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Using  linear  support  vector machines,  we investigated  the  feature  selection  problem  for  the  application
of  all-against-all  classification  of a set of  20 chemicals  using  two  types  of  sensors,  classical  doped  tin
oxide  and  zeolite-coated  chromium  titanium  oxide  sensors.  We defined  a  simple  set  of possible  features,
namely  the identity  of  the  sensors  and  the  sampling  times  and  tested  all  possible  combinations  of  such
features  in  a wrapper  approach.  We  confirmed  that  performance  is  improved,  relative  to  previous  results
using  this  data  set,  by  exhaustive  comparison  of  these  feature  sets.  Using  the maximal  number  of different
sensors  and  all  available  data  points  for each  sensor  does  not  necessarily  yield  the  best  results,  even  for
the  large  number  of classes  in this  problem.  We  contrast  this  analysis,  using  exhaustive  screening  of
simple  feature  sets,  with  a number  of more  complex  feature  choices  and  find  that  subsampled  sets  of

simple  features  can  perform  better.  Analysis  of  potential  predictors  of  classification  performance  revealed
some  relevance  of clustering  properties  of  the  data  and  of  correlations  among  sensor  responses  but  failed
to  identify  a  single  measure  to  predict  classification  success,  reinforcing  the  relevance  of  the  wrapper
approach  used.  Comparison  of  the  two  sensor  technologies  showed  that,  in  isolation,  the doped  tin oxide
sensors  performed  better  than  the  zeolite-coated  chromium  titanium  oxide  sensors  but  that  mixed  arrays,
combining  both  technologies,  performed  best.

n Cop
Crow

. Introduction

Feature selection is one of the more important issues in the field
f machine learning and bioinformatics. In general, the goals of
eature selection are to reduce data dimensionality and to build
obust classification models. The method of feature selection can
ffect the results of both classification and clustering. A good fea-
ure subset should strongly support classification and clustering.
ilter and wrapper methods are two well-known feature selection
echniques for high dimensional data sets. In the filter method, fea-
ures are selected on the basis of feature separability of samples,

hich is independent of the learning algorithm. The separability

nly takes into account the relations between the features, so the
elected features may  not be optimal. Wrapper methods search for

Abbreviations: SVM, support vector machine; FS, feature selection; MOS, metal
xide  sensors.
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critical features based on the learning algorithm to be employed,
and often lead to better results than filter methods [1].

In  the field of chemical sensing, when using sensor arrays, an
important consideration is the type and the number of sensors to
use. Further choices apply to how to sample data from the sen-
sors and how to pre-process the collected raw data (see [2] for a
recent review). It is well known in machine learning that this pro-
cess of feature selection is very important for the eventual success
of the overall classification (recognition) system. From the per-
spective of maximizing information it may  seem that using more
sensors can only improve performance, as long as the sensors are
not fully redundant (identical) or fully uncorrelated with the prob-
lem (equivalent to noise). Moreover, from a practical point of view,
solid-state chemistry using combinatorial synthetic approaches [3]
or biosensor design, based on natural genetic diversity [4], are now
capable of generating an almost limitless repertoire of potential
chemical sensors. Identifying optimal or at least efficient subsets of
these sensors and their secondary features for incorporation into
chemical sensor arrays is becoming increasingly important.

Open access under CC BY-NC-ND license.
Here,  we systematically investigate the feature definition
(extraction) and selection problem for fully classifying a set of 20
chemicals using metal oxide sensors (MOS) [5] and linear support
vector machines (SVMs) [6], as in [7,8], in a wrapper approach
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Fig. 1. Example of responses from the FOX Enose fitted with the twelve-sensor array.
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9,10], similar to the approach in [11] but using an exhaustive
earch as in [12,13].

In  the development of electronic noses, classical feature choices
ave been the maximum response and the area under the response
urve. More recently, the area under a phase–space embedding of
he sensor response [14,15] and exponential moving averages of
he derivative of the sensor response have been proposed as suit-
ble feature sets [16]. Other authors have put forward methods
anging from subspace projection methods with biomimetic inspi-
ation [17], to spectral methods such as Fast Fourier Transform
18] and Discrete Wavelet Transform [19–22], classical statistical

ethods such as linear discriminant analysis and principle com-
onent analysis [23], and parametric methods such as curve fitting
24–27].

Here, we take a step back and investigate the use of very simple
otential features – a subset of the measured data points (resis-
ances at different measurement times). We  contrast this analysis
ith some of the more popular feature choices discussed above. In

ontrast to many other works on enoses, we evaluate our methods
n a quite large set of 20 analytes that are classified all-against-all.
ith this approach we complement the related works on smaller

lassification problems with only a few classes.

