T—Top/Y has a right adjoint.

(f) -xrY:Top/T—Top has a right adjoint.

(@) fX7ly: XX Y—=X'X7Y is a quotient map whenever f: X— X' is a quotient
map over T.

Proof. (a)=(b)=(c) is clear. (b)e (e) & (f) follows from Corollary 1.2. We shall
show that (¢)=(d)=(a) and (f) # (g).

(c)=(d). We have seen that if (pz)?r exists, its total space can be identified with
the set (py,pz) of pairs (o,t), where g: Y,—Z, is continuous, and moreover the
bijection

[’}
Top/T(px Xpy,pPz) =Top/T(px, (p2)"")

is the obvious one. Consequently, taking py=(p;)?", we see that the map
£:(pz)PY X py—p; given by &((o, t), y) = 6y must be continuous since it corresponds
under 6 to 1, P In particular, taking Z=2 x T, and using its identification with
(72:2x T—=T)?r, O(py) becomes a space over T. In the remainder of the proof of
(¢)=(d) we shall assume that O(py) has the topology induced by this identification.
The continuous map € : O(py) X7 Y—2 x T is clearly given by

(,1) ifyel,
(U, t),y)=
(G0, {(O,t) otherwise.
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First, we show that if ye Ue O(Y,), then continuity of €: O(py) Xy Y—=2xT
implies the existence of an open subset H of O(py) such that (U, )€ H and ﬂH isa
neighborhood of y in Y. Then it suffices to show that every open subset of O(py) is
in %,,.

Suppose ye Ue O(Y,). Then {1} x T is an open neighborhood of &((U, ¢),y) in
2 x T. By continuity of ¢, there exists H open in O(py) with (U, t) e H, and V open in
Y with yeV such that e(Hx;V)C{1}xT. It follows that VC[)H since
e((V', 1), y)y=(1,t) for every (V',t"),y’) e HX7 V, and hence ﬂH is a neighborhood
of yin Y.

Note that since ¢ takes continuous maps to continuous maps, if ¥ is open in
XxrY, then the map X—O(py) given by x—(W[x],¢) is continuous, where
px(x)=tand Wix]={yi(x,y)e W}.

Let H be any open subset of O(py). Suppose that te T, {Uy}qea S O(Y7) and
(Ua U,»t) € H. Let A be the collection of finite subsets of A together with A itself,
and let ¥ A beopenif A¢ Vorif Ae Vand V2{G|G2F} for some finite Fe A.
Let A— T be the constant t-valued map, and let W A X7 Y=A X Y, be defined as
follows

W= [(G»y)iye tGJ Ua}'

Then W is open in A X Y, since y € | g U, implies that y € U, for some ¢ € A4, and so
G~ (WI[G]), t) is a continuous map A —~O(py) and (W[A], 1) € H. Hence, there exists
a finite FC A such that (W[F),t) € H. This shows that A has fup.

For the binding property, let V be open in Y=TxX;Y. Then t—(V,,t) defines a
continuous map 7—0(py), and so clearly H is binding.

Finally, to see that H is saturated, suppose UC Ve O(Y,) and (U, 1) € H. Consider
2 as a space over T via the constant f-valued map. Define WC2XrY=2XY, by
W=1{0}x UU{1} x V. Then W is open and so since (W[0},¢)=(U,?) € H, it follows
that (W[1),1)=(V,t)e H,, as desired.

(d)=(a). Consider n:px—(py,pxXpy) and &:(py,pz)Xpy—pz defined as
before. By Lemma 2.2, # is continuous. To see that & is continuous, suppose W is
open in Z and &((a,1),y) =oy € W, where ((0,t),y)€(py,pz) Xr Y. Thenyea~ (w)
which is open in Y,, so by (d) there exists H € #y such that (¢~ '(W)),¢) € H and ﬂH
is a neighborhood of y in Y. Then

(o, ), ) e (H W)y xr[\HS e~ (W)

Therefore, ¢ is continuous. One then easily checks that the adjoint functor identities
hold relative to ¢ and 7.

