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Summary

Background: It is now well established that persistent
nonsynaptic neuronal plasticity occurs after learning
and, like synaptic plasticity, it can be the substrate for
long-term memory. What still remains unclear, though,
is how nonsynaptic plasticity contributes to the altered
neural network properties on which memory depends.
Understanding how nonsynaptic plasticity is translated
into modified network and behavioral output therefore
represents an important objective of current learning
and memory research.
Results: By using behavioral single-trial classical condi-
tioning together with electrophysiological analysis and
calcium imaging, we have explored the cellular mecha-
nisms by which experience-induced nonsynaptic electri-
cal changes in a neuronal soma remote from the synaptic
regionare translated intosynapticand circuit level effects.
We show that after single-trial food-reward conditioning
in the snail Lymnaea stagnalis, identified modulatory
neurons that are extrinsic to the feeding network become
persistently depolarized between 16 and 24 hr after train-
ing. This is delayed with respect to early memory forma-
tion but concomitant with the establishment and duration
of long-term memory. The persistent nonsynaptic change
is extrinsic to and maintained independently of synaptic
effects occurring within the network directly responsible
for the generation of feeding. Artificial membrane poten-
tial manipulation and calcium-imaging experiments
suggest a novel mechanism whereby the somal depolar-
ization of an extrinsic neuron recruits command-like
intrinsic neurons of the circuit underlying the learned
behavior.
Conclusions: We show that nonsynaptic plasticity in an
extrinsic modulatory neuron encodes information that
enables the expression of long-term associative
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memory, and we describe how this information can be
translated into modified network and behavioral output.

Introduction

It is now widely accepted that nonsynaptic as well as
synaptic plasticity are substrates for long-term memory
[1–4]. Although information is available on how nonsy-
naptic plasticity can emerge from cellular processes
active during learning [3], far less is understood about
how it is translated into persistently modified behavior.
There are, for instance, important unanswered ques-
tions regarding the timing and persistence of nonsynap-
tic plasticity and the relationship between nonsynaptic
plasticity and changes in synaptic output. In this paper
we address these important issues by looking at an
example of learning-induced nonsynaptic plasticity
(somal depolarization), its onset and persistence, and
its effects on synaptically mediated network activation
in an experimentally tractable molluscan model system.

Unlike previous studies investigating nonsynaptic
plasticity (reviewed in [3]), we used a single-trial asso-
ciative learning paradigm to induce long-term memory.
This allowed a precise temporal analysis of nonsynaptic
electrical changes after learning and made it possible to
relate these changes to various postacquisition stages
of memory formation at the behavioral and neural levels.
This was not possible with multitrial learning paradigms,
used in previous work investigating learning-induced
nonsynaptic plasticity in molluscan feeding systems
[5–7]. Moreover, we have isolated the learning-induced
nonsynaptic change to a neuron that is extrinsic to the
synaptic network directly responsible for the generation
of the conditioned and unconditioned behavior. This al-
lowed us to examine the contribution of nonsynaptic
plasticity to the conditioned response independently
of any synaptic changes that might occur in the circuit
generating the behavior. In other examples, nonsynaptic
plasticity was shown to occur in neurons that are
directly responsible for the generation of both the
unconditioned and conditioned behavior, making it diffi-
cult to determine the independent contributions of
nonsynaptic and synaptic plasticity to altered network
output [6–11].

Here, we target identified extrinsic modulatory neu-
rons, known in Lymnaea as the cerebral giant cells
(CGCs, Figure 1A). These paired serotonergic giant neu-
rons and their homologs in other molluscs (e.g., Aplysia
[12]) play a permissive role in feeding behavior ([13, 14]
and Figure 1B) but have no direct role in the generation
of the rhythmic feeding motor pattern [13–16]. By per-
forming electrophysiological analyses in semi-intact
preparations (Figure 1C), we show that in animals sub-
jected to a single pairing of amyl-acetate (the CS) with
sucrose (the US), the CGCs have a more positive
membrane potential than in unpaired control animals.
The depolarization is sufficient to increase the network
response to the CS, emerges between 16 and 24 hr
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Figure 1. Location and Axonal Branching Pattern of the Extrinsic Modulatory Cerebral Giant Cells and Their Synaptic Connections to the Intrinsic

Circuit that Generates Feeding Motor Behavior in Lymnaea

(A) The paired (left and right) CGCs send their main axon branches into the buccal ganglia (bg) via the cerebro-buccal connectives (cbc) and have

side branches within the cerebral ganglia. Their main sensory inputs from the lips are from the median lip nerves (mln). The axonal branching

pattern shown here is based on preparations (n > 10) in which both CGCs were intrasomatically filled with the Alexa Fluor 488 dye (Molecular

Probes, Leiden, The Netherlands).

(B) The electrically and chemically coupled CGCs provide widespread monosynaptic inputs to the buccal feeding central pattern generator

(CPG) and motoneurons. Phasic modulatory cerebral-buccal interneurons (CBIs), CPG interneurons (types N1, N2, and N3), and motoneurons

(types B1–B10, some of which also have CPG properties [54]), intrinsic to the feeding network, are primarily responsible for the generation of the

rhythmic motor pattern underlying feeding. The CGCs have an extrinsic, state-setting or permissive function in feeding [13, 14].