. Materials and methods

.1.  Electronic nose measurements

The  measurements were performed with a FOX 3000 Enose
Alpha M.O.S., Toulouse, France). Originally, the instrument was
quipped with a modified array of 12 semiconducting sensors com-
rising an array of six standard, doped tin dioxide (SnO2) and six
hromium titanium oxide (CTO) and tungsten oxide (WO3) sen-
ors. We  removed the CTO and WO3 sensors and replaced them
ith an array of six novel CTO based sensors, five of these being

eolite-coated [28] and one an uncoated CTO sensor.
The  basic concept behind the modified CTO sensors is the addi-

ion of a transformation layer over the porous chromium titanium
xide sensing element. A transformation element is designed to
odify or restrict the composition of gases that contact the sensing

lement. In this case, the transformation layer comprises the acid
or sodium) forms of zeolites A, ZSM-5 and ZSM22 MCM-41. Zeo-
ites are ideal for this purpose due to their porous nature, having
ore and channel structures of molecular dimensions (see Table 1).
hey are able to restrict the size and shape of gas phase molecules
eaching the sensor through pore size control and selective per-

eability [29,30]. They also act as selective cracking and partial

xidation catalysts [31] with molecular size- and shape-specificity.
urthermore, the zeolite’s catalytic behaviour can be modified, and
hus tuned, by insertion of metal ions or various nanoparticles.

able 1
verview of the sensors in the electronic nose, together with a brief description of each s

# Sensor Description

1 CTO Chromium–
2 CTO-HZSM-5 Chromium–
3 CTO + NaZSM-5 Chromium–
4 CTO + HLTA Chromium–
5  CTO + MCM-41 Chromium–
6  CTO + HZSM-22 Chromium–

7 T30/1 SnO2 sensor
8 P10/1 SnO2 sensor
9 P10/2 SnO2 sensor

10 P40/1 SnO2 sensor
11 T70/2 SnO2 sensor
12 PA/2 SnO2 sensor

a Source: Alpha M.O.S. (1995). FOX 2000–4000 Electronic Nose User Manual. Alpha M.O
Responses of SnO2 sensors are drawn downwards and responses of CTO sensors
upwards.  The vertical lines mark the chosen available sampling times. Note that the
SnO2 sensors are more sensitive overall than the CTO sensors.

Modification may  be by either ion-exchange or lattice substitution
on either their internal or external surfaces.

Due to the physical characteristics of the sensors, the two arrays
were housed in different chambers. The set of chemical compounds
analysed consisted of five chemicals each from four chemical
groups: alcohols, aldehydes, esters and ketones (Table 2). Chemi-
cals were chosen from a larger set of chemicals used in a comparison
of metal oxide with biological sensors [32]. Each chemical com-
pound was  diluted using paraffin oil to give a final concentration
in the range 1.22–8.03 × 10−5 M (Table 2). In total, ten replicates
of each sample were prepared. Standard concentrations were cho-
sen for each chemical class, such that the absolute values of the
responses for most chemicals of that class were towards the higher
end of the scale for any of the two sensor types, i.e. the ratio of
the maximal resistance change to the baseline (R/R0) was  between
±0.8 and ±1 (Fig. 1). Samples of 1 ml  were presented in a 20 ml
glass vial using the static headspace method. The instrument was
equipped with an autosampler (HS50, CTC Analytics, Switzerland),
which allows reproducible injections. The injection port of the Fox
was set to 30 ◦C and the headspace volume taken for analysis was
500 �l. Samples were analysed in groups based on chemical fam-
ily with the analysis of the 200 samples being completed over four

−1
days. Dry zero grade air (flow rate 150 ml  min ) was used to sweep
the sample through the two  sensor chambers. The sensor response
was recorded for a total of 300 s at 2 Hz, see Fig. 1 for a typical mea-
surement. A 240 s delay was  imposed between samples to allow

ensor.

titanium oxide sensor without coating. general VOC sensor.
titanium oxide sensor with H-ZSM-5 zeolite overlayer, pore size 5.1–5.5 Å.
titanium oxide sensor with Na-ZSM-5 zeolite overlayer, pore size 5.1–5.5 Å.
titanium oxide sensor with H-LTA zeolite overlayer, pore size 3.5 Å.
titanium oxide sensor with MCM-41 overlayer, pore size 30–100 Å.
titanium oxide sensor with H-ZSM-22 zeolite overlayer, pore size 4.6–5.7 Å.

 for detecting solvents.a

 for detecting hydrocarbons and methane.a

 for detecting methane, propane and aliphatic non polar molecules.a

 for detecting chlorinated and fluorinated compounds.a

 for detecting alcohol vapours and aromatic compounds.a

 for detecting low concentration of hydrogen, ammonia, amines.a

.S., Toulouse.
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Table  2
Concentrations of analytes used according to their chemical classes.

Alcohols (1.22 × 10−5 M)  Aldehydes (8.03 × 10−5 M) Esters (3.70 × 10−5 M) Ketones (3.79 × 10−5 M)

1-Pentanol Acetaldehyde Ethylhexanoate Acetone
1-Hexanol Butanal Ethylacetate 2-Butanone
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Z2-Hexen-1-ol Hexanal 

1-Octen-3-ol E2-hexenal 

3-Methylbutanol Furfural 

he sensors to return to baseline, this cleaning procedure was  per-
ormed at a flow rate of 150 ml  min−1using dry zero grade air. Data
ere captured and pre-analysed using AlphaSoft v.8 (Toulouse,

rance).

.2. Feature sets

To  define a reasonably sized set of possible features, for each
ensor, we extracted six candidate time points, namely 20, 40,
0, 80, 100 and 120 s (Fig. 1), from the 600 data points available
2 Hz/300 s). The global population of candidate feature sets com-
rised these 1–6 time points in all permutations and, for each of
he time point permutations, all possible permutations of 1–12
vailable sensors. Note that, in order to reduce the complexity of
he problem and make it computationally manageable, we did not
nclude feature sets where the selected time point(s) varied among
ensors.

In a second set of numerical experiments we considered
ix features that are commonly used in the enose literature
nstead:

1. The absolute maximal response,
∣∣Rmax − R0

∣∣.
2. The area under the full response curve,

∫ T

0
R(t)dt, where T is

our  total measurement time, T = 300 s.
3.  The phase space area [14],

∫ Rmax

0
(dR(t)/dt)dR =∫ Tmax

0
(dR(t)/dt)2dt, where we made use of the fact that

R(t) is (approximately) smooth and strictly monotonic, hence
invertible  to derive the right hand side version.

–6. Exponential moving averages [16] of the derivative of the
sensor  response, E˛(R) = maxkema˛R(k), where the discretely
sampled exponential moving average y(k) = ema˛R(k) is
define recursively as y(k) = (1 − ˛)y(k − 1) + ˛(x(k) − x(k −
1))  with smoothing factors  ̨ = 0.005, 0.05, 0.5 which are the
equivalent  values for our sampling frequency of 2 Hz to the
values  in [16] for sampling at 10 Hz.

.3. Classification algorithm and cross-validation

We used the libsvm [33] library for linear support vector
achines [6] to perform the cross-validation experiments. We

erformed classification using linear C-SVC (SVM classification
ith cost parameter C) with four C values, C = 1024, 4096, 16,384,

5,536. We  observed consistent performance for all tested C val-
es and report only results for C = 65,536 in the remainder of the
aper.

All results reported were obtained from 10-fold balanced cross-
alidation: the data set was split into a training and test set by
andomly choosing one measurement of the ten measurements
vailable for each chemical to form the test set. The remaining
0 × 9 measurements form the training set. This procedure was
epeated ten times, excluding all previously chosen test samples

rom the choice until all measurements have been used in a test set
nce. We  performed ten repetitions of this entire procedure, so that
he performance measurements reported below are the average
erformance of training and testing 100 classifiers.
Isopentylacetate 2-Pentanone
Methylacetate 2-Heptanone
Ethylbutyrate 2,3-Butanedione

2.4. Clustering quality and Mahalanobis distance

For the purpose of comparing the classification results with the
structure of the data, given each particular feature set, we defined
the quality of clustering as the quotient dinter/dintra of the average
Euclidean distance between average class vectors,

dinter =
〈∥∥∥〈�x

〉
i
−

〈�x
〉

j

∥∥∥
〉

i,j
(1)

and the average Euclidean distance of vectors within a class to the
average class vector,

dintra =
〈∥∥�xi,k −

〈�x
〉

i

∥∥〉
k
. (2)

Here, �xi,k denotes the kth measurement of chemical (class) i, 〈·〉
denotes taking an average and ‖·‖ denotes the Euclidean norm in
the space defined by the feature set of interest.

As a second measure of data set structure we  employed the
average pairwise Mahalanobis distance suggested by Muezzinoglu
et al. [34]. The squared Mahalanobis distance of two classes was
estimated by

D2(i, j) =
(〈�x

〉
i
−

〈�x
〉

j

)T

Ŝ−1
ij

(〈�x
〉

i
−

〈�x
〉

j

)
(3)

where Ŝ−1
ij

denotes the inverse of the weighted average of the

estimated covariance matrices Ŝi and Ŝj of the vectors in classes
i and j and

〈�x
〉

i
and

〈�x
〉

j
the average class vectors for class i and

j, respectively. For assessing the overall structure of the data set
using the Mahalanobis distance, we calculated the mean pairwise
Mahalanobis distance MD of all pairs of classes, defined by

MD2 =
∑N

i /=  j
D2(i, j). (4)

2.5. Mean absolute pairwise correlation of features

To calculate the mean absolute pairwise correlation of features
we used for the pairwise correlation of two features x and y the
estimator

rx,y = 1/(n − 1)
∑

k(xk − x̄)(yk − ȳ)

sxsy
(5)

here xk and yk are the values the two  features take across the
full data set, k = 1, . . . , n, where n = 200 and sx and sy denote
the standard estimators for the standard deviations of x and y.
For example, x may be the values of sensor i at time r and
y the values of sensor j at time s, where i, j ∈

{
1, . . . , 12

}
and

s,  t ∈
{

20, 40, . . . , 120
}

. To obtain the mean absolute pairwise cor-
relation of a feature set S, we average over the absolute value of all
so estimated pairwise correlations of features x and y in S:

r(S) = 2
N(N + 1)

∑
x≤y ∈ S

∣∣rx,y

∣∣ (6)
where the sum is over all features in the feature set S, but counting
pairs (x,y) and (y,x) only once (as the correlation is symmetric). Note
that we  included x = y to obtain a meaningful measure for feature
sets that have only one feature. We  take the absolute value as we
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re interested in how linearly dependent features are, no matter
hether they are correlated or anti-correlated.

. Results

.1. Classification performance of feature sets

We first investigated the overall performance of all potential
eature sets for classifying the 20 chemicals against each other.

e measure and report performance as the fraction (or percent-
ge) of correctly classified measurements in the test sets (see

ection 2), ranging from 0 (no examples classified correctly) to 1
all examples classified correctly). Fig. 2A shows the observed per-
ormance for the feature sets formed of six candidate time points
nd all 12 sensors. The performance is reported for feature sets

ig. 2. (A) Fractional prediction accuracy of 10-fold cross-validation using linear SVMs fo
lots  show the median and 25% and 75% quantiles, the estimated overall range (whiskers
ub-family, constrained to have x time points and y sensors (first and second numerical col
hat was  tested. The coloured columns indicate the best observed performance, the worst p
nd  3.1) and the performance of this group in a repeat 10-fold cross-validation. The prevale
ith many different choices typically contain choices that lead to excellent performance. 

he  (3,12), (6,6) and (2,10) groups. Note the highly non-linear, logarithmic colour code for
n  many colour gradations from dark red to cyan and weak performances closer to 0 are c
f  12 sensors and set of 20 chemicals using six different popular feature sets from the eno
he  phase–space curve of the response [14], and exponential moving averages of the deri
his  figure caption, the reader is referred to the web  version of the article.)
ators B 187 (2013) 471– 480

of  different size constraint, e.g. (2,3) denotes a feature set with
two time points each from three sensors. We  note that the best
feature sets lead to much better classification performance than
previously reported classifiers based on this set of measurements
[35]. There are several feature sets that lead to 100%, i.e. error-
free, classification in the ten repetitions of 10-fold cross-validation.
There are quite a few feature sets that enable this optimal per-
formance (3368) but it is a small fraction of all sets tested (1.3%
of the tested 257,985 sets). The best performance is not achieved
with the naïvely expected maximal sensor- and data-use (12 sen-
sors, six time points, top line of Fig. 2). Neither is the classical

approach of using just one time point for all sensors (e.g. the
time when the maximum signal is observed) particularly success-
ful (second line of Fig. 2), confirming earlier findings in other enose
applications [13,36].

r all allowed combinations of six time points and the 12 available sensors. The box
) and identified outliers (red crosses) of the observed performances for each given
umns). The third numerical column indicates the resulting number of combinations
erformance, the performance of the “top 10” group of feature choices (see Sections 2
nce of excellent performance at the bottom of the graph indicates that sub-families

However, there are also examples of excellent performance for other situations, e.g.
 the classification performance in which high performances close to 1 are resolved
ompressed into a few blue colours. (B) The same analysis applied to the same array
se literature: absolute maximal response, the area under the response, the area of
vative of the response curve [16]. (For interpretation of the references to colour in
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However, it still does not fully predict the classification perfor-
mance, in particular in terms of the maximal performance that is
of most interest.

Fig. 3. Classification performance of linear SVMs for all possible feature choices in
tenfold cross-validation plotted against the clustering quality (ratio of inter-class to
average intra-class Euclidean distance, see Section 3.2). The displayed colour indi-
cates the number of occurrences of each particular combination of clustering quality
and performance (white represents 0). A clear correlation is noticeable, in particu-
lar the absence of points with low clustering quality and high performance (upper
left  corner) or low performance and high clustering quality (lower right corner).
The  inset shows the region marked by the red rectangle on top. While the correla-
tion  overall is minor (Pearson correlation coefficient 0.205) it is noticeable that the
overwhelming majority of the very top performers (green arrow head) have above-
average clustering quality. The reverse, however, is not true: the feature sets that
show the very highest clustering quality do not necessarily lead to the highest per-
formance (red arrow head). The horizontal stripes visible in the enlarged plot are
T. Nowotny et al. / Sensors an

To control for selection biases, we defined a group of well-
erforming feature sets (column “top10” in Fig. 2) and repeated
ross-validation for this group (column “top10 rerun” in Fig. 2). As
xpected, the performance in the rerun is typically a bit worse than
n the original run, as we had selected the most successful feature
ets on this first run and hence might have collected those where
e just “got lucky” with the partitions of the ten times 10-fold

ross-validation. The rerun demonstrates that this selection bias
s noticeable but that it is a minor effect compared to the overall
ariation in performance due to feature selection: the results in the
erun, albeit slightly less good than in the original run, are consis-
ently better for feature sets that were optimal in the original run
han for feature sets that were not. There are even rare examples
here the classifier performs better in the rerun (for the (5,12) fea-

ure set) than in the original selection run. We  particularly note
hat the superior performance of many of the smaller feature sets
ver the full (6,12) choice remains intact. Also note, however, that
or smaller feature sets, classification success depends critically on
he choice of the used feature sets from the pool of all potential sets
f a given size. This is illustrated by the much lower worst perfor-
ance (see column “worst” and the low outliers in the left column

f Fig. 2).
The  data is presented ordered by the number of possible fea-

ure sets for each given size constraint, ranging from a single (6,12)
eature set on the top to 18,480 possible (3,6) feature sets at the
ottom. The prevalence of excellent “best”, “top 10” and “top 10
erun” performance at the bottom of the graph illustrates that size
onstraints with many different feature set choices are more likely
o have well-performing sets, even though this is not an absolute
ule, see e.g. the 2970 (1,4) feature sets that are much less successful
han the 20 (3,12) sets.

Fig.  2(B) illustrates the same analysis for an alternative fea-
ure set comprising six features suggested in the enose literature:
bsolute maximal response, the area under the response, the area
f the phase–space curve of the response [14], and three differ-
nt exponential moving averages of the derivative of the response
urve [16] (see Section 2 for details). In the remainder of this sec-
ion we will refer to the latter set as “derived features” whereas
e will refer to the six representative data points that are the

ocus of this study as “simple features”. The best-performing fea-
ure sets based on subsets of derived features perform consistently
orse than the best sets using subsets of simple features. Note,
owever, that the performance of the derived feature set was
till quite high and comparable, if not superior, to the perfor-
ance based on EMA  features, previously reported for this data

et [35].
It  is also noteworthy that the size constraints (i.e. the number

f data points and number of sensors used) that lead to the better
r the rather poorly performing feature sets are the same for both
cenarios: the pattern of better-performing and worse-performing
eature set sizes, in terms of best performance, is identical in
ig. 2(A) (simple features) and (B) (derived features), cf column
Best”. We quantified this observation by calculating the correla-
ion between the best performance of each size constraint in the
wo scenarios and obtained a correlation coefficient of 0.975. Fur-
hermore, the full distributions of performances are also similar,
s illustrated by the boxplots in Fig. 2(A) and (B), which share
any properties. For example, the (1,1) size constraint has the

ame very broad and very low performance distribution in both
ases and the performance distribution for feature sets of five data
oints and nine sensors is particularly narrow and high. Inter-
stingly, the derived features used in Fig. 2(B) lead to a slightly

mproved worst performance indicated by the shorter tail of out-
iers in the boxplots, in particular for the lower half of the plot
hat contains size constraints that allow large numbers of feature
hoices.
ators B 187 (2013) 471– 480 475

3.2. Relationship to clustering

To  identify possible explanations for the improved performance
of some feature sets over others we  compared the classification
performance for each set with the quality of clustering given this
feature choice. For this purpose we defined the quality of cluster-
ing as the quotient dinter/dintra of the average Euclidean distance
between average class vectors and the average Euclidean distance
of vectors within a class (see Section 2). The results are illustrated
in Fig. 3. We  notice a positive correlation between clustering per-
formance and classification performance, in particular in the form
of the absence of examples of good performance with very low
clustering quality (upper left corner in Fig. 3) and of (very) low per-
formance with high clustering quality (lower right corner in Fig. 3).
The clustering quality, however, clearly does not fully explain the
classification results. The overall correlation coefficient between
classification performance and clustering quality as defined here
is positive but only 0.205. The most relevant cases are the best-
performing feature sets, for which clustering performance is above
average but not necessarily maximal, and vice versa, the very best
feature sets in terms of clustering quality, which do not necessar-
ily perform optimally (Fig. 3, inset). One possible explanation for
the failure to predict classification performance for the best per-
formances is that in these cases it is the worst case of clustering
quality between classes that is important and not necessarily the
mean. If we analyse the minimal dinter/dintra ratio for all pairs of
classes instead of the mean, the relationship becomes more clear
(Supplemental Fig. 1) and the overall correlation reaches 0.427.
not an artefact but reflect that if the classifiers fail for one specific measurement,
then  they tend to do so consistently in all 10 repetitions of cross-validation. The
distance between stripes (0.5% = 1/200) is consistent with this interpretation. (For
interpretation of the references to colour in this figure caption, the reader is referred
to the web  version of the article.)
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Fig. 4. Average pairwise correlation plotted against the performance of the linear
SVM in tenfold cross-validation. The colour represents the number of occurrences,
white  representing 0. The inset shows an expanded plot of the area in the red rect-
angle on the top. There is a small negative correlation between the mean pairwise
correlation  of sensor responses in a feature set and the resulting classification per-
formance overall (Pearson correlation −0.284) but a low pairwise correlation of
features is by no means a direct predictor of good performance. When inspecting
the  top performers, we notice as for the clustering quality in Fig. 3 that top per-
forming feature sets in the majority have a (in this case low) typical mean pairwise
correlation  of features (green arrow) but the feature sets with the lowest mean pair-
wise correlation of features do not necessarily lead to top classification performance.
Note  the highly non-linear colour scale in this figure. The stripes in the inset have
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Supplementary data associated with this article can be found, in
he online version, at http://dx.doi.org/10.1016/j.snb.2013.01.088.