(H)=(g). If -x; Y:Top/T—Top has a right then it preserves coequalizers. But
every quotient map over T is a coequalizer. Therefore, - X7 Y takes quotient maps
over T to quotient maps in Top.

(2) = (f). The functor - X Y preserves coproducts (i.e. disjoint unions) in any case,
and it also preserves coequalizers at the set level. Therefore, if it takes quotient maps
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over T to quotient maps, then it preserves coequalizers in Top/7, hence all colimits.
The result follows from the dual of the special adjoint functor theorem [5; p. 89].

The implication (d) = (a) owes much to an unpublished proof of Mitchell of the
following corollary.

A space Y is locally compact if every element of Y has a basic family of compact
neighborhoods. Note that this is not the usual definition unless Y is Hausdorff.

If Tis a one point space and Y is locally compact, then it is not difficult to show
that the topology on (Y, Z) is the compact-open topology. To see this it suffices to
show that (Y, 2) has the compact-open topology, since for any space both topologies
on Top(Y,Z) can be described as the coarsest topology such that all maps
Top(Y,f):Top(Y,Z)—Top(Y,2) are continuous, where f: Z—2 is continuous. But
this is straightforward, and hence left to the reader.

Corollary 2.4. If Y islocally compact and T is Hausdorff, then any continuous map
p:Y—=T s cartesian in Top/T.

Proof. If C is a compact subset of Y, define HC O(py) by H={(U,t)|C, c U}.
Now, C, is compact since T is T,, and so H, is Scott-open for all re 7, i.e. H is
saturated and has fup. To see that H is binding suppose U is an open in Y. Since p|C
is a continuous map from a compact space to a Hausdorff space, it is closed.
Therefore, p(C \ U) is a closed subset of 7. But

TANC\U)={t|C,cU}={t|(U,0)e H}.

Hence H is binding. The result follows easily from Theorem 2.3(d) since every point
of Y has a basic family of such C as neighborhoods.

Using Lemma 2.1 and condition (d) of the theorem, we obtain the following
corollary, which was first proved in [2].

Corollary 2.5. If Y is locally compact, then Y is cartesian in Top. On the other
hand, if Y is Hausdorff and cartesian in Top, then Y is locally compact.

It follows that to exhibit noncartesian objects of Top, it suffices to exhibit
Hausdorff spaces which are not locally compact, for example, the rational numbers,
or the open disc with one boundary point.

A subset Y of Tis locally closed if Y=UNF, where Uis open in T and F is closed
in T.

Lemma 2.6. A subset Y of T is locally closed if for every ye Y there is an open
neighborhood U of y in T such that UNY=UNF for some closed F in T.

Proof. If Fis closed and U is open, then the condition UN Y= UNF easily implies
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that UN Y=UN Y. Then choosing such a U, say U,, for each ye Y, we have

Y=y w,nn=U @nn-= (U U_,)n_ Y.

yeyY yevyY

Corollary 2.7. If Y is a subspace of T, then the inclusion i: Y— T is cartesian in
Top/T if and only if Y is a locally closed subset of T.

Proof. For the ‘if’ direction it suffices to show that if Y is either open or closed in
T, then i: Y— T is cartesian in Top/7, since the product of two cartesian objects of
any category is cartesian. We shall use Theorem 2.7(d) = (b).

Suppose ye Ue O(Y,). Let H={({t},t)|te Y} if Y is open in 7, and let H=
{({t},)|te YIU{(®@,t)|te Y} if Y is closed in 7. Note that when Y is closed this
addition is necessary to make H binding. Then He ¥, (U,t)e H and ﬂH= Y.

For the converse, suppose i:Y—T is cartesian in Top/7. By Theorem
2.3(b)=(d), if yeY, there exists He #; such that ({y},y)eH and H is a
neighborhood of y in Y. Let G be an open subset of 7 with ye GNY C ﬂH and
consider

U=GN{t|H,#0} and F={t|@,0)eH}.

Then Uis open since {¢t|H,#0} = {¢t|(Y,, t) € H} which is open by the saturated and
binding properties of A, and F is closed since its complement is open by the binding
property of H. Then ye UNF=UNY, and so by the above lemma, Y is locally
closed in T. . .

Lemma 2.8. Let # be an open cover of Y. A morphism p:Y—T is cartesian in
Top/T if and only if U—— Y—=%— T is cartesian in Top/T for every Ue 4.

Proof. If Y—2— T is cartesian in Top/T and Ue 4, then U——Y—2>Tis
cartesian in Top/T by Corollary 1.3, since U —— Y is cartesian Top/Y by
Corollary 2.7.

Suppose U——— Y —2— T is cartesian in Top/T for every Ue #, and let V be
an open neighborhood of y in Y,. Then ye U, for some Ue %, and so by Theorem
2.3(b)=(d) there exists H € #,,; such (UN V,t)e H and ﬂH is a neighborhood of y
in U. Now, He £,.; gives rise to H’e x, using the inclusion U——Y, ie.
H'={(U,t)|(i~'U,t)e H}. Hence, the result easily follows by (d)=(b) of the
theorem.

Corollary 2.9. Every local homeomorphism Y—T is cartesian in Top/T.
By Corollary 1.4, if f:S—T is a continuous map, then f*:Top/T—Top/S

preserves cartesian objects. In particular, taking S=1 and f=¢ the constant s-valued
map, it follows that if p,: Y— T is cartesian in Top/T, then Y, is cartesian in Top.
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Similarly, if F is cartesian in Top, then n,: Fx T— T is cartesian in Top/T.
Let p: Y—T be a continuous map. Then p is locally trivial with fiber F if there is
an open cover # of T, and homeomorphisms p~!'U= Fx U such that
p'U

FxU

commutes, for all Ue 7.

Corollary 2.10. Let p: Y—T be a locally trivial space with fiber F. Thenp:Y—T is
cartesian in Top/T if and only if F is cartesian in Top.

Proof. If p: Y- Tis cartesian over T, then by the above remark F=Y, is cartesian.
Conversely, if # is an open cover of T such that p~'U= Fx U for every Ue #, then
by Lemma 2.8 and the above remark p: Y— T is cartesian in Top/T.

3. Cartesian objects in Un/T

We begin with a quick review of uniform spaces. For all unfamiliar terminology
and unproved statements we refer the reader to [9, Chapter 6].

Let X be a set. For U, VC Xx X, define U '={(x,»)|(y,x)eU} and Uc V=
{(,»)|(x,2)e Vand (z,y)e Uforsomeze X}. Let A ={(x,x)|xe X}. A uniformity
on X is a collection # of subsets of X XX satisfying

(i) AcU, forall Ue 4.

(i) Ue #=U"'e .

(iii) Ue # = VoV U, for some Ve ¥ (triangle inequality).

iv) UVe#=UNVe 4.

(V) UCVCXxX, Ue4=Vew.
The pair (X, %) is a uniform space. If Ue #, then we say that U is uniform for X.

Let X and Y be uniform spaces. A map f: X—Y is uniformly continuous if
fxf)-YV) is uniform for X whenever V is uniform for Y. Let Un denote the
category of uniform spaces and uniformly continuous maps.

If {f,: X=X, }qea is a family of maps where each X, is a uniform space and X is
a set, then {(f, Xf,)~'(U)| Uis uniform for X,, a € A} is a subbase for a uniformity
on X, called the uniformity induced by the f,’s. In particular, if Yis a uniform space
and X C Y, then the uniformity induced by the inclusion is called the relative
uniformity on X, and X is a sub-uniform space of Y. Limits in Un are formed in
Sets and given the uniformity induced by the projections.

If {f,: Xy, =X }oc 4 is a family of maps where each X, is a uniform space and X is
a set, one can also define the uniformity coinduced by f,’s as the uniformity induced
by the family of all maps g: X— Z where Z is a uniform space and f° g is uniformly
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continuous for all @ e A. Note that this seemingly awkward definition is necessary to
obtain the triangle inequality. If f: X— X" is a uniformly continuous surjection and
X" has the uniformity coinduced by f, we say that fis a quotient map. Colimits in
Un are formed in Sets and given the uniformity coinduced by the injections.

Let T be a uniform space, and suppose py: Y= Tis an object of Un/T. Then Yis
the total space, T is the base space, and py is the projection. By a uniform space over
T, we shall mean a uniform space Y together with a particular projection py: Y—T.
We shall say that a morphism f: pyxy—py- of Un/T is a quotient map, if f: X~ X' is
a quotient map in Un.

Lemma 3.1. If p: Y—T is a uniformly continuous map, then -x;Y:Un/T-Un
preserves quotient maps.

Proof. The case where T is a one point space appears as an exercise in [8, p. 53,
8(c)]. For a proof one can also see [7, p. 96). Using this, as well as the fact that
X’ X7 Y has the relative uniformity as a subset of X’ x Y, it is easy to see that
commutativity of
XxrY

Sfxrly
—_—

X' %Y

implies that fx;1y is a quotient map whenever f is.

Suppose te 7. Then the one point uniform space 1 becomes a uniform space over
T via the constant t-valued map ¢: 1 = T. If py: Y— T is a uniform space over 7, then
the fiber of Y over t is the set Y, with the relative uniformity. As in Top, the
underlying set of Y, can be identified with Un/7(¢, py), and as a uniform space Y, is
isomorphic to the total space of py X 1.

Let py: Y= T and pz: Z— T be objects of Un/T. If (pz)?Pr exists in Un/7, then
arguing as in Top, its total space can be identified with the set of pairs (g, ¢) where
o:Y,~Z, is uniformly continuous, and moreover the bijection

Un/T(px Xpy,pz2) =Un/T(px,(pz)"7)

is the obvious one.

Let d:YXxY—R be a pseudometric on the set Y. Given reR~, let U, =
{(y,y)]d(y,y)<r}. Then the collection of UG ¥x Y such that U, ¢ U for some
positive real number r is a uniformity on Y. When Y =R and d is the usual metric,
this uniformity is called the usual uniformity.

Lemma 3.2 (Metrization lemma, Kelley [9, p. 185]). If Y is a uniform space and U is
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uniform for Y, then (relative to the product uniformity on Y XY and the usual
uniformity on R) there is a uniformly continuous pseudometric d: Y x Y—R such
that

{)dyy<ticU.

Remark. The map min: RXxR—R is uniformly continuous. Therefore, we may
assume that d: Y x Y—17 in the lemma since min(l,d(y,y")): Y X Y—I is a pseudo-
metric, where [ is the unit interval with the relative uniformity. Actually, we shall
not be using the fact that d satisfies the triangle inequality, only that 4 is uniformly
continuous and satisfies d(y,y)=0 for all ye Y.

If py: Y= Tis an object of Un/T, t,t’e Tand VC Y X Y, let

Ve=VOY,xY,.

Theorem 3.3. The following are equivalent for py: Y—=T inUn/T

(a) py is cartesian in Un/T.

(b) (my: IXT->T)Pr exists in Un/T.

(c) There exists Uy uniform for Y satisfying
) Gy ={(t, )| Vou € V. } is uniform for T for all V uniform for Y.
(ii) there exists G, uniform for T such that the projection V,,—Y, is a
surjection whenever (t,t") € G,.

(d) py:Un/T—-Un/T has a right adjoint.

(¢) -x7Y:Un/T—Un has a right adjoint.

(f) - X7 Y preserves coproducts.