(C) The semi-intact preparation that allows chemosensory stimulation of the lips, intracellular recording from the CGCs and intrinsic neurons of

the feeding network (see Figures 2–5), and extracellular recording of CBI activity from the cbc (see Figure 8). The CPG neurons are located in the

gray areas in the buccal ganglia. The interneurons (CGC, CBIs) and motoneurons (B1, B3, B4) recorded in the present work are labeled on the

left side of the diagram only. _/\/\/\/\_, electrotonic synapse; I___, excitatory connection; �__, inhibitory connection, I�___, biphasic, excitatory/

inhibitory connection.
postconditioning, and persists as long as the long-term
memory. The depolarization of the CGC soma spreads
to local axonal regions and increases the strength of
CGC postsynaptic responses. Depolarization of the
CGC also leads to an increase in presynaptic calcium
levels, a mechanism by which presynaptic depolariza-
tion can regulate synaptic function [17]. At the network
level, we show that CGC depolarization increases the
spike response to the CS in feeding command interneu-
rons, leading to the activation of feeding. These experi-
ments reveal a novel mechanism that links nonsynaptic
plasticity occurring outside a behavioral network to
modified output arising within the network.

Results

Single-Trial Conditioning Leads to Long-Term

Memory and Persistent Depolarization of an
Extrinsic Modulatory Interneuron

First, we examined whether single-trial conditioning
leads to electrophysiological changes in the CGCs con-
comitant with the formation of protein synthesis-depen-
dent long-term (>24 hr) memory [18]. The CGCs were
chosen as our primary target in these experiments
because they provide extrinsic modulation to the feeding
system (Figure 1B), and we hypothesized that changes in
their electrical properties might support long-term mem-
ory in isolation from synaptic network effects directly
responsible for the generation of the learned behavior.

About 400 animals were subjected to either a paired or
an unpaired single-trial food-reward conditioning proto-
col [19, 20]. Randomly selected groups of trained (paired
protocol) and control (unpaired protocol) snails were
tested for their behavioral feeding response to the CS
(amyl-acetate) at 1, 2, 3, 7, or 14 days after conditioning
(Figure 2A). At each time point, the trained animals re-
sponded significantly (at least p < 0.05, Figure 2A)
more strongly to the CS than the controls, indicating
associative learning.

The membrane potentials of the CGCs in semi-intact
lip-CNS preparations (Figure 1C) made from randomly
selected trained and control animals also were recorded
at each time point. The CGC membrane potential was
significantly (at least p < 0.05, Figure 2B) different
between the trained and control groups on each day of
the investigation (Figure 2B).

We also measured CGC input resistance, spike fre-
quency, threshold, amplitude, duration, and after-hyper-
polarization that might have been affected by condition-
ing. We found no significant differences between the
trained and control groups in these electrical parameters
at any of the time points (data not shown, example traces
from the Day 14 experiment are shown in Figure 2B).

Next, we focused our attention to the pre-24 hr period
after training. Behavioral tests of intact animals at 2 hr, 4
hr, 6 hr, and 12–16 hr after training (n = between 17 and
23 snails per group) revealed a significant conditioned
response (at least p < 0.05, Figure 3A) but no significant
differences in the CGC membrane potential between
preparations from control and trained animals (Fig-
ure 3B). So the persistent depolarization has an onset
of between 16 hr and 24 hr posttraining, and therefore
it is not associated with early memory expression or
with the initial steps in long-term memory formation.

In the same experiments, at each time point we also
measured CGC input resistance, spike frequency,
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Figure 2. Time Course of Behavioral

Changes and Membrane Depolarization of

the CGCs 1–14 Days after Single-Trial Classi-

cal Conditioning

(A) A significant conditioned response is ex-

pressed throughout the 14 day test period.

At each time point, pairwise statistical com-

parisons (unpaired t tests) were made be-

tween the CS-evoked feeding response of

the trained (mean feeding difference scores

between 10.4 and 14.1, n = between 14 and

20 per group) and the control (mean feeding

difference scores between 2.3 and 7.3, n = be-

tween 13 and 20 per group) groups. No com-

parisons were planned between the condi-

tioned or control responses at different time

points and therefore no ANOVA and post-

hoc multiple comparisons were performed.

Error bars represent the standard error of the

mean (SEM). The computed values for the

t test statistics were as follows: Day 1, df =

28, t = 3.9, p < 0.001; Day 2, df = 25, t = 2.2,

p < 0.04; Day 3, df = 28, t = 3.2, p < 0.03;

Day 7, df = 36, t = 2.5, p < 0.02; Day 14,

df = 38, t = 5.1, p < 0.01.

