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This paper consists of two parts. In the first part, which is 
of more abstract nature, the notion of quasi-boundary triples 
and associated Weyl functions is developed further in such a 
way that it can be applied to elliptic boundary value problems 
on non-smooth domains. A key feature is the extension of the 
boundary maps by continuity to the duals of certain range 
spaces, which directly leads to a description of all self-adjoint 
extensions of the underlying symmetric operator with the help 
of abstract boundary values. In the second part of the paper a 
complete description is obtained of all self-adjoint realizations 
of the Laplacian on bounded Lipschitz domains, as well as 
Krĕın type resolvent formulas and a spectral characterization 
in terms of energy dependent Dirichlet-to-Neumann maps. 
These results can be viewed as the natural generalization 
of recent results by Gesztesy and Mitrea for quasi-convex 
domains. In this connection we also characterize the maximal 
range spaces of the Dirichlet and Neumann trace operators 
on a bounded Lipschitz domain in terms of the Dirichlet-
to-Neumann map. The general results from the first part of 
the paper are also applied to higher order elliptic operators 
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on smooth domains, and particular attention is paid to the 
second order case which is illustrated with various examples.

© 2014 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Spectral theory of elliptic partial differential operators has received a lot of attention 
in the recent past, in particular, modern techniques from abstract operator theory were 
applied to extension and spectral problems for symmetric and self-adjoint elliptic differ-
ential operators on bounded and unbounded domains. We refer the reader to the recent 
contributions [3,11–13,17,18,43–45,53] on smooth domains, [1,4,5,33–35,40,42,61,62,64]
on non-smooth domains, and we point out the paper [36] by Gesztesy and Mitrea which 
has inspired parts of the present work. Many of these contributions are based on the clas-
sical works Grubb [39] and Višik [72] on the parameterization of the closed realizations 
of a given elliptic differential expression on a smooth domain, and other classical papers 
on realizations with local and non-local boundary conditions, see, e.g. [2,8,9,16,32,68]
and the monograph [52] by Lions and Magenes.

In [36] Gesztesy and Mitrea obtain a complete description of the self-adjoint realiza-
tions of the Laplacian on a class of bounded non-smooth, so-called quasi-convex domains. 
The key feature of quasi-convex domains is that the functions in the domains of the self-
adjoint Dirichlet realization ΔD and the self-adjoint Neumann realization ΔN possess 
H2-regularity, a very convenient property which is well-known to be false for the case of 
Lipschitz domains; cf. [49]. Denote by τD and τN the Dirichlet and Neumann trace op-
erator, respectively. Building on earlier work of Maz’ya, Mitrea and Shaposhnikova [55], 
see also [21,31,37], the range spaces G0 := τD(domΔN ) and G1 := τN (domΔD) were 
characterized for quasi-convex domains in [36], and the self-adjoint realizations of the 
Laplacian were parameterized via tuples {X , L}, where X is a closed subspace of the 
anti-dual G ′

0 or G ′
1 and L is a self-adjoint operator from X to X ′. This parameterization

technique has its roots in [15,51] and was used in [39,72], see also [41, Chapter 13]. In 
[17] the connection to the notion of (ordinary) boundary triples from extension theory 
of symmetric operators was made explicit.

The theory of ordinary boundary triples and Weyl functions originates in the works 
of Koc̆ubĕı [50], Bruk [19], Gorbachuk and Gorbachuk [38], and Derkach and Malamud 
[27,28]. A boundary triple {G, Γ0, Γ1} for a symmetric operator A in a Hilbert space H
consists of an auxiliary Hilbert space G and two boundary mappings Γ0, Γ1 : domA∗ → G
which satisfy an abstract Green’s identity and a maximality condition. With the help of 
a boundary triple the closed extensions of the underlying symmetric operator A can be 
parameterized in an efficient way with closed operators and subspaces Θ in the boundary 
space G. The concept of ordinary boundary triples was applied successfully to various 
problems in extension and spectral theory, in particular, in the context of ordinary differ-

http://creativecommons.org/licenses/by/3.0/


J. Behrndt, T. Micheler / Journal of Functional Analysis 267 (2014) 3657–3709 3659
ential operators, see [20] for a review and further references. However, for the Laplacian 
(or more general symmetric elliptic differential operators) on a domain Ω ⊂ R

