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Permutation groups of prime power degree are investigated here through the study of the cor-
responding group algebra of the set of all functions from the underlying set on which the per-
mutation group acts to a finite field of characteristic p. For the case when the permutation group
is of degree p? acting on a set consisting of the direct product of two elementary abelian
p-groups, the structure of a minimal permutation module is obtained under certain conditions.
The proofs do not depend on the recent classification results of finite simple groups.
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1. Introduction and notation

Let G be a transitive permutation group on a set Q where |Q|=p", p an odd
prime. Let F be « iinite field of characteristic p. Then the set

FQ::{ Y a,w: aweFK
weR

is a G-module in a natural way. Now FQ can be identified with F?:={f:Q—F}
by the map ¥ a,w<f where f:w~a,. The action of G on F is given by
few)=f(wg™") for geG and weR. The set F? is a G-algebra (called the
Wielandt algebra) under point-wise multiplication and addition of functions. In F?
a G-invariant bilincar form is defined by

Sinfy= Y Nfiw),

we R

for all f,, /e F?. If U is a G-submodule of F? then U* is also a G-submodule of
F*¥ and the correspondence U~ U+ is an anti-isomorphism. Let C be the set of all
constant functions. By a result of Wielandt ([7], Theorem 14.7), if U is a proper G-
submodule of F¥ then C< U< C*. The G-module H:=C*/C is called the Heart of
the module F® following J.A. Green. The simplicity of the Heart of F? as a
G-module is a condition surongei tnan 2-fold transitivity (of. [6]). For permutation
groups of prime degree the structure of F¥ is well understood. By a result of
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Neumann [5] which is also implicit in Feit [3], if G is an insoluble transitive per-
mutatior group of degree p then tie heart H is simple as a G-module. An elzgant
proof of this result is given by Klemm [4]. In this paper we investigate permutation
groups of degree p*> and examine the heart of the corresponding permutation
module. By Klemm [4] if G is primitive, |Q|=p", m=2, and G contains a tran-
sitive cyclic subgroup then the heart of F? is simple. The classification of permuta-
tion groups of degree p* is given by Wielandt [7] who proved that if G is a tran-
sitive permutation group of degrec p* and H is a Sylow p-subgroup of G then one
of the following holds:
(Y H<G and G=AGL(2, p),

(i) G is imprimitive,

(iii) G contains an imprimitive noimal subgroup of index 2,

{iv) G is 2-fold transitive.

This classification dces uot give an ' information about 2-foid transitive permuta-
tion groups of degree p°.

Consider a transitive permutation group G of degree p°. We assume from now
onwards that Q=27,xZ,. By Wieiandt ([7], Proposition 17.5) every element f in
F? can be written uniquely as a polynomial in two variables x and v where "' = x
and v/ =y. Thus

~() N
F=A{Y a,x'v:ia,eF, X =x p" =y},

I fis a non-zero element of F¥ of the form ¥ a, X'y, then we define the degree
of fto be max(i+/), 0<i, j<sp-1and q,#0. If f=0 then we set degree of f to
be — 2. Now define T;:= { fe F®: degree(f)<i}. Let T be the group of transla-
tions on €, that is all pecmutations ot the form f,:w+- w+1 for w.t€ Q. Then
clearly cach T, is a T-submodule ot F¥ and we have a filtration

TU:0<TI<“'<T‘.,') 1<T2‘_n !;P‘SP. (l)

Here Ty = C, the set of all consiant tunctions of F¥ and Ty, »=C* and so these
two are also G-submodules of F¥, Observe that for any i, we have that /T, |is
isomorphic to the module of all homogereous polynomials over F of degree i - 1
i the variables v and v with the restriction that x” =x and v/ =y,

Now let U be a minimal, proper G-submodule of F¥. By Wielandt [7], Theorem
I-.7, one has that

C-T\<UsC* =Ty, »

We want 1o investigate the *position’ of U with respect to the filtration (1) of the
mocule £, A natural question is to ask whether U contains T; and if not, what
is then the structure of U in that case? We prove the following:

Theocem A. Ler G be a primitive permutation group on a set Q where Q=7 p X
and G contains the set of all translations on Q. Let F be the field with p elements.
Let U e a minimal G-suomodule of 1 such that U does not contain Ts, the set of
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all polynomials of degree 1 in the variables x and y over F vhere x” =x and y? = y.
Then, after a certain linear change of varicbles, the modu'e U a. an F-vector space
has a basis

{Lu(x, v), ... 4 (x, »)}

where

MAX, V) =X 40, o X Iy e X! Y ()
Sfor 1 <si<k such that

r-um(50) 53 g
Further, we have

Ap-N3=<k<p-1 E))

Hlustration. We have wu,=x*+vy, uy=x*+3xy, uy=x*+6x>+3y>. Note that it
follows from Theorem A that x2, for example, does not lie in U: this fact is proved
in Lemma 3.2.

The modules {T,} can be thought of as the ‘grid-lines’ with respec: to which we
want to investigate the position of a minimal G-submodule U of F.

Definition. The Height of U=min{i: U<T;} =h (say), and the Depth of /=
max{i: T,< U} =d (say).

Let V,:=(UNTHY/\UNT, ), I<i<p-1. Then clearly for i>h, V;=0 and for
i<d we have that V, is the module of homogeneous polynomials of degree i —1.
We pro e:

Theorem B. With the above rnotation, we kave that dimV,, ,<dimV,, for
d<i<h.

We have been informed recently by H. Wielandt (private communication) that the
module U described in the paragraph just before the statement of Theorem A
always coatains T, if G is assumed to be 2-closed (see [7] for definition) and that
this fact appears as Lemma 21.6 in [7). Finally we meniion a conjecture of Neumann
[6] that if G is a transitive permutation group of degree p-, then either the Heart
of F2 is simple or G is similar to a subgroup of S,wrC, or AGL(2, p). We have
obtained in [2] the lattice diagram of the G-module F? when G is the group
S,wrC,. The classifico*ion of transitive permutation groups of degree p? by
Wielandt described earlier and the above conjecture of Neumann are somewhat
complementary to one another and a proof of the conjecture would immediately
lead to another proof of Wielandt’s classification thecrem as a corollary.

Section 2 gives the proof of Theorem B and Section 3 gives the proof of Theorem
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A through a series of results. We mention that our work has relevance in the theory
of generalized Reed-Muller codes.

2. Proof of Theorem B

Since each element f in F¥ is a polynomial of the form ¥ a,-jxi 'y/, one can define
partial derivatives 3f/dx and df/dy. By Wielandt [7], Theorem 18.2 a subspace U
of F2 is a T-module if and only if for f in F° we have that both af/dx, 3f/dy lie
in U. To prove Theorem B is is enough to prove:

Lemma 2.1. Let U be a proper G-submodule of F®. Then for 1<r<2p-2, we
have thar if dim V. <r<dim(7,/T,_,)=r—1, then dim V,, | <t.

Proof. Let H, denote the space of homogeneous polynomials of degree . Then we
have that V, is isomorphic to a submodule of H,_,. Let D,, D, denote partial dif-
ferentiation operations with respect to x and y respectively. Then D.: H,~H,_,
and D, : H,—~H, ; and we know that U is closed under the linear maps D, and D,.
So by considering the restrictions of D, and D, we have that D,:V,,,~V, and
D,:V,.,~V,. 1t follows that

V.. =D V)ND (V). 5

The kernel of D, is the one-dimensional space { y") if r<p- 1, otherwise D, is in-
jective. Similarly the kernel of D, is the one-dimensional sace (x") if r<p -1 other-
wise D, is injective. So if r>p—1 then both D, and D, are injective maps and it
follows from (S5) that dim V,,  <dim ¥V, proving the theorem in this case.

Now consider the case when r<p--1. In this case the kernel of D, is the space
{¥). It follows that dim D;'(V,)=dim V, + 1. Similarly dim D;'(V,)<dim V, + 1.
Suppose if possible that dim V,, ,>dim ¥,+ 1. Then it follows from (5) that
V..., =D,'(¥)=D;'(V,). Now y"eV,.,. So y ‘eV, which means that
v Ye¥,, . Proceeding in this way we get that H, ,=¢y" " Lxy"" 3., v "D is
contained in ¥, which is a contradiction to our assumption that dimV, <1<
dim H, ;. Hence dim V,, , <dim V, proving the theorem in this case.

3. Proof of Theorem A

In this section we assume throughout that U is a minimal G-module such that
U»T,. Also we set F=GF(p). Then UNT,={l,ax+by) where a,beF and
without loss in generality we may assume that « is not equal to zerc. Since F=GF(p)
we may assume by a change of variables that UM 7,=(l,x) where the new
variables which we still write as x and v satisfy the relations: x” =x and y”=y. We
assume from now on that p is an odd prime,
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Proposition 3.1. With the above notation and hypothesis, let p(x, y) € U\ T,. Write
p(x, ») in the form

6 Y =Fo()+ £1()y + - + [ (20~

Then we have:
(i) deg f;,,<deg fi—2, O0=i<k-1,
(i) deg fo(x)=deg p(x, ),
(iii) k<(p-1)72.

Proof. (i) We prove the result by induction on the degree of p(x, y). First suppose
that p(x, *)e UNT; and that the degree of p(x, ») is 2. So p(x, y) is of the form
P, p)=(ag+ &, x + a3x*) + (Bo+ B1X)y + yy* where a;, B; and yeF. Now U is
closed under paitial differentiations with respect to x and y. So dp/dx=
(a1 +2a,x) + B,y lies in UNT,. Since UNT; is spanned by | and x, we must have
B, =0. Again dp/dy e UNT, gives by a similar reasoning that y=0. Thus p(x, y) is
a polynomial of the required type and so (i) holds for all polynomials p(x, y) of
degree less than or equal to 2.

Now suppose that the result (i) holds for all polynomials with degree less than the
degree of p(x, y) where the degree of p(x, y) is now assumed to be greater than 2.
As U is closed under partial differentiations, dp/dy € U. Now the degree of dp/dy
is less than the degree of p(x, y) and also dp/dy does not lie in 7>. So by induction
hypothesis it follows that deg f;, ,sdeg f;—~2, 1=i<k- 1. Note that this means
that deg f) is at least 2 otherwise the inequalities would be meaningless. Now it re-
mains to compare the degrees of fy(x) and fi(x). Let m:=deg f,(x). We know that
m=2. So by using the inequalities we have obtained so far, we get

m -}
m-—1s

FyE px y)=fo' T x)+(ex+d)ye U,

where ¢ and d are some elements of GF(p) and ¢ is non-zero. As the degree of
(@ 1/8x™ ~M)p(x, y! is less than the degree of p(x, 3}, so by induction hypothesis it
follows that the degree of fi" '(x)=3. Now f}" '(x) has degree equal to
deg fo~(m—1). So dez fob=m—1+3, or deg f(x)=deg fi(x) + 2 which is what we
wanted prove. Hence (i) follows by induction for all O0<si<k - 1.

The parts (ii) and (iii) now follow easily.

Lemma 3.2. Ler U be a minimal G-submodule of F? where G is primitive on Q.
Then U cannot contain the polynomial x*.

Proof. Suppose that x> e U. Choose g€ G such that x%:= g(x, y) has the maximum
y-degree in the set {x": he G} which is the same as U by its minimality. Let k be
the y-degree of g(x, y). By Lemma 3.1 we have that k<(p—1)/2. Now since U is
a G-module and x* e U, we have

(Y =(x¥)Y =g(x, ) e U.
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If & is not equal to zero then g(x, y)? has y-degree 2k which contradicts the fact
that g(x, y) has the maximum y-degree. Thus it follows that x¢ is a polynomial in
the variable x only. So U= Flx].

Let PeSyl,(G). As U<F[x}, the generator of P that corresponds to the transla-
tion v—y+1 lies in the kernel of the action of G on U. So G has a non-trivial
normal subgroup N, say. Now N must be transitive on Q for otherwise
Q={wh: he N} for any point weQ and then for fe U, flw)=fMw)=Fflwh™")
which means f is a constant and so U= C which is not the case. Thus N is an
intransitive normal subgroup and so G is imprimitive which is contrary to our
assumption. Hence x* does not belong to U.

The foilowing lemma gives some elements which generate UNT; and UNT,.

Lemma 3.3. Assume the hypothesis of Lemma 3.2. Then we have:
() UNTy=(1,x,x* + ),
(i) UNTy=(1,x, 2+ v, x* + 3xp).