(B) The CGCs are significantly more depolar-

ized in the trained (mean membrane potential

values between 253 and 257 mV, n = between

14 and 24 per group) versus the control prep-

arations (mean membrane potential values

between 259 and 263 mV, n = between 15

and 26 per group) throughout the same test

period. Error bars represent SEM. The com-

puted values for the t test statistics were as

follows: Day 1, df = 46, t = 3.0, p < 0.004; Day

2, df = 31, t = 2.5, p < 0.02; Day 3, df = 49,

t =3.7, p < 0.0005; Day 7, df = 27, t = 3.2, p <

0.003; Day 14,df = 38, t = 5.1,p < 0.01.Example

CGC traces are shown from a preparation

from a trained animal (recorded membrane

potential, 254 mV) and a control animal (re-

corded membrane potential, 262 mV) from

Day 14 posttraining. Despite the difference in

membrane potential, there are no differences

between the CGCs from the trained and con-

trol animal in spike shape (averaged from

100 s long sections of the CGC traces at re-

corded membrane potential), spike threshold

(ramp depolarization from 280 mV), and input

resistance (cells held at 270 mV, averaged

voltage responses to five 2 nA hyperpolarizing

current pulses are shown).
threshold, duration, amplitude, and after-hyperpolariza-
tion. No training-associated changes were detected in
any of these parameters within this experiment or be-
tween this and the previous experiment (data not
shown).

Persistent Depolarization of the CGCs
Is Concomitant with the Electrophysiological

Expression of the Long-Term Memory Trace
After finding both behavioral memory expression (CS-
induced feeding) and CGC depolarization at >24 hr post-
training, in a new experiment we tested whether the
CGC depolarization is also concomitant with a CS-in-
duced fictive feeding response, the electrophysiological
expression of the memory trace. Fictive feeding is de-
fined as the occurrence of rhythmic motoneuronal activ-
ity known to be driven by the feeding CPG (N1, N2, and
N3 type neurons, Figure 1B).
In the initial behavioral training experiment, the behav-
ioral feeding difference score of the conditioned snails
(n = 37) 14 days after the training was 11.2 6 1.5, signif-
icantly (p < 0.001) higher than the difference score of
the control animals (2.3 6 0.6, n = 34). Similarly, when
the fictive feeding responses to the CS in semi-intact
preparations made from conditioned animals (mean dif-
ference score, 3.2 6 0.8, n = 10) were compared with
those in preparations made from unpaired controls
(0.5 6 0.6, n = 10), they were found to be significantly
(p < 0.01) greater (Figure 4A). In the example shown in
Figure 4B, the CS produced a train of fictive feeding
bursts in both the motoneuron recorded here (B4) and
the intrinsic feeding command interneuron CV1a, indic-
ative of a conditioned response. By contrast, in the con-
trol preparation, only a single delayed burst was re-
corded in the motoneuron (B3) and only subthreshold
inputs were recorded in CV1a (Figure 4C). Replicating
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the result of the previous experiment (Figure 2B), the
mean membrane potential of the CGCs in the trained
preparations (e.g., Figure 4B) was depolarized (253 6
1.3 mV) compared with controls (263 6 1.6 mV, un-
paired t test, df = 18, t = 4.96, p < 0.001, e.g., Figure 4C).
In the same preparations, we found no difference in the
baseline firing frequencies of CGCs from conditioned
versus unpaired control groups (0.83 6 0.02 and
0.70 6 0.07 Hz, respectively), nor was there a significant
difference in the CS-evoked spike frequency in the two
types of preparations (conditioned, 0.84 6 0.05 Hz;
unpaired control, 0.74 6 0.07 Hz).

Depolarization of the CGCs Is Sufficient

for an Increased Fictive Feeding Response
to the Conditioned Stimulus

To establish whether the change in membrane potential
is sufficient to enable an enhanced fictive feeding re-
sponse to the CS, we artificially depolarized the CGCs
in naive animals. The membrane potential of CGCs in
semi-intact preparations made from naive animals was
artificially set to the mean depolarization level that was

Figure 3. Behavioral Memory with No Corresponding Electrophysi-

ological Changes in the CGCs 2–16 hr after Single-Trial Classical

Conditioning

(A) A conditioned response is expressed throughout the 16 hr test

period. Error bars represent SEM. The computed values for the

statistics (unpaired t tests) at each time point were as follows:

2 hr, df = 33, t = 2.2, p < 0.003; 4 hr, df = 38, t = 2.4, p < 0.002; 6 hr,

df = 37, t = 2.3, p < 0.03; 12–16 hr, df = 40, t = 2.2, p < 0.05.

(B) There is no significant difference in the CGC membrane potential

in the trained and the control preparations throughout the same test

period (2 hr, df = 14, t = 1.1, p = 0.30; 4 hr, df = 14, t = 0.5, p = 0.65; 6 hr,

df = 13, t = 0.7, p = 0.5; 12–16 hr, df = 13, t = 0.24, p = 0.8). Error bars

represent SEM.
found in trained animals from the previous 14 day post-
training experiments (253 mV) and compared with the
CS response at control membrane potential (263 mV)
in the same preparations.

Depolarization of the CGC membrane potential to
253 mV with maintained injected current increases the
baseline firing rates of the CGCs. However, the previous
experiment showed no increase in baseline CGC firing
rates in preparations from trained animals compared to
preparations from unpaired controls. For this reason,
the baseline firing rates at both the control (263 mV)
and depolarized membrane potential levels (253 mV)
were entrained to 1 Hz throughout the experiment by
injecting brief suprathreshold current pulses through
a second electrode. The experiment therefore tested
the ability of the membrane potential depolarization
alone to influence the strength of the fictive feeding
response to the CS.