n, n ≥ 2, 
with boundary ∂Ω the natural choice Γ0 = τD and Γ1 = −τN does not lead to an ordinary 
boundary triple since Green’s identity does not extend to the domain of the maximal 
operator A∗. This simple observation led to a generalization of the concept of ordinary 
triples, the so-called quasi-boundary triples, which are designed for applications to PDE 
problems. Here the boundary mappings Γ0 = τD and Γ1 = −τN are only defined on some 
suitable subset of domA∗, e.g. H2(Ω), and the realizations are labeled with operators 
and subspaces Θ in the boundary space L2(∂Ω) via boundary conditions of the form 
ΘτDf + τNf = 0, f ∈ H2(Ω). One of the advantages of this approach is that the Weyl 
function corresponding to the quasi-boundary triple {L2(∂Ω), τD, −τN} coincides (up to 
a minus sign) with the usual family of Dirichlet-to-Neumann maps on the boundary ∂Ω, 
and hence the spectral properties of a fixed self-adjoint extension can be described with 
the Dirichlet-to-Neumann map and the parameter Θ in the boundary condition.

The aim of the present paper is twofold. Our first objective is to further develop 
the abstract notion of quasi-boundary triples and their Weyl functions. The main new 
feature is that we shall assume that the spaces

G0 = ran(Γ0 � kerΓ1) and G1 = ran(Γ1 � kerΓ0)

are reflexive Banach spaces densely embedded in the boundary space G; this assumption 
is natural in the context of PDE problems and related Sobolev spaces on the boundary 
of the domain, and is satisfied in applications to the Laplacian on Lipschitz domains and 
other elliptic boundary value problems treated in the second part of the present paper. 
In fact, this assumption is the abstract analog of the properties of the range spaces in 
[36], and it is also automatically satisfied in many abstract settings, e.g. for ordinary 
and so-called generalized boundary triples; cf. [28] and Section 2.4 for a counterexample 
in the general case. Under the density assumption it then follows that the boundary 
maps Γ0 and Γ1 can be extended by continuity to surjective mappings from domA∗

onto the anti-duals G ′
1 and G ′

0, respectively. Then also the γ-field and the Weyl function 
admit continuous extensions to operators mapping in between the appropriate spaces; 
for the special case of generalized boundary triples and G0, G1 equipped with particular 
topologies this was noted in the abstract setting earlier in [28, Proposition 6.3] and [26, 
Lemma 7.22]. Following the regularization procedure in the PDE case we then show 
that a quasi-boundary triple with this additional density property can be transformed 
into a quasi-boundary triple which is the restriction of an ordinary boundary triple, and 
hence can be extended by continuity; a similar argument can also be found in a different 
abstract form in [26]. As a consequence of these considerations we obtain a complete 
description of all closed extensions of the underlying symmetric operator in Section 3, 
as well as abstract regularity results, Krĕın type resolvent formulas and new sufficient 
criteria for the parameter Θ in the boundary condition to imply self-adjointness of the 
corresponding extension.



3660 J. Behrndt, T. Micheler / Journal of Functional Analysis 267 (2014) 3657–3709
The second objective of this paper is to apply the abstract quasi-boundary triple 
technique to various PDE problems. In particular, in Section 4.1 we extend the charac-
terization of the self-adjoint realizations ΔΘ of the Laplacian on quasi-convex domains 
to the more natural case of Lipschitz domains. Here the Hilbert spaces G0 and G1 are 
topologized with the help of the Dirichlet-to-Neumann map in a similar manner as in 
[26,28] for abstract generalized boundary triples. This also leads to a continuous ex-
tension of the Dirichlet and Neumann trace operators on a Lipschitz domain to the 
maximal domain of the Laplacian, and hence to a description of the Dirichlet boundary 
data for L2-solutions of −Δf = λf . For the special case of quasi-convex domains and 
C1,r-domains with r ∈ (1

2 , 1] we establish the link to the approach in [36], and recover 
many of the results in [36] as corollaries of the abstract methods developed in Section 2
and Section 3. In Section 4.2 we illustrate the abstract methods in the classical case of 
2m-th order elliptic differential operators with smooth coefficients on smooth bounded 
domains, where the spaces G0 and G1 coincide with the usual product Sobolev trace 
spaces on ∂Ω. Here, e.g. some classical trace extension results follow from the abstract 
theory developed in the first part of the paper. Finally, we pay particular attention to the 
second order case on bounded and unbounded domains with compact smooth boundary 
in Section 4.3. Here we recover various recent results on the description and the spectral 
properties of the self-adjoint extensions of a symmetric second order elliptic differential 
operator, and extend these by adding, e.g. regularity results. This section contains also 
some simple examples, among them self-adjoint extensions with Robin boundary con-
ditions. One of the examples is also interesting from a more abstract point of view: It 
turns out that there exist self-adjoint parameters in the range of the boundary maps of 
a quasi-boundary triple such that the corresponding extension is essentially self-adjoint, 
but not self-adjoint.

2. Quasi-boundary triples and their Weyl functions

The concept of boundary triples and their Weyl functions is a useful and efficient tool 
in extension and spectral theory of symmetric and self-adjoint operators, it originates 
in the works [19,50] and was further developed in [27,28,38]; cf. [20] for a review. In the 
recent past different generalizations of the notion of boundary triples were introduced, 
among them boundary relations, boundary pairs and boundary triples associated with 
quadratic forms, and other related concepts, see [7,24–26,59,60,63,64,66,67]. The concept 
of quasi-boundary triples and their Weyl functions introduced in [11] is designed for the 
analysis of elliptic differential operators. It can be viewed as a slight generalization of 
the notions of boundary and generalized boundary triples. In this section we first recall 
some definitions and basic properties which can be found in [11,12]. Our main objective 
is to show that under an additional density condition the corresponding boundary maps 
can be extended by continuity and that the corresponding quasi-boundary triple can be 
transformed (or regularized) such that it turns into an ordinary boundary triple; cf. [26,
74,75] for related investigations.
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2.1. Ordinary and quasi-boundary triples

Let throughout this section A be a closed, densely defined, symmetric operator in a 
separable Hilbert space H.

Definition 2.1. Let T ⊂ A∗ be a linear operator in H such that T = A∗. A triple 
{G, Γ0, Γ1} is called quasi-boundary triple for T if G is a Hilbert space and Γ0, Γ1 :
domT → G are linear mappings such that

(i) the abstract Green’s identity

(Tf, g)H − (f, Tg)H = (Γ1f, Γ0g)G − (Γ0f, Γ1g)G (2.1)

holds for all f, g ∈ domT ,
(ii) the map Γ := (Γ0, Γ1)� : domT → G × G has dense range,
(iii) and A0 := T � kerΓ0 is a self-adjoint operator in H.

In the special case T = A∗ a quasi-boundary triple {G, Γ0, Γ1} is called ordinary boundary 
triple.

Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗. Then the mapping Γ =
(Γ0, Γ1)� : domT → G × G is closable with respect to the graph norm of A∗ and 
kerΓ = domA holds; cf. [11, Proposition 2.2]. Moreover, according to [11, Theorem 2.3]
(see also Proposition 2.2 below) we have T = A∗ if and only if ranΓ = G × G, in this 
case Γ = (Γ0, Γ1)� : domA∗ → G × G is onto and continuous with respect to the graph 
norm of A∗, and the restriction A0 = A∗ � kerΓ0 is automatically self-adjoint. Thus, the 
above definition of an ordinary boundary triple coincides with the usual one, see, e.g. 
[27]. We also note that a quasi-boundary triple is in general not a boundary relation in 
the sense of [24,25], but it can be viewed as a certain transform of a boundary relation; 
cf. [75, Proposition 5.1].

For later purposes we recall a variant of [11, Theorem 2.3].

Proposition 2.2. Let G be a Hilbert space and let T be a linear operator in H. Assume that 
Γ0, Γ1 : domT → G are linear mappings such that the following conditions are satisfied:

(i) T � kerΓ0 contains a self-adjoint linear operator A in H,
(ii) The range and the kernel of Γ := (Γ0, Γ1)� : domT → G × G are dense in G × G

and H, respectively,
(iii) The abstract Green’s identity (2.1) holds for all f, g ∈ domT .

Then S := T � kerΓ is a densely defined, closed symmetric operator in H and {G, Γ0, Γ1}
is a quasi-boundary triple for S∗ such that A = T � kerΓ0 = A0. Moreover, T = S∗ if 
and only if ranΓ = G × G.

Not surprisingly, suitable restrictions of ordinary boundary triples lead to quasi-
boundary triples.
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Proposition 2.3. Let {G, Γ0, Γ1} be an ordinary boundary triple for A∗ with A0 = A∗ �
kerΓ0. Let T ⊂ A∗ be such that A0 ⊂ T and T = A∗. Then the restricted triple 
{G, ΓT

0 , ΓT
1 }, where ΓT

0 := Γ0 � domT and ΓT
1 := Γ1 � domT is a quasi-boundary

triple for T ⊂ A∗.

Proof. Clearly, items (i) and (iii) in Definition 2.1 hold for the restricted triple 
{G, ΓT

0 , ΓT
1 }. Hence it remains to show that ranΓT = ran(ΓT

0 , ΓT
1 )� is dense in G × G. 

For this let x̂ ∈ G × G. Then x̂ ∈ ranΓ and there exists an element f ∈ domA∗ such 
that Γf = x̂. Since T = A∗ there exists a sequence (fn) ⊂ domT which converges to f
in the graph norm of A∗. As Γ is continuous with respect to the graph norm we obtain 
ΓT fn = Γfn → x̂ for n → ∞, that is, item (ii) in Definition 2.1 holds and {G, ΓT

0 , ΓT
1 }

is a quasi-boundary triple for T ⊂ A∗. �
The following proposition shows that the converse of Proposition 2.3 holds under an 

additional continuity assumption. In particular, it implies that if a quasi-boundary triple 
can be extended to an ordinary boundary triple then this extension is unique.

Proposition 2.4. Let {G, ΓT
0 , ΓT

1 } be a quasi-boundary triple for T ⊂ A∗. Then 
{G, ΓT

0 , ΓT
1 } is a restriction of an ordinary boundary triple {G, Γ0, Γ1} for A∗ on T

if and only if the mapping ΓT = (ΓT
0 , ΓT

1 )� : domT → G ×G is continuous with respect 
to the graph norm of A∗.

Proof. (⇒) Since Γ : domA∗ → G × G is continuous with respect to the graph norm of 
A∗ the same holds for the restriction ΓT : domT → G × G.

(⇐) Let Γ = (Γ0, Γ1)� : domA∗ → G × G be the continuous extension of ΓT with 
respect to the graph norm of A∗. Then also the abstract Green’s identity extends by 
continuity from domT to domA∗,

(
A∗f, g

)
H −

(
f,A∗g

)
H = (Γ1f, Γ0g)G − (Γ0f, Γ1g)G , f, g ∈ domA∗, (2.2)

and the range of Γ is dense in G × G. Moreover, from (2.2) it follows that the operator 
A∗ � kerΓ0 is a symmetric extension of the self-adjoint operator A0 = T � kerΓT

0 and 
hence A0 = A∗ � kerΓ0. We conclude that {G, Γ0, Γ1} is a quasi-boundary triple for 
T = A∗, that is, {G, Γ0, Γ1} is an ordinary boundary triple for A∗; cf. Definition 2.1. 
Clearly, {G, ΓT

0 , ΓT
1 } is the restriction of this ordinary boundary triple to T . �

A simple and useful example of an ordinary and quasi-boundary triple is provided 
in Lemma 2.5 below, it also implies the well-known fact that a boundary triple or 
quasi-boundary triple exists if and only if A has equal deficiency indices n±(A) :=
dim ker(A∗ ± i), that is, if and only if A admits self-adjoint extensions in H. Recall first 
that for a self-adjoint extension A0 ⊂ T of A and η ∈ ρ(A0) the domains of T and A∗

admit the direct sum decompositions
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domT = domA0 � Nη(T ) and domA∗ = domA0 � Nη

(
A∗), (2.3)

where Nη(T ) = ker(T − η) and Nη(A∗) = ker(A∗ − η). Note also that T = A∗ implies 
Nη(T ) = Nη(A∗). Moreover we set

N̂η(T ) :=
{
(fη, ηfη)� : fη ∈ Nη(T )

}
, N̂η

(
A∗) :=

{
(fη, ηfη)� : fη ∈ Nη

(
A∗)},

hence we may write T = A0 � N̂η(T ) and A∗ = A0 � N̂η(A∗). The orthogonal projection 
in H onto the defect subspace Nη(A∗) will be denoted by Pη.

In the next lemma a special boundary triple and quasi-boundary triple are con-
structed. The restriction η ∈ R below is for convenience only, an example of a similar 
ordinary boundary triple with η ∈ C \ R can be found in, e.g. [27] or the monographs 
[38,69].

Lemma 2.5. Assume that the deficiency indices of A are equal and let G be a Hilbert space 
with dimG = n±(A). Let A0 be a self-adjoint extension of A in H, assume that there 
exists η ∈ ρ(A0) ∩ R and fix a unitary operator ϕ : Nη(A∗) → G. Then the following 
statements hold.