We then performed the same analysis using the mean pairwise
ahalanobis distance as suggested by Muezzinoglu et al. [34] with

imilar results (Supplemental Fig. 2). The correlation coefficient
f mean pairwise Mahalanobis distance (MD) and classification
erformance is 0.189, or, if we use the logarithm of MD due to

ts wide range of values, the correlation coefficient is 0.392. As
ith the more basic clustering quality measure above, the Maha-

anobis distance of classes is related to classification performance
ut cannot fully predict it. When considering the minimal Maha-

anobis distance between mean class vectors rather than the mean,
 similar picture emerges (Supplemental Fig. 3) and the correlation
oefficients between minimal Mahalanobis distance and perfor-
ance and logarithm of minimal Mahalanobis distance are 0.295

nd 0.548, respectively.
Supplementary data associated with this article can be found, in

he online version, at http://dx.doi.org/10.1016/j.snb.2013.01.088.

.3. Sensor correlation

Another  commonly held belief is that the degree of correlations
f the responses of different sensors is strongly related to, if not
n explicit predictor of (lack of) performance in classification. Pre-
ious work has shown that MOS  sensor responses can be highly
orrelated in spite of different doping of the individual sensor types
32]. This has been used as an explanatory construct to justify why
iological chemical receptors, which appear to be much less corre-

ated in their responses, may  outperform MOS  sensor arrays. With
he full assay of the performance of feature sets in SVM classifica-
ion in this work we can directly test this hypothesis by comparing
he classification performance of feature sets to the mean absolute
airwise correlation of the features in the sets. We  calculated the
verage Pearson correlation coefficient of each feature in a set with
ach other feature in the same set across all pairs of inputs of two

istinct chemicals and plotted these values against the observed
erformance in 10-fold cross-validation (Fig. 4). Overall there is a
eak trend where less correlated features in a feature group are

orrelated with better performance, i.e. there is a weakly negative

ig. 5. Frequency of appearance of individual sensors in optimal feature sets. For each typ
he  percentage of feature sets in the top 10 groups that contain the sensor indicated on the
nd CTO sensors (B). In the full array, sensor 9 is used in almost every feature set, except th
1  (blue arrowhead). Some other sensors are almost never used, in particular sensor 7 (
white stars) appear often, for optimal sets of two  sensors they are often found in combina
B), the picture is less clear. While sensor 9 seems to be used more often than average, sen
y design, when all sensors are used, they must be used equally often (i.e. always, green
eader is referred to the web version of the article.)
the same origin as the ones in Fig. 3 (see Fig. 3 caption). (For interpretation of the
references to colour in this figure caption, the reader is referred to the web  version
of  the article.)

correlation between mean pairwise correlation of features and the
classification performance of the feature set (Pearson correlation
coefficient −0.284). Similarly as when comparing to the clustering

quality (Section 3.2), the best performing feature sets have typi-
cally a comparably low mean pairwise correlation of their features
(Fig. 4, inset), but minimal mean pairwise correlation of features
does not necessarily predict optimal performance. Also, due to

e of feature set, in terms of the number of sensors used (y-axis), the colour indicates
 x-axis, for the whole array (A) and for the separate 6-sensor arrays of SnO2 sensors
ose with very few sensors (red arrowhead). The second most used sensor is sensor

black arrowhead). For feature sets of only 1 or 2 sensors the SnO2 sensors 8 or 10
tion with the CTO sensor 1. For the separate arrays of SnO2 sensors and CTO sensors
sor 7, which was under-represented in the full array, is also used quite frequently.

 arrows). (For interpretation of the references to colour in this figure caption, the

http://dx.doi.org/10.1016/j.snb.2013.01.088
http://dx.doi.org/10.1016/j.snb.2013.01.088
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lytes is the fraction of correct recognitions of the members of this
class when compared to all analytes from all chemical classes. Sen-
sors 8 (P10/1) and 10 (P40/1) are the best sensors individually
T. Nowotny et al. / Sensors an

he nature of measuring pairwise correlations, feature sets with
 single feature are maximally correlated but still can lead to per-
ormances that are clearly above chance levels. The absolute values
f the mean pairwise correlation of sensors are all above 0.5 which
s fairly high, in particular when compared to biological chemical
ensors [32].

.4.  Composition of and relationships between optimal feature
ets

An  important question for understanding the nature of our
esults is what relationship the optimal feature sets have to each
ther, what they have in common and where they differ. First we
sked whether individual sensors appear preferentially in these
est performing groups. Fig. 5A illustrates the number of occur-
ences of each sensor (x-axis) in the “top10” sensor groups of
ifferent size constraints (y-axis). While all sensors appear to some
egree in the feature sets, sensor 9 appears in almost all “top10”
eature sets of size three and larger, while sensors 8 (P10/1) and 10
P40/1) are preferentially used in the very small feature sets of two
r only one sensor. Sensor 7 (T30/1), on the other hand, is almost
ever used.

When performing the same analysis for the individual sensor
echnologies separately (Fig. 5B), the picture is less clear even
hough there is preferential use of sensor 9 (P10/2) for the SnO2
ensors. Interestingly, when only using SnO2 sensors, sensor 7
T30/1) is quite well used, being the most-used sensor for feature
ets with a single sensor. One could think that this discrepancy
rises because sensor 7 (T30/1) may  have response properties that
re unusually redundant with the responses of CTO sensors. How-
ver, when calculating the average absolute correlation of sensor

 (T30/1) with all CTO features we find the same level of corre-

ations (0.121) as when using sensor 9 (0.120). Also the profile
f correlations with individual CTO sensors is similar (data not
hown).

ig. 6. Classification performance based on data from individual sensors, using all
ix data points. Classification performance is reported in a colour code, separately for
he four chemical groups (rows 1–4) and overall (row 5). In the overall performance,
ensor  8 (P10/1) performs best, black arrow head, and the most successful classifi-
ation  for a single chemical group occurs for alcohols using either sensor 8 (P10/1)
r  sensor 10 (P40/1), red arrow heads. Overall, the most challenging chemical group
or classification are the ketones (green horizontal arrow head) and the worst per-
orming sensor, when used on its own is sensor 4 (CTO + HLTA). The likely reason
or  this poor performance is the very small pore size of the H-LTA zeolite (∼3.5 Å),
hich is smaller than the width of most of the molecules investigated here. Hence,
ost analytes will not reach the sensor surface and responses are small and unspe-

ific [30]. (For interpretation of the references to colour in this figure caption, the
eader is referred to the web  version of the article.)
ators B 187 (2013) 471– 480 477

3.5. Performance of individual sensors

Not surprisingly, individually, sensors do not perform particu-
larly well in classifying the 20 chemicals. Even so, some individual
sensors can partially discriminate certain chemicals and there are
significant differences in how they perform for the whole set and
for each chemical class. Fig. 6 illustrates the performance of individ-
ual sensors, using all six data points, resolved for the four chemical
classes of analytes. The performance reported for each class of ana-
Fig. 7. Classification performance of feature sets that use only one of the two  avail-
able technologies. The plots are as in Fig. 2. (A) Performance if subsets of the 6 SnO2

sensors are used. Perfect 100% classification is still possible, notably most robustly
for the (4,6) size constraint. Overall, however, the optimal performance is achieved
less frequently and is less robust within the “top10” groups. (B) Performance if sub-
sets of the 6 CTO sensors are used. Here 100% performance is not achieved and
performance  levels are measurably lower for all available feature choices than for
the SnO2 sensors. The SnO2 sensors also perform much better in terms of the distri-
bution  of performance across all feature sets: the boxplots in (A) are much tighter
than  those in (B).
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nd work particularly well for alcohols (red arrowheads). It was
nteresting to note that sensor 11 (T70/2), which is more sensi-
ive to alcohols, was not the best sensor to recognize them. Closer
nspection of the average ratio of inter-class and intra-class dis-
ances of responses in individual sensors for alcohols revealed that
ndeed T70/2 has the best signal-to-noise ratio for the alcohols in
his sense (Supplemental Fig. S4A). When inspecting the matrix of
ecognition success and failure (Supplemental Fig. S4B) and a PCA
lot of sensor responses using the 6 data points of T70/2 (Supple-
ental Fig. S4C), we find that the problem is not distinguishing the

lcohols from each other, which is done flawlessly, but distinguish-
ng 1-pentanol (input 1) from hexanal (input 8) and E2-hexenal
input 9), see arrowheads in Supplemental Fig. S4C and the cor-
esponding clusters in Fig. 8 D for the better-performing sensor 8
P10/1).

Supplementary data associated with this article can be found, in
he online version, at http://dx.doi.org/10.1016/j.snb.2013.01.088.

Returning to the results in Fig. 6, ketones are by far the hardest
f the chemical classes to classify (row marked by the green arrow-
ead) and sensor 4 (CTO + HLTA) works particularly poorly for all
nalytes (column marked by the green arrowhead). The likely rea-
on for the latter is the very small pore size of the H-LTA zeolite
∼3.5 Å), which is too small to allow passage of most of the ana-
ytes used in this study, hence the responses of the sensor are of
ow amplitude and quite unspecific [30].

The overall best performing sensor is number 8 (P10/1, black
rrowhead).

.6. Comparison of the two sensor technologies

One of the novelties of the data analysed in this work is the
se of the family of recently introduced zeolite-coated CTO sen-
ors [28]. The best feature sets typically contain sensors of both
he standard SnO2 and zeolite-coated CTO types. When examin-
ng the sensor combinations that allowed 100% performance for
he whole sensor array, SnO2 sensors are always used but 99.55%
f the optimal feature sets use sensors from both technologies. In
his subsection we compare the performance of each of the sensor
echnologies when used on their own. Fig. 7 shows the performance
rofile of feature sets that contain either only SnO2 sensors (Fig. 7A)
r exclusively CTO sensors (Fig. 7B). As expected, the overall clas-
ification performance levels are lower than for feature sets taken
rom the combined array combining both sensor technologies, in
orrespondence with earlier findings [12,37]. Comparing the per-
ormances of the two technologies, the SnO2 sensors appear to
ave higher performance, achieving 100% success for a few fea-
ure sets whereas the CTO sensors never reach 100% performance.
he poorer performance of the CTO sensors may  be a reflection of
he lower amplitude and the resulting smaller signal-to-noise ratio
n these sensors (Fig. 1).

.  Discussion

In designing a chemical sensor array, such as an artificial
ose or tongue, choices concerning the number and properties
f the sensors and the number and identity of data points are
ery important practical considerations. Engineering limitations
nd computational demand preclude the use of all available
ensors and data points and selection of the minimal optimal set
ould be an efficient strategy. As Marco and Gutiérrez-Gálvez
ave recently pointed out [2] there is a disconnection between

ractitioners of machine olfaction and those developing the
omputational tools to process data from chemical sensor arrays.
he results illustrated in Fig. 2 suggest that it may  be beneficial to
esign a sensor array specifically for each envisioned application
ators B 187 (2013) 471– 480

domain  and, if doing so, that a few well-chosen sensors and
data sampling times may outperform simply using the maximal
array and many data points. However, it is worth noting that
choosing the correct sensors and data-sampling times is critical.
For example, the median performance of (three data points, six
sensors) feature sets (0.985) is actually worse than the perfor-
mance of the single comprehensive choice (6 data points, 12
sensors). This implies that just taking an arbitrary feature set
(three data points, six sensors) would likely not improve overall
success.

We notice that a large number of classification results are
almost optimal and some of the differences we  base our
conclusions on amount to discrepancies of a single error in
classifying 200 measurements of chemicals. This indicates that
the array we  used is well capable of this quite challenging
classification problem. In future work we intend to extend
our analysis to even more challenging applications, including
lower or multiple concentrations, and measurements taken over
an extended period of time, where sensor drift may become
limiting.

As pointed out above, from the perspective of maximizing infor-
mation we  would have expected that classification performance
can only increase when additional features are added. In the worst
case one would have expected unchanged performance if the data
provided by the additional features was  not useful. Here, however,
we saw that adding additional features can decrease the accuracy
of classification. The likely explanation of this phenomenon is over-
fitting of relatively noisy data. The additional data may provide
additional information for the training data, but this can lead to
overly specific classifiers that may  not generalize as well to new
testing data as “less informed” ones. This trade-off between optimal
classification on the training data and optimal ability to generalize
to new test data, the so-called over-fitting problem, is a classic topic
in machine learning. Future work will focus on unravelling what the
optimal solutions are for given practical problems and the degree
to which these are generalizable within or beyond a given problem
set.

The work reported here was conducted with a specific clas-
sification method, i.e. a linear support vector machine. One
could argue that the observed phenomenon of better classifica-
tion with smaller feature sets may  be specific to this particular
method. While we  cannot fully exclude this possibility, the
effects of over-fitting are known to affect all approaches to clas-
sification. While the details may  differ for other classification
methods, the principal results are likely to apply to a variety of
such methods and similar results have been observed for other
applications [13,36].

Finally,  the wrapper approach to feature selection used here
led in many cases to error-free classification, in contrast to ear-
lier work where features were chosen based on different criteria
[35]. Our analysis of the relationship between the performance in
classification with the clustering quality of the data and the corre-
lation of the sensor responses in Sections 3.2 and 3.3, respectively
demonstrates that there is a relationship between these proper-
ties of the data and feature choice and the eventual classification
success based on the chosen features. However, the relationships
are not particularly strong, suggesting that a filter approach to fea-
ture selection based on either sensor correlation or data clustering
would likely be less successful. This observation is reinforced by
close inspection of the structure of the data after dimensional-
ity reduction, using PCA, for particular exemplary feature choices
(Fig. 8). While there is a clear difference in the quality of clus-

tering in more successful feature sets and it is straightforward to
identify the inputs that lead to classification errors in the less suc-
cessful cases (arrowheads in Fig. 8), there are also many points
where errors could have occurred but did not. This figure illustrates

http://dx.doi.org/10.1016/j.snb.2013.01.088
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Fig. 8. PCA plots for four exemplary feature choices. (A) PCA plot of the inputs obtained with one of the optimal feature sets of four data points and six sensors (100%
performance). (B) PCA plot of the inputs obtained when using the slightly less well-performing best feature set of six data points and eleven sensors (99.5% performance).
(C) PCA plot of inputs when all available six data points and twelve sensors are used (99% performance). (D) PCA plot of inputs when using the best sensor selection of six
data  points and a single sensor (96.4% performance). The arrowheads mark inputs that lead to classification errors, e.g. in (B) the marked input of class 20 (2,3-butanedione)
is misidentified as class 7 (butanal). The percentages at the axes give the fraction of the variance that is explained by the corresponding principle component. While the less
well-performing feature set used for panel (D) is low dimensional and its classes are harder to separate, the best-performing feature set in (A) is not the one with highest
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imensionality (in the sense of being the least well-captured by the first three princi
ess  of their overall variance explained by their first three principal components). D

nce more that there are no simple correlates to predict classifi-
ation performance, re-emphasizing the relevance of the wrapper
pproach.

. Conclusions

We  set out systematically to assess the question of feature
election for arrays of metal oxide sensors in a classification task,
sing standard machine learning methods. We  found that feature
election can improve classification performance and that the best-
erforming feature sets are not necessarily the naively expected
nes.

In future work we plan to analyse in depth why  particular com-
inations of sensors are very successful, whether this information
an be translated to future novel measurements with these sensors
nd whether our results translate to classification methods other
han linear support vector machines.
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