When the CGCs were depolarized to 253 mV, naive
preparations (n = 12) showed an increased response
to amyl-acetate (Figure 5). The fictive feeding response
was significantly (p < 0.01) stronger (difference score,
2.0 6 0.7) when the CGC’s membrane potential was
set to 253 mV than when it was set to 263 mV (Figure 5A,
difference score, 20.25 6 0.3; examples are shown in
Figures 5B and 5C). This result shows that CGC depolar-
ization alone is sufficient to produce a significant in-
crease in fictive feeding response to the CS. The learn-
ing-induced depolarization of the CGCs demonstrated
in the previous experiment (Figure 4) therefore appears
to make a significant contribution to long-term memory
by enabling the activation of the conditioned behavior
by the CS. This conclusion was supported by statistical
analysis showing that there was no significant difference
between CS-induced fictive feeding rates observed in
conditioned animals (3.2 6 0.8, Figure 4A) versus those
observed when the CGCs in naive snails were artificially
depolarized (2.0 6 0.7, see above).

If the depolarization of the CGCs after conditioning
were necessary as well as sufficient for the conditioned
fictive feeding response, then it should be possible to
reverse the effects of conditioning by reversing this
depolarization. However, while doing this experiment,
we found that artificial somal hyperpolarization was not
transmitted efficiently to the axonal processes where
the synaptic sites between the CGCs and target neurons
in the cerebral ganglia are thought to be located [21], and
thus it could not reverse the network effect of condition-
ing (see Figure S1 in the Supplemental Data available
with this article online). This observation indicated that
it is the depolarization of CGC axonal regions presynap-
tic to its targets within the cerebral ganglia that plays the
most direct role in the increased response to the CS, and
therefore we next turned our attention to changes in-
duced in these regions by somal depolarization.

Depolarization of the CGC Membrane Potential
Leads to an Enhanced Postsynaptic Response and

an Increase in Presynaptic Axonal Calcium Levels
By using cell-culture techniques combined with electro-
physiology, we examined whether artificial depolariza-
tion of CGC somatic membrane potential led to changes
in the strength of CGC synaptic output. To monitor these
changes, we cocultured a CGC with a B1 motoneuron
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Figure 4. Single-Trial Classical Conditioning Produces Persistent CGC Depolarization and Increases the CS-Induced Fictive Feeding Response

(A) Fictive feeding difference scores of preparations from trained and unpaired control animals. Error bars represent SEM. The computed values

for the statistics (unpaired t test) for the difference scores are as follows: df = 18, t = 2.72, p < 0.01. The background fictive feeding activity before

the application of the US did not differ significantly (df = 18, p = 0.66) between the trained (1.2 6 0.6 cycles/2 min) and control (1.6 6 0.7 cycles/

2 min) group. In the same preparations, we found no significant difference in the baseline firing frequencies of CGCs from conditioned versus

unpaired control groups (0.83 6 0.02 and 0.70 6 0.07 Hz, respectively), nor was there a significant difference in the CS-evoked spike frequency

in the two types of preparations (conditioned, 0.84 6 0.05 Hz; unpaired control, 0.74 6 0.07 Hz).

(B and C) Examples of recordings from preparations from previously trained and control animals. B3, B4, feeding motoneurons; CV1a, phasically

active intrinsic modulatory interneuron; CGC, tonically active extrinsic modulatory interneuron. (B) In a trained preparation, the CS evoked

a series of short-latency rhythmic fictive feeding cycles (consisting of phases N1, N2, and N3) with somal spike activity in the appropriate phases

in both B4 (N3) and CV1a (N1). In addition, CV1a shows a short-latency burst of blocked axonal spikes or fast subthreshold EPSPs before the full

activation of fictive feeding (detail is shown in box at 33 the time and voltage scales of the arrowed section of the CV1a trace). (C) In a control

preparation, the CS only evoked a single long-latency cycle of fictive feeding activity, with spike activity in motoneuron B3, but subthreshold in

CV1a. Note that the CGC is more depolarized in the trained versus the control preparation (see Results for statistics), but CV1a, unlike the CGC,

shows no change in membrane potential after conditioning (mean resting potential in the trained group, 256.5 6 2.8 mV, n = 9; in the control

group, 257.5 6 3.2 mV, n = 8, unpaired t test, df = 15, t = 0.53, p = 0.6).
(Figure 6A). The CGC is known to be monosynaptically
connected to the B1 in the intact CNS [15], and measur-
ing changes in B1 EPSP amplitudes is therefore a conve-
nient assay for the detection of increased CGC synaptic
output. The two cells were plated w400 mm apart
(Figure 6A). This allowed the chemical synaptic connec-
tions between the CGC and B1 to be established at
about the same distance from the CGC soma where its
axonal branches are thought to synapse onto neurons
of the CS pathway in the cerebral ganglia [21] and where
calcium imaging was performed in a subsequent exper-
iment (see later). We set the membrane potential of the
cultured CGC at different levels with one electrode and
triggered single spikes in its soma with a second elec-
trode. We found that although the shape of the CGC
spikes did not change as a function of depolarization
Figure 5. Depolarization of the CGCs in Naive Animals Is Sufficient to Increase CS-Induced Fictive Feeding

(A) Fictive feeding difference scores of preparations from naive animals, in which the CGC membrane potentials were set at either 253 mV

or 263 mV, with the CGC firing rates kept at 1 Hz on average (before the 1 Hz entrainment, the firing frequency values in the same CGCs

were in the 0.7–1.0 Hz range, similar to the frequency values found in the trained group, see legend to Figure 4). Error bars on the difference score

diagrams represent SEM. The computed values for the statistics (paired t test) are as follows: df = 11, t = 2.89, p < 0.01.

(B and C) Examples of electrophysiological recordings from a naive preparation, with the CGCs’ membrane potential (MP) set to either 253 mV

(B) or 263 mV (C). The firing frequency was similar in both (left and right) CGCs and therefore only one CGC trace is shown in both (B) and (C).

At both CGC membrane potential levels, this naive preparation shows some spontaneous fictive feeding activity. However, when the CGC

membrane potential is set to 253 mV (B), the CS induces a much stronger response compared to when the MP of the same CGC is set

to 263 mV (C), when the CS only induces a delayed subthreshold cycle of synaptic inputs.
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Figure 6. CGC Soma Membrane Depolariza-

tion Leads to Increased Postsynaptic Re-

sponses

(A) A pair of 3-day-old cocultured CGC and B1

neurons. The superimposed cartoon shows

how each of the two neurons was impaled

with two electrodes to allow both the setting

of the membrane potential at predetermined

values in both cells and the triggering of single

spikes in the CGCs. Scale bar equals 100 mM.

(B) With increasing soma membrane depolar-

izations, single spikes triggered in the CGC

cell body evoke increasingly larger postsyn-

aptic responses in the cocultured B1 neuron.

The CGC membrane potential was increased

in 5 mV steps from 265 to 245 mV, and B1

EPSP amplitudes, evoked by single triggered

CGC spikes, were measured. This protocol

was repeated three times, and after each run

the measured amplitude values were normal-

ized to the largest amplitude values (mea-

sured at 245 mV in each case). This graph

shows the mean normalized B1 EPSP values

(6SEM) at the 265, 260, and 255 mV CGC

membrane potential levels. The values at

both 260 and 255 mV are significantly larger

than at 265 mV (paired t tests, df = 2, t = 12.0

and 9.8, p < 0.003 and 0.01).

(C) An example of an electrophysiological test

showing increasingly larger postsynaptic

responses in the B1 neuron to single spikes

triggered in the CGC cell body, which was de-

polarized in 5 mV steps from 265 to 245 mV.

Only the traces in the 265 to 255 mV CGC

membrane potential range are shown. Note that there is no change in the spike shape with increasing levels of depolarization. There are differences

in the after-hypolarization in thesecultured cell recordings compared with ganglion recordings (Figure 2), but this does not affectour interpretation of

the data, which is based on comparisons within the same type of preparation.
(data not shown, example in Figure 6C), the excitatory
postsynaptic potentials (EPSPs) in the cocultured and
corecorded B1 motoneuron significantly increased in
size with increasing presynaptic depolarization (Figures
6B and 6C). Similar results were reported in other inver-
tebrates such as the crayfish neuromuscular synapse
and the squid giant synapse [22, 23]. In a separate ex-
periment, we tested whether CGC depolarization could
also affect synaptic transmission to the B1 neuron in in-
tact CNS preparations (distance between CGC cell bod-
ies and axonal terminals presynaptic to B1, w2 mm),
and the results of this experiment are shown in the Sup-
plemental Results.

Recent work in mammalian synapses has shown that
depolarization of the presynaptic resting potential in-
creases synaptic output through an elevation of back-
ground calcium levels [17]. To test whether there might
be a similar mechanism for depolarization-dependent
CGC synaptic facilitation, we performed calcium-imag-
ing experiments in various CGC axonal regions in con-
junction with depolarization of the voltage-clamped
soma membrane in an intactCNS preparation (Figure 7A).
We found that a somal depolarization of just 5 mV was
already sufficient to induce a small but detectable
(R40 nM) elevation in calcium levels in several sampled
axonal regions of the CGC (Figure 7B). A 10 mV voltage
step evoked a significantly (p < 0.006) larger calcium
response in the same sampled regions (Figure 7B). More-
over, the calcium responses to both the 5 mV and 10 mV
somal depolarization were maintained for the duration of
the depolarization, as shown in the examples in Figures
7A and 7C.

Taken together, the above results confirm that control
of the membrane potential in the CGC can modulate its
synaptic output and suggest that, similarly to mamma-
lian neurons [17], this modulation may be linked to in-
creased presynaptic calcium levels.

Depolarization of the CGC Membrane Potential
Increases CS Responses in Feeding

Command Neurons
We next sought to determine whether there was a link
between somal depolarization of the CGCs and changes
at the network level. We therefore performed experi-
ments in naive semi-intact preparations (Figure 1C)
with simultaneous intracellular recording of fictive feed-
ing activity in motoneurons, manipulation of CGC mem-
brane potential, and extracellular recording of spike ac-
tivity in the cerebro-buccal connectives (cbc). We
previously showed that chemical conditioning in-
creased the CS response in CBI neurons [24], com-
mand-like cerebral-buccal interneurons of the feeding
system, which are directly involved in the activation of
feeding via their excitatory synaptic connections with
the CPG circuitry (Figure 1B). We hypothesized that
this short-latency increase in the CS response of CBIs
after learning is due to the facilitation of the CS to CBI
synaptic pathway by the depolarized CGC (Figure 8A).
That this might be the case was also indicated by the ob-
servation that in trained preparations where CV1a, a CBI
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Figure 7. CGC Soma Membrane Depolarization Leads to a Rise in Calcium Levels in Axonal Branches