(i) The triple {G, Γ0, Γ1}, where

Γ0f := ϕfη and Γ1f := ϕPη(A0 − η)f0,

and f ∈ domA∗ is decomposed in f = f0 + fη ∈ domA0 + Nη(A∗), is an ordinary 
boundary triple for A∗ with A0 = A∗ � kerΓ0.

(ii) If T is an operator such that A0 ⊂ T and T = A∗, then the triple {G, ΓT
0 , ΓT

1 }, 
where

ΓT
0 f := ϕfη and ΓT

1 f := ϕPη(A0 − η)f0,

and f ∈ domT is decomposed in f = f0 +fη ∈ domA0 +Nη(T ), is a quasi-boundary
triple for T with A0 = T � kerΓT

0 and ranΓT
1 = ranΓ1 = G.

Proof. (i) Let f, g ∈ domA∗ be decomposed in the form f = f0 + fη and g = g0 + gη
with f0, g0 ∈ domA0 and fη, gη ∈ Nη(A∗). Making use of A0 = A∗

0 and η ∈ R a 
straightforward computation yields(

A∗f, g
)
H −

(
f,A∗g

)
H =

(
(A0 − η)f0, gη

)
H −

(
fη, (A0 − η)g0

)
H

=
(
ϕPη(A0 − η)f0, ϕgη

)
G −

(
ϕfη, ϕPη(A0 − η)g0

)
G

= (Γ1f, Γ0g)G − (Γ0f, Γ1g)G ,

i.e., the abstract Green’s identity holds. Moreover, Γ0 : domA∗ → G is surjective and 
since ran(A0−η) = H it follows that also Γ : domA∗ → G×G is surjective. This implies 
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that {G, Γ0, Γ1} is an ordinary boundary triple for A. It is obvious that A0 = A∗ � kerΓ0
holds.

(ii) follows from (i) and Proposition 2.3. �
2.2. Weyl functions and γ-fields of quasi-boundary triples

In this subsection the notion and some properties of γ-fields and Weyl functions 
associated to quasi-boundary triples are briefly reviewed. Furthermore, a simple but 
useful description of the range of the boundary mappings is given in terms of the Weyl 
function in Proposition 2.8.

Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ and let A0 = T � kerΓ0. Note 
that by (2.3) the restriction Γ0 � Nλ(T ) is invertible for every λ ∈ ρ(A0).

Definition 2.6. The γ-field and the Weyl function corresponding to the quasi-boundary
triple {G, Γ0, Γ1} are defined by

λ 
→ γ(λ) :=
(
Γ0 � Nλ(T )

)−1 and λ 
→ M(λ) := Γ1γ(λ), λ ∈ ρ(A0).

It follows that for λ ∈ ρ(A0) the operator γ(λ) is continuous from G to H with dense 
domain dom γ(λ) = ranΓ0 and range ran γ(λ) = Nλ(T ), the function λ 
→ γ(λ)g is 
holomorphic on ρ(A0) for every g ∈ ranΓ0, and the relations

γ(λ) =
(
I + (λ− μ)(A0 − λ)−1)γ(μ) and γ(λ)∗ = Γ1(A0 − λ̄)−1 (2.4)

hold for all λ, μ ∈ ρ(A0); cf. [11, Proposition 2.6]. Note that γ(λ)∗ : H → G is continuous 
and that (ker γ(λ)∗)⊥ = ran γ(λ) = Nλ(A∗) yields the orthogonal space decomposition

H = ker γ(λ)∗ ⊕Nλ

(
A∗). (2.5)

For λ ∈ ρ(A0) the values M(λ) of the Weyl function are operators in G with dense domain 
ranΓ0 and range contained in ranΓ1. If, in addition, A1 = T � kerΓ1 is self-adjoint in H
then M(λ) maps ranΓ0 onto ranΓ1 for all λ ∈ ρ(A0) ∩ρ(A1). Furthermore, M(λ)Γ0fλ =
Γ1fλ holds for all fλ ∈ Nλ(T ) and this implies the identity

Γ1f = M(λ)Γ0f + Γ1f0, f = f0 + fλ ∈ domA0 �Nλ(T ). (2.6)

We also mention that for λ, μ ∈ ρ(A0) the Weyl function is connected with the γ-field 
via

M(λ)x−M(μ)∗x = (λ− