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1. INTRODUCTION 

Recently a programme was initiated to arrive at the representations of dif- 
ferent types of algebras from the elements of the generalised Clifford algebra. 
As a first step [l] the generators of the Kemmer algebra K(n) of n elements 
were synthesised from the elements of Ci+‘, the generalised Clifford algebra 
whose two generating elements are the (n + 1)-th roots of the unit matrix. 

It is well-known that Kemmer algebra corresponds to para-Fermi statistics 
of order p = 2. We are now encouraged to carry the programme further to 
obtain representations of para-Fermi rings of any order p, relating to any 
number of operators v. We therefore outline the relations defining the 
operators occurring in para-Fermi rings. We extend the results of reference [l] 
to obtain the next higher representation of K(n). We then obtain the repre- 
sentations for any number of these operators, for any order p of the statistics, 
and deduce the dimensions of the representations. 

2. OPERATORS OF PARA-FERMI THEORY 

The theory of generalized statistics, including the Bose and Fermi statistics 
as special cases has been studied by a number of authors [2], [3], [4]. We 
here attempt to give an explicit representation of the para-Fermi operators 
for any order p of the para-Fermi statistics. 

Let a, (IX = 1, 2,..., v) and their adjoints a,+ be the operators of the para- 
Fermi rings satisfying commutation relations 

[UA , ii [q&+7 ad-l- = L% (A, p, Y = l)..., v) 

[a,, 9 : bu > a”]-]- = 0 
and if the order of the para-Fermi statistics is p, 

(u,)p+l = 0; u; # 0 for j <p. 

(2.1) 

(2.4 

(2.3) 
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The operators a, and a,+ are identified in physics as the creation and anni- 
hilation operators. Green [2] had noticed that 

will yield the para-Fermi ring as defined in (2.1) to (2.3) if br) are commuting 
Fermi-Dirac operators. This gives a reducible representation of dimension 
2pv. 

Let us define 2u hermitian operators [3,4] 

&+1 = + (a, + a,+); #& = ; (a, - a,+) (a = I,...) w) (25) 

obeying the commutation relations: 

The condition (2.3) is equivalent to 

(Aa- - +%a)*+1 = 0; for j <<. (2.7) 

It is known [3] that one can generate the algebra of the rotation group in 
(2~ + 1) dimensions, i.e., O(2er + 1) from the /3’s. 

For the case p = 2 these ,9’s are the Kemmer elements of K(2w) and 
representations of the lowest dimension for K(2w) using Clifford elements 
have been constructed earlier [l]. 

We will now describe a method by which we obtain the next higher 
representation of the Kemmer algebra. The lowest representation of the p’s 
is of dimension (2~ + I). We can show that the next representation is of 
dimension 

N = 2w + 2vC2 (2.8) 

To obtain this, we take all commutators v,,, , w]- = Ln of the generating 
elements, 2vC2 in number. If we add the 2w generators, p,,, = Jo,,, , to the 
above we get a closed set under commutation. Let us take an aggregate A 
of the resulting set, say, 

A = c ~,nJmn; (m # n; m, n = 0, l,..., 20). (2.9) 

Let us now define mappings 8,‘s such that 

A% A’ = [A, J,& (i = l,..., 20). (2.10) 
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It is verified that the &‘s obey 

and 

PA 3 [J% > .@“I-l- = Lo” - bc 

D = B for all X, TV, and v. 

(2.11) 

Thus we have the representation of the generators of the Kemmer algebra 
K(2v) which is of dimension 20 + Va . It is to be noted that we need not 
know the actual matrix representation of the /?‘s themselves to obtain 8, 
matrices. 

3. RRPRE~ENTATIONS M)R ANY ORDER 

This section deals with a method of obtaining representations of the /I’s 
given by (2.5) and (2.6) f or any order p of the para-Fermi ring. To be specific 
we define /3:), (a running from 1 to 2~) as the generators of the ring belonging 
to the order p of the statistics. Let /lhpt be constructed as 

/g(p) = m @ 1 + 1 @ /g(p-1). a 2 a 3 (p = 3,4, etc.) (3.1) 

where ya’s are the elements of the Clifford algebra, C&, , where the square 
of each of the 20 generators is the identity, the generators obeying the anti- 
commutation relations. Starting from Pauli matrices, generators of C,Z,, can 
be obtained by the u-operation detailed by one of the authors [5] (A.R.). 
The dimension of ya E C& is 2”. If we start with p = 3, we have 

(3.2) 

flL2’ E K(2w) which, for the basic representation, has the dimension (20 + 1). 
It can be seen that ,3, (8) obeys the triple commutation relation (2.5). Equations 
(2.7) for any a are also seen to be satisfied noting that (yU - ir,-r)’ = 0 and 
(/lL”’ - $3:z,>i = 0 for j = 3 only; for j < 3 it is nonzero. Similarly defining 

(3.3) 

it is verified that all the relations for para-Fermi statistics for order p = 4 
are obeyed. In general (3.1) ’ f is ound to be valid for all p. Starting with the 
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(2a + 1) x (20 + 1) d’ imensional representation of /3:‘), the matrices 81”) 
has the dimension 

N x N = [2”‘~-2’ x (2~ + l)] x [2”‘“-2’ x (2~ + I)]; (p = 3, 4,...). 

(3.4) 

Starting with Kemmer matrices a representation of lower dimension can be 
obtained by compounding the /3?) in the following way also: 

and 

(3Sa) 

/p2+1) = 5 @ 1 + 1 @&a2”“’ (r?r = I, 2,...). (3.5b) 

/Yp)‘s defined by (3.5) satisfy the equations (2.6) and (2.7). This representation u 
of the para-Fermi ring of order p is of dimensions 

N i< Iv = [(2w + 1)2-l x 2Wn)~] x [(&j + 1)2n-1 >; 2(~-2’9’] (3.6) 

where n is the maximum power of 2 such that 2” is less than p. If we use for 
/3L2) higher representations [6], N will naturally be altered. However, it is to 
be noted that if we had begun with y,/2 @ 1 + 1 @ y,/2, and proceeded 
further according to Eq. (3.1) we would have obtained 2pv dimensional 
representation for 8, (*I which is the same as that of Green [2]. The representa- 
tions arrived at in this section are also not irreducible. 

In the above, representations of para-Fermi rings are obtained by adding 
yU’s of suitable dimension to the para-Fermi operators of smaller order. 
On referring to the literature of the theory of relativistic wave equations 
[7, 8, 91 there seems to be grounds for hoping that higher values of p may be 
related to higher spin. Hence successive additions of half spin fields may be 
thought of as a method of obtaining representations for higher p correspond- 
ing to those given here. 
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