(A) A CGC filled intracellularly with the calcium-sensitive dye Oregon Green 488 BAPTA-1 and impaled with two electrodes for voltage-clamp

experiments. This dye can detect calcium signals with a 40 nM threshold (Molecular Probes Product Information, http://probes.invitrogen.

com/media/pis/mp03010.pdf). Scale bar equals 100 mM. Calcium signals were sampled from the four axonal regions shown in the rectangles

while the voltage-clamped CGC membrane potential was stepped from 265 mV to 260 mV and 255 mV, respectively. The example sequence

shows calcium signals color-coded for intensity (low to high) from axonal region 4 immediately before, during (bar), and immediately after the

265 mV to 255 mV step. The sequence images are magnified 43 compared to the image of the CGC above.

(B) Increases in the strength of the calcium signals sampled in four different axonal regions of the voltage clamped CGC shown in (A), in response to

a 5 mV and a 10 mV voltage step from a holding potential of 265 mV. Error bars represent SEM. The normalized fluorescence signal (DF/F) is sig-

nificantly (paired t test, df = 3, t = 7.12, p < 0.006) stronger at 10 mV versus 5 mV, indicating that it is a function of the level of somal depolarization.

(C) Both a 5 mV (green) and a 10 mV (red) voltage step applied to the voltage-clamped CGC soma membrane evokes a maintained calcium signal in

axonal region 4.
neuron, was recorded, there was often short-latency
CV1a spike activity after the application of the CS (see
example in Figure 4B).

We examined the effect of artificial CGC membrane
potential depolarization on the CS responses of the
CBIs by recording their axonal spikes on the cerebro-
buccal connective by using en passant electrodes.
This allowed us to monitor population spike responses
to the CS in the CBIs that project to the buccal ganglia
via the cerebro-buccal connective (cf. [24]). CGCs in na-
ive preparations (n = 5) were depolarized by 10 mV from
the nonmanipulated (‘‘recorded’’) membrane potential
(mean, 61.2 6 4.7 mV) while keeping their firing rate con-
stant and the CBI population response compared in the
same preparations with the CGCs at recorded mem-
brane potential.

When the CGC was depolarized, the average increase
in CBI spike activity in the first 10 s after CS application,
before the activation of fictive feeding, was significantly
(p < 0.04) greater (18 6 5 spikes/bin) compared with the
change when the CGC was at the recorded membrane
potential (2 6 3 spikes/bin) (Figure 8B). The same was
true for CS-induced CBI activity measured during the
entire period of the application of the CS (30 s) (df = 4,
t = 3.20, p < 0.03, data not shown). The baseline CBI
population activity was not significantly different at the
two different CGC membrane potentials (32 6 3 spikes/
bin at the recorded membrane potential compared with
26 6 5 spikes/bin at the depolarized membrane potential,
paired t test, df = 4, t = 1.68, p = 0.17). Figures 8C and 8D
show examples of simultaneous recordings from the
cerebro-buccal connective, CGC, B4, and B1 motoneu-
rons in the same preparation, with the CGC at recorded
membrane potential (Figure 8C) or depolarized (Fig-
ure 8D). The top traces in Figures 8C and 8D show the
number of CBI spikes in 1 s bins in a w30 s period before
and after the application of the CS to the lips. The back-
ground CBI activity was similar at the two different CGC
membrane potential levels, but there was a rapid and
marked increase in the number of extracellularly re-
corded CS-evoked CBI spikes when the CGC was depo-
larized, which was absent when the CGC was at
recorded membrane potential. When the CGC was de-
polarized, the initial increase in CBI activity was followed
by a CPG-driven fictive feeding cycle monitored here in
the B4 and B1 motoneurons (Figure 8D). In contrast,
when the CGC was at recorded membrane potential,
fictive feeding was not activated by the CS (Figure 8C).

Taken together, the above results suggest that CGC
depolarization increases CBI responses to the CS, pro-
viding a powerful network-level mechanism for enabling
the activation of feeding by the CS after behavioral con-
ditioning.

Discussion

We showed here that an important extrinsic modulatory
interneuron of a molluscan feeding system developed

http://probes.invitrogen.com/media/pis/mp03010.pdf
http://probes.invitrogen.com/media/pis/mp03010.pdf
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Figure 8. CGC Soma Membrane Depolariza-

tion Increases CS-Activated Cerebral-Buccal

Interneuron Spike Activity

(A) A diagram of the postulated excitatory

synaptic connection between the CGC and

sensory neurons (SN) of the CS pathway.

The CS pathway provides excitatory synaptic

inputs to the cerebral-buccal interneurons

(CBIs). The CBIs are the only neurons that

project from the cerebral to the buccal ganglia

and they were identified by conjoint extracel-

lular recording from the cerebro-buccal con-

nectives (cbc-s) and intracellular recordings

from individual CBIs [27]. Previous work [24]

showed that the frequency of extracellular

units later identified as CBI spikes [27] in-

creases after single-trial chemical condition-

ing. Graded voltage changes in the soma

need to spread in the CGC axon far enough

to affect the SN to CBI synaptic pathway.