Remarks. The reader should not the analogy between Theorem 2.3 and Theorem
3.3, i.e., 2.3(b)—(g) correspond to 3.3(a)—(f). In particular, the unit interval [ is the
‘Sierpinski’ uniform space. Of course, 2.3(g) and 3.3(f) are not quite the same, i.e.
-xyY:Top/T—Top preserves coproducts but not quotients in general, while
-X7 Y:Un/T—Un preserves quotients but not coproducts in general. Finally, the
absence of an analogue to 2.3(a) is due to the fact that we were unable to define the
necessary uniformity on the appropriate ‘function space’ without some assumption
on the exponent.

Proof of Theorem 3.3. (a)=(b) is clear. (a) # (d) « (¢) follows from Corollary 1.2.
We shall show that (b)=(c)=(a) and (¢) ¢ (f).

(b)=(c). If (my: Ix T~ T)Pr exists in Un/T, then as before, its total space, which
we shall denote by (py, % T), can be identified with the set of pairs (g, ) with
o:Y,—»({IxT),=[uniformly continuous. Moreover, the bijection

g
Un/T(py Xpy, IXT>T)=Un/T(py, I X T T)PY)

]

is the obvious one. Then map (py,/XT)XrY —IxT I given by
((o,t),y)~ay is uniformly continuous since it corresponds to 1(,, ;x r under 6.
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Since {(x,x") e IxI||x—x’| <1} is uniform for /, by uniform continuity of =& there
exists £ uniform for (py,/x T) and ¥, uniform for Y such that

loy-a’y’i<1 whenever ((g,),(c, t')€F, (,¥') € Vo 0y

To show that (i) holds, let V be uniform for Y. By the metrization lemma, there
exists a uniformly continuous pseudometric d: Y x Y— I with

V2{(nyldyny)<i}.

The map (YXT) X Y=Y XY given by ((),1),y)~(y,») is an isomorphism of
uniform spaces since the outer rectangle and the right square of the diagram
7

Yx Yy —2XPY, yor Y
3 n

are pullbacks, and hence the left square is a pullback. Thus, d induces a uniformly
continuous map d:YXT—(py,IxT) defined by d(yt)=(d(y,-)t), where
d(y,-): Y,— 1. Hence, there exists ¥’ uniform for Y and G uniform for T such that
@y, t),d(y’, t")) € F whenever (y,y')e V" and (¢, ') € G. In particular, we have

dy, ), d(y,t)eF wheneveryeY, (4,t)eG )

since ¥’ contains the diagonal. We claim that GC G, ={(t, )| Vo C Vir}. If
(t,t'Ye G and (y,y’) € Vy,r, then using (1) and (2) we have

d(y,y)=1d(y,»)—-d(y,y") = le(d(y, ), y) - ed(y, ), y) < 1.

It follows that (y,y") e V,., proving (i).

To prove (ii), let F” be symmetric and uniform for (py,/xT) with F'oF'CF.
Taking X'=T and py =17, we see that the map T—(py, I x T) defined by ¢~ (1,¢)
(where 1 denotes the constant 1-valued map Y,—7) is uniformly continuous since it

corresponds to TxXr Y= Y 225 % T under 6. Therefore,

G'={t"|(L N0, t)NeF}

is uniform for 7.
Let d: Yx Y—1I be a uniformly continuous pseudometric with

Vo 2{(ny)]d(y,y)<1}.

Replacing F with F’ in the proof of (i) we get G uniform for T such that
@, t),d(y, t') e F" whenever ye Y, (1,t) e G.

We claim that if (¢,¢')e Gy = GNG’, then the projection ¥, — Y, is surjective,
proving (ii). Suppose that (7, t')eGo, yeY, and (y,y) &V, for all y'e Y,. Then
d(y,-): Y,—1I is constant l-valued so d(y,t)=(1,¢). Therefore, (d(»,1), (L, tNeF’
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since (¢, ¢)e G and ((1,¢),(1,¢)) e F* since (t,¢’) G’ and F’ is symmetric. Hence,
@dy,0), (1, t))e FoF'CF, and it follows that

1=|d(y,y)- 1] =ed(y, t),y) - €((1,t), )| < 1.

This contradiction shows that (y, y") € ¥, for some y'e Y.

(c)=(a). Fix ¥, and G, satisfying (c). Let ¥ be symmetric and uniform for Y with
VoV¢V,. Then ¥, = V,. whenever (,t’) € G,.. Thus, replacing G, by G,N Gy and
¥, by Vin (c), we see that (i) and (ii) still hold, but now we have }} symmetric and
furthermore

Vors-© Vo € Vyur  Whenever (4, t") € G, (€))

Now, suppose that (¢,t)e Gy. Let (y,¥") € Vj,~ and use (ii) to obtain (y,)’) € Vy,p.
If, in addition, (¢, ¢") € G,, then by symmetry of ¥}, and (3) we see that (¥, ") € V;.
Thus we have shown that

Vorr© Vour 2 Vour - Whenever (4, 8), (¢, 1) € Gy. “4)

Suppose p;: Z— T is an object of Un/T. Let (py, p;) denote the set of pairs (o, ¢)
with g: ¥, = Z, uniformly continuous. Given G uniform for Tand W uniform for Z,
we define (G, W) to be the set of pairs ((g,¢), (¢, t")) € (Py,Pz) X (Py,Pz) such that
(t,t)e G and (gy,0y’) e W for all V,,.. We claim that the collection of such (G, W)
gives a base for a uniformity on (py,pz). It is easy to see that ((g,?),(0,?)) € (G, W)
for all uniformly continuous o : Y, - Z, since ¥}, is the least member of the relative
uniformity on Y, by (i). Also, (G, W) !=(G~1, W~!) since ¥} is symmetric, and
clearly (G, W)YN(G',WHy=(GNG, WNW’'). It remains to check the triangle
inequality. Given (G, W), let G’ be uniform for T with G'°©G’ € GNG,and W’ be
uniform for Z with W/oW’'C W. Suppose ((c,1),(c’,t')e{G, W’y and
(o, ), (6", t") LG, W), Then (t,t") e G. If (y,y") € V;,~, thensince (¢, '), (¢, t") €
Gy, by (4) we get y'e Y, such that (y,y) e V,, and (¥, ¥") € Vy,-. It follows that
(oy,0"y")e Wo W’ ¢ W, and so we have shown that {G’, W) o (G, W’) C (G, W).

Let (pz)?r:(py,pz)— T denote the projection (g, 1)~ t. Then (p;)?r is uniformly
continuous since the inverse image of Gis (G, Zx Z). If f: p; = p, is a morphism of
Un/7, and (f)?7:(p;)?r —=(pz)?¥ is the obvious map, then

(NP ) (P G W) =(G,(fxf) ' (W)).

Thus, we get a functor ( )?r: Un/T—Un/T.
Consider ¢: (py, pz) X7 Y Z given by &((0, 1), y) =oy. If Wis uniform for Z, then
we have
(TXT, W) xrVyC(exe)y (W)

and hence ¢ is uniformly continuous. Now, consider n: X—=(py,px Xpy) given by
n(x) =((x,-), t) for xe X,, where (x,-): Y,» X, X Y,=(X xrY), is the map y~ (x,»).
If (G, Ux¢ V) is a basic uniform set for (py, py X py), then

UN(pxxpxy (GNGY) Snxn)y 'KG, Uxr V).
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This shows that # is uniformly continuous. Finally, one checks that the adjunction
identities for adjoint functors hold relative to £ and #.

(e)=(f). If -x;Y:Un/T—Un has a right adjoint, then it preserves coproducts,
i.e., sums over T.

(f)=(e). By Lemma 3.1, - X+ Y preserves quotient maps, and hence coequalizers.
Therefore, since it preserves coproducts by assumption, it preserves all colimits. The
result follows from the dual of the special adjoint functor theorem [5; p. 89].

Corollary 3.4. A uniform space is cartesian in Un if and only if its uniformity has a
least member. In particular, a T, uniform space is cartesian if and only if it is
discrete.

If T is a uniform space we will always consider T as a topological space via the
uniform topology, that is, Uis open in T if for every t € U there exists G uniform for
T such that G[t]={s|(t,s)e G} c U.

Let Y and T be topological spaces. A continuous map p: Y— T is an overlaying,
or Y is an overlay of T, if there exists an open cover # of T and an open cover
{AY|iel,} of p='U for each Ue #, such that p maps each 4Y homeomorphically
onto U, and such that A,VﬂAJV is either empty or maps onto UN V. It follows, in
particular, that for fixed U the sets AV are disjoint, so p is a covering map. On the
other hand, examples of covering maps which are not overlayings are given in [4].

If Tis a uniform space, an open cover # of T is a uniform cover if + has a refine-
ment of the form {G[t]}, r for some G uniform for 7. In this case we say that G is
subordinate to %.

Let Y be a topological space and 7 a uniform space. Then an overlayingp: Y- T
is uniform if the open cover # can be taken to be uniform.

We recall that every uniform space has a base consisting of open (in the product
topology on Tx T') symmetric neighborhoods of the diagonal [9, p. 179].

In the following, by a uniformity on a space T we shall mean a uniformity on T
such that the uniform topology agrees with the given topology.

Theorem 3.5. Let T be a uniform space, Y a topological space, andletp: YT bea
continuous map. Then Y is a uniform overlay of T if and only if Y has T, fibers and
there exists a uniformity on Y such that p is cartesian in Un/T,

Proof. Suppose p: Y— T is a uniform overlaying. Let # and {A,U} be as in the
definition. Let % be the collection of all symmetric open uniform sets for 7 which
are subordinate to #. If Ge % and ye Y,, let G[¢t] C Ue #. Let i be the index such
that ye AY. Define

Volyl=AYNp~'(Gle)). )

From the definition of overlay it follows immediately that this is independent of the
choice of U. Then one easily checks the following conditions.
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i) (»y)e Vs forallyeY.
(i) (V) '=V; (using symmetry of G).
(i) VoNVy=Vsny.
(iv) If HoHC G and H,Ge %, then VoV, C V.
In other words, {V;|Ge ¥) is a base for a uniformity on Y. If G is uniform for T
and H¢ G with He %, then

(pxp) N G)2(pxp)y (H)2 Vy,

so p is uniformly continuous. From (5) we see that a basic neighborhood of y in the
uniform topology is a neighborhood in the given topology. On the other hand, since
T has the uniform topology and p is a local homeomorphism it follows that any
neighborhood of y in the given topology contains a subset of the form V;[y]. Thus
the uniform topology agrees with the given topology. Finally, we check that (i) and
(ii) hold. Fix Gye % and let ¥, =V, . Then (ii) is clear and (i) follows from the
observation that GN G, C {(4t")| Voo € Ve } for any Ge 4.

For the converse, suppose that there exists a uniformity on Y such that p is
cartesian in Un/T. Let ¥, and G, be as in Theorem 3.3(c). As in the proof of (c)=(a)
of Theorem 3.3 we may assume that V;, and G, are open and symmetric, and
moreover

I/OI'I"O [/Oﬁ'g I/OII" (6)

whenever (4,¢t")eG,. Let G be open and symmetric with GoG¢C G, and let
V=V,N(pxp) (G). Moreover, every ¥ uniform for Y contains a ¥, with these
properties.

Fix such a Vand G. Then G[t] and V[y] are openin T and Y, respectively, since G
and Vareopenin T'x T and Y X Y, respectively. We claim that

p \Gun= U vyl

yev,