Proof. (i) We know that UNT.=(l,x). Now by Theorem B we have that
UNT; =1, xqlx, y)) where g(x, y) is some element of UNT;. By Proposition 3.2
(i) we have that g(x, y) must be of the form g(x, y) =fo(x) + £, (xX)y + f~(x)y*, where
deg fi(v) sdeg fy(x) - 2 and deg f>(x) <deg f,(x) - 2. Also, fy(x) has degree at most
2 by Proposition 3.1 (ii). It follows that g(x, ) is of the form (¢p + a; x + azxz) +ayy
where @, € F. Since 1 and x belong to UN T; we can take g(x, ¥) to be o, x>+ a3y or
rather x° + a; v where a € F. Note that a, is non-zero otherwise x*¢ U contradic-
ting Lemma 3.2. We may take ay=1 by a change in variable, the new variables
which we still call x and » satisfy the conditions x”=x, y’=y.

(i) By Theorem B and (i) above, we have UNT,=(l, x,x*+y, p(x, y)) where
P(x, v) is a polynomial of the form fu(x) + f;(X)y + £2(x)»* + f3(x)y*. By Proposition
3.1 we have that f(x) has degree 3, f,(x) has degree less than or equal to 1 and
S2(0) =0=/3(x). Thus p(x, ¥) is of the form (o + e, x + x> + 23X ) + (@4 + asx)y.
Since 1 and x lie in U we may by subtracting suitable multiples assume that
px, vy =x" +(cx+d)y where ¢ and d are elements of F. Now op/dx belongs to
{'N 7Ty and so it must be a scalar multiple of x>+ v. Thus we must have that ¢=3
and o px, V) =x"+ 3y +d)y.

Now we assert that  must be zero. This can be seen as follows: Let Pe Syl,(G).
Then N (P) consists of affine transformations of the form

N=rx+r'y,
y=s'x+sy,

where rs—r's’ is non-zero. These transformations leave UN 7, invariant. Now
under such a transformation as above we have x°+ y—(rx+ r'y)* + (s’x + sy) and
the nmage Yies in UNT,. As the image is a linear combination of the spanning set
PLow v+ ) we must have r'=0 and s=r2 By the Burnside transfer theorem, P
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cannot be in the centre of its normaliser, otherwise G will have a normal
p-complement and this case is excluded by our hypothesis. So there must be
transformations in N, (P) of ine form we are considering with r# 1. Thep replacing
y by y+(s'/r* —r)x we may assume that x~rx and y—r?y where r# 1. Note that
the new variables which we still write as x and y satisfy the relations x”=x and
yP=y. Unde " such transformations we have x* + (3x+d)y~ r*x* + (3rx + d)r*y and
the image lies in UNT7; and so is a linear combination of the spanning set
{1, x,x%+ », x>+ (3x+d)y}. We have

P +@rx+drt)y=rX + Qx+d/ryl.

So it follows that d/r=d. This means that either r=1 or d=0. However, by our
choice r#1. So d=0. It then follows that UN T, = (1, x, x2 + v, x* + 3xv). This com-
pletes the proof of the lemma.

We remark that is possible to calculate UM 75 etc. by using methods similar to
that used above.

Lemma 3.4. Let 2€G such that the y-degree of x® is maximal. Let
x8:=q(x, Y) =fo(X) + LX) ¥ + -+ + [, ()y*. Then we have that k>(p—1)/3.

Proof. From Proposition 3.1(iii) it follows that k<(p—1)/2. Let y*:=r(x, »).
Now U is a G-module and ge G. As x>+ y e U it follows that (x2+y)¢ e I/. Further
2+ )8 = () +yE = (x¥) + yE = q(x, )Y + (%, )

implies r(x, y) = —q(x, )’ +ry(x, ¥) where ry(x, y)e U. Now, (x*+3xy)¥e U and is
equal to

g(x, ¥) +3q(x, YIr(x, y) = g*(x, ) + 3q(x, »—q(x, ¥)* + ro(x, y)1
= =2¢3(x, ») + 3q(x, M)ro(x, »).

Suppose that k<(p-1)/3. Then it follows from above that (x* +3xy)% is an
element of U whose y-degree is 3k which is a contradiction to the maximality of k
unless k£ =0. But surely k is not zero since for exampie x*>+ y € U. Hence we must
have that k>(p~1)/3.

The following result improves Proposition 3.1.
Proposition 3.5. Assume the hypcthesis of Lemma 3.3. Let p(x, yye U\T,. Write
p(x, ) in the form

p(X) y) :fo(X) +f:(x)y+ e +.fk(-x)yk- (6)

Then we have:
(i) deg fi.=deg f; -2, O<i<k-1,
(ii) deg fy=0or 1.
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Proof. (i) We already know by Proposition 3.1 that deg f;,,<deg f;—2. Now
suppose that for some j, 0<j<k—1, we have that f;, (x) has degree less by 3 or
more than the degree of f;(x). Let d be the degree of f;(x) and c, be the coefficient
of x? in J;i(x), ¢4 is non-zero and d=3. Then we get from (6)

392 19/ d
a1 (a7 70) =5

4

belongs to U. So we have that x*e U contradicting Lemma 3.2. Hence it follows
that deg f;, (x)=deg fi(x) -2, O0<i<k - 1.
Part (ii) now follows readily.

Proposition 3.6. The module U is generated by {1,u,(x, y),..., un(x, )} for some
integer m, where

U, )= X5+ G XK T2y X T B @)
1 <k<m, and we have that
k\ (25)!
Cr to-1¢= _— 8
kok =25 (2s> s12° ®)

Proof. By Proposition 3.5, the polynomial u,(x, y) is of the form (6). Suppose that
u;(x, y) is given by

k-~2s

uk(x,y)=x"'+(ck.k”2x"'“2+---)y+---+(c,‘.‘,‘,‘23x + o)yt )

Now du, /dx € U and so must be a linear combination of the generators of U. From
the form of u,(x, ¥) given by (9) it is clear that we must have

auk
—— =kui_y(x, ). (10)
ax
So from (9) and (10) we have
k

Chk-25= Cr—1k-1-2s1
k—-2s

provided k —2s=1. Again by simil ir reasoning we have

c _ k=1 c
k l,k'l-l‘s'_k_l_zs kK—-2k~-2-2s
etc. Proceeding in this way, we have,

k(k- l)(k—-(k—25— 1))('250 K
| ' .—.( >c2s,0 (11)
(k—2s)k—-1-28)---(k—25s—k+2s+1) k-2s

provided k - 252> 1. Now we evaluate ¢, as follows: From (9) we have

Chk 2=

Usg(X, ) =X+ (Cog a5 2 X35 24 o)y oo (12)
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S0 Quty5/3y =y 35 U5 2 + & linear combination of uj(x, ), 0<j=2s-2. Thus by
comparing coefficients we have,

ol
€25,0=8 C2525-2C25-2,0- (13)

provided s is non-zero. From (11) we have ¢y, 5, »=(¥)c; 0=(¥) since ¢, o=1 as
uy(x, y)=x*+y. So (13) becomes

2s -1
C25,0= ( 5 )5 C2s-20- (14)
Now similarly we can compute c,;_, ¢ in terms of ¢;_4 ¢ etc. Proceeding in this

way we finally obtain that

(2s)! 2s)!
Czs.o*“-;rz—s Co.o=i!2)5 . (15)

Combining (11} and (15) we get

k\ (2s)!
Ck,k—Zs=(Zsj eI (16)

Now we calculate the ‘non-leading’ terms in the brackets in u,(x, y) as given by (9).
In (9) let the coefficient of x* ~2*~*y* be denoted by ¢, x_,,. ; ;- By generalising the
process to obtain (16), one gets quite easily that

k ) (2s)!

25+ 1) 1201 40 an

Ck.k~2s—a,s=(

for A#0. Now ¢, ¢ is obviously zero as can be seen by looking at u,(x, ») and
observing that since it is of the form given by (9) there cannot be any constant term.
Hence it follows that ¢; 4 _»;_, ;=0 for all A #0. So u,(x, ) has the form given by
(7). This completes the proof of the Proposition.

Using Lemma 3.4 and the equation (7) of the above Proposition 3.6 we now
readily obtain:

Corollary 3.7. With the same notation and hypothesis as in Proposition 3.6 we hcve
that m>%(p-1).

We now prove:

Proposition 3.8. Assume the notation and hypothesis as in Proposition 3.6. Then
we have that m<p-1.

Proof. Suppose if possible that m=p—1. Then from (7) we have

Up 1O =XP T e,y 3 XP Ryt X0y, (18)
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where

Cp-tp-1-2s% (p—(lp——zg!!s! 25 (19
So the coefficient of x?~'y?~1in u;_ 1(% y) is easily seen to be equal to

Y Cotp-1-2Cp- 1. p-1-25Cp-1, p-1-2 (20)

where the sumation is over all r, 5, ¢ such that each of them is less than or equal to
(p-1)/2 and further r+ s+t =p— 1. Using (19), this expression can be written after
some simplifications, as congruent (mod p) to

(2r)! 2s)! (2t)!

) rtoostoo1! (21)
where the summation is over all r, s,¢ as specified in (20). We now show:
Lemma 3.9. The expression (21) is not congruent to zero (mod p) for p+3.
Proof. (E. Lander.) We have

(p-1/2)= —(%; (mod p) (22)
and

27 35(%‘; (mod p), (23)
where f,', denotes the usual Legendre symbol in number theory. Further,

(29)! 2 - ((p-1)72)!

== 2%(-1) mod p). 24

s! (=1 (p-1)/2-5)! ( p) (24)

The congruences (22) and (23) follow readily and (24) follows by induction since the
ratio of consecutive (s+ 1)-th and s-th terms on both sides is 2(2s— 1) modulo p.
Using (24), the sum (21) can be written as congruent to

-~ TR LR . 32 ((p—-l)/Z)! :I
Vo ey ! - 1/2)y
p. G = D T A T lp- D2 == 72— 1)

(25)
where the summation is over all r, s and ¢ as specified in (20). Set w:=(p-1)/2-r,

vio(p-1/2-s, w:=(p-1)/2—1t. Changing the variables in (25) to »,v,w and
using (22) and (23), one obtains that (25) is congruent to

v J;(‘p‘ 1)/2)

2
R u v, W

ot

(26)

where the summation is over all u, v, w such that each of them is less than or equal
to (p-12 and further that «+ v+ w=(p-1)/2 and (%)% denotes a trinomial



Permutation groups of prime power degree 11

coefficient. Now (26) is congruent to
—(— Yyap-n2o _(3
(=5)3 =-{3) (mod p)
From this the lemma now follows readily.

We now continue the proof of Proposition 3.8. Now by Lemma 3.9 we have that
the coefficient of x”~'y?~! in u}_,(x,y) is non-zero. If U’ is a proper G-
submodule of F? we have by Wielandt [7], Theorem 14.7, that C<U<C".
However, U? is not contained in C* since U? contains u}_,(x, y) with a term
xP~'yP~1 which has a non-zero coefficient and by Wielandt [7], Proposition
17.7, the coefficient of X~ 'y?~!in fe F? is the value of the inner product {f, 1}.
So U3=F*. 1i follows that U- U?=F implying that U is not orthogonal to U?. On
the other hand, x is orthogonal to the module U?. For, if fe U? then the coeffi-
cient of X'y~ !in x. f is zero since the coefficient of y”~!in f is a constant by
observing the form of the polynomial f using Proposition 3.6. Now since x is or-
thogonal to U, the G-submodule (x%: ge G) is orthogonal to U2 But by the
minimality of U, we have that U=(x%: ge G). So we get that U is orthogonal to
U? contradicting the earlier statement that U is not orthogonal to U?. Hence m
cannot be equal to p—1 proving Proposition 3.8.

Piecing together the results of this section we establish the proof of Theorem A.
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Postscript

After writing this paper, Prof. W. Feit has informed us in a letter that since all
doubly transitive permutation groups are now known (see for example, P.J.
Cameron, Bull. London Math Soc. 13 (1981), p. 8), it follows that a doubly tran-
sitive group of degree p™>9 which does not contain a cycle of length p™ is either
A, or contains a normal elementary abelian group of order p™. According to
him, ““This latter class is also known but the results have unforiunately not yer
appeared. In view of this it should be possible to describe the Heart of such a per-
mutation representation directly’’. Our work was started before the classification of
doubly transitive permutation groups was completed.
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