(B) The CS-evoked increase in the number of

CBI spikes in the first 10 s after application

is significantly larger when the CGC is depo-

larized compared with when it is at recorded

membrane potential (MP). The data shown

here are the means (6SEM) of the number of

spikes counted in 1 s bins. The computed

values for the statistics (paired t test) are as

follows: df = 4, t = 2.95, p < 0.04.

(C) The lack of CS-induced effects on CBI activity and fictive feeding in a naive preparation with the CGC at recorded membrane potential.

(D) CS-induced increase in CBI activity (binned spike diagrams and cbc traces) and fictive feeding (B1 and B4 traces) in the same preparation as in

(C), but with the CGC depolarized by 10 mV. The CGC spikes in the cbc trace are cropped. The B1 motoneuron starts firing full-size spikes in the N1

phase of fictive feeding, w15 s after the application of the CS. The B4 motoneuron is inhibited in the N1 and N2 phases and fires axonal spikes in the

N3 phase. The dashed lines indicate the 10 s time intervals after the application of the CS during which CBI spike data were compared (see [B]).
a delayed persistent depolarization after classical food-
reward conditioning. Extensive recording of the CGCs
with other feeding neurons [6, 13–16, 21] has excluded
the possibility that the CGC depolarization is indirect
and due to electrotonic coupling. We also showed that
this experience-induced nonsynaptic plasticity encodes
information that enables the expression of long-term as-
sociative memory and described mechanisms by which
this information can be translated into modified network
and behavioral output.

The use of a single-trial protocol allowed us to follow
both the onset and persistence of neuronal changes
that paralleled the time course of long-term memory
and could therefore contribute to it specifically. The de-
polarization of the CGCs emerged between 16 and 24 hr
posttraining and lasted as long as the behavioral and
electrophysiological memory trace was followed. The
delayed onset of the depolarization of the CGC shows
that it is not involved in the early expression of the mem-
ory trace or any consolidation process taking place be-
tween 2 and 16 hr posttraining, suggesting that this de-
layed nonsynaptic plasticity is involved in long-term
memory only. A contribution of this depolarization to
the long-term memory trace is indicated by the evidence
that artificial depolarization of the CGCs in naive snails
increases the responsiveness of the entire feeding net-
work to the CS.

While long-term memory may be supported by the de-
polarized state of the CGCs, early memory and memory
consolidation must involve other mechanisms, e.g., syn-
aptic plasticity in the CGCs or synaptic and nonsynaptic
plasticity in neurons intrinsic to the rhythmic feeding
network. Previous work on Lymnaea has described
plastic changes in the synaptic connections of the
CGCs with feeding central pattern generator interneu-
rons and motoneurons, resulting either from aversive
conditioning [25] or injection with cAMP or PKA [26],
and it is reasonable to assume that synaptic changes
in the CGCs and/or other neurons also occur after re-
ward conditioning. If these synaptic changes also per-
sist in parallel with long-term memory, the role of the
learning-induced membrane potential depolarization of
the CGCs may be to add a type of extrinsic nonsynaptic
plasticity to the feeding circuit to support long-term
memory. Thus, persistent nonsynaptic plasticity can
serve as a backup for the effects of learning-induced
synaptic plasticity as proposed by [3]. It can also sup-
port the consolidated memory trace by itself, as demon-
strated by our artificial CGC depolarization experiments
in naive snails (Figure 5), indicating that it may also
have a significant effect even in the absence of synaptic
plasticity.

The neuronal mechanisms of the persistent condition-
ing-induced depolarization of the CGC are not yet
known in detail. Recent work from our laboratory, how-
ever, provided evidence that a previously identified
cAMP-responsive persistent sodium current of the CGC
soma membrane [27, 28] significantly increases >24 hr
after single-trial classical conditioning (E.S.N., unpub-
lished observations). This type of sodium current is
known to make an important contribution to the depo-
larization of the membrane potential and increased
responses to subthreshold stimuli in other systems
[29–32], and it plays a similar role in the CGC [28]. Other
electrical parameters of the CGCs (e.g., input resis-
tance, spike characteristics) remained unchanged after
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training. A persistent depolarization with no other elec-
trical changes may seem unusual, but there are a number
of other important examples, where depolarization oc-
curs with no or very little underlying change in input re-
sistance or spike characteristics [6, 33–36]. It also has
been shown that experience-induced presynaptic depo-
larization can lead to significant postsynaptic and net-
work effects in the absence of other electrical changes
usually associated with increased excitability [6, 17, 35].

At the network level, we showed that depolarization of
the CGCs enabled the input arising from the conditioned
stimulus to activate feeding. Thus, we propose that learn-
ing-induced persistent CGC depolarization results in
the functional strengthening of CS chemosensory pro-
cessing pathways through an enhanced modulation of
sensory cell to command neuron synapses (Figure 8A).

The cellular mechanism of the translation of CGC de-
polarization into modified network output is most likely
based on the observed effects of somal depolarization
on the axonal branches of the CGC presynaptic to the
CS sensory pathways. Recent work has shown that
small depolarizations of the membrane potential of
mammalian neurons (by w10 mV, same as the learn-
ing-induced change in the CGCs), which do not result
in changes in spike size and shape, elicit small calcium
currents in the presynaptic terminals [17]. These cur-
rents had no measurable effect on the electrical proper-
ties of the presynaptic membrane but were sufficient to
enhance the probability of spike-induced transmitter re-
lease up to 2-fold and lead to a significant enhancement
of postsynaptic potentials. We showed here (Figure 7)
that a 10 mV (or even a 5 mV) somal depolarization can
similarly increase calcium influx into presynaptic axonal
regions of the CGCs and also enhance the postsynaptic
effects of CGC spikes (Figure 6). Our results on depolar-
ization-induced changes in calcium levels and synaptic
output are, however, only suggestive of the persistent
cellular changes resulting from conditioning. For exam-
ple, an important issue is the mechanism of long-term
maintenance of increased background calcium levels
in the persistently depolarized CGCs of the conditioned
animals. Noninactivating calcium channels have been
found in molluscan neuronal cell bodies, and these
could result in steady increases in calcium levels despite
intracellular buffering [37]. A previous voltage-clamp
study [27] did not find a persistent calcium current in
the CGC soma, but the maintained increase in the axonal
calcium signal could be due to release from intracellular
calcium stores in the axonal compartment or to the se-
lective expression of noninactivating calcium channels
in axons (not detectable with somal voltage-clamp re-
cording).

This work in the CGCs contrasts with our previous
study that used multitrial tactile conditioning, where de-
polarization occurred in a modulatory neuron intrinsic to
the feeding circuitry [6], but not in the CGC. Conversely,
the same intrinsic modulatory neuron, CV1a, did not
show a persistent depolarization after single-trial chem-
ical conditioning (Figure 4B). It seems therefore that the
same type of nonsynaptic plasticity but in different types
of neurons may be the substrate for memory formation
after different classical conditioning procedures, shar-
ing the same US (sucrose) but paired with different types
of CS (tactile and chemical).
Previous work on the cellular mechanisms of classical
conditioning (resulting in implicit memory [38, 39]) iden-
tified experience-induced changes in neurons that are
intrinsic to the network responsible for the generation
of the conditioned behavior [5, 6, 30, 40–50], including
an example of a serotonergic neuron in C. elegans [51].
Our new work, however, provides the first example
where a persistent experience-induced electrical
change in a neuron that lies outside the main mechanism
for the generation of a learned motor behavior encodes
information that can be used for the recall of an implicit
memory trace. The storage of memory-related informa-
tion outside the network that is strongly activated during
rhythmic feeding behavior and also can be spontane-
ously active [10, 52] may provide a mechanism that
prevents extinction due to the motor pattern occurring
repeatedly in the absence of the CS. The existence of
such an independent back-up mechanism may be
particularly important for maintaining robust long-term
memory after single-trial conditioning.

Experimental Procedures

Experimental Animals

Groups of animals from a laboratory-bred stock of Lymnaea stagna-

lis were used in the experiments, with details of their maintenance

described in the Supplemental Experimental Procedures.

One-Trial Conditioning Protocol

Appetitive chemical classical conditioning of intact animals was

carried out via a method based on a previously described single-trial

reward classical conditioning protocol [19, 20]. The conditioning

experiments and memory tests are described in more detail in the

Supplemental Experimental Procedures.

Systems Description and Electrophysiology

The paired CGC neurons (location and anatomy in Figure 1A) were

routinely recorded in semi-intact preparations (Figure 1C), together

with one or two feeding motoneurons to monitor background and

CS-evoked fictive feeding. In some experiments, the CV1a (cerebro-

ventral 1a) cells were also recorded. A detailed explanation of the

choice of neurons to be recorded, description of preparations, stim-

ulation and recording protocols, and data analysis methods are

described in the Supplemental Experimental Procedures.

Optical Recording of CGC Activity

The optical recording of the CGC electrical activity (Figures S1C and

S1D) was performed with the fast-response voltage-sensitive dye

JPW-1114 (Molecular Probes, Eugene, OR). This dye was reported

to be suitable to monitor the voltage changes in neurites of mollus-

can neurons [53]. We used this method to measure the spread of

somal hyperpolarization of the CGC to the axonal domain. Technical

details of this experiment are provided in the Supplemental Experi-

mental Procedures.

Calcium Imaging

For calcium imaging (Figure 7), we used the calcium-sensitive dye

Oregon Green 488 BAPTA 1 (Molecular Probes). We used calcium

imaging to measure changes in calcium influx in the axonal domain

of the CGC in response to somal depolarization. These experiments

are described in detail in the Supplemental Experimental Proce-

dures.

Isolation of the CGC and B1 for Electrophysiological

Analysis in Culture

Our cell-culture procedure has been described in detail elsewhere

[16, 28] and it is briefly described in the Supplemental Experimental

Procedures.
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Statistical Methods

The behavioral and electrophysiological data from experimental and

control animals or preparations were analyzed as described previ-

ously [6, 18, 20, 24]. Within-group comparisons were made by paired

t tests, while for between-group comparisons, we used unpaired

t tests. Differences were considered significant when p < 0.05.

Supplemental Data

Supplemental Data include one figure, Supplemental Results, and

Supplemental Experimental Procedures and can be found with

this article online at http://www.current-biology.com/cgi/content/

full/16/13/1269/DC1/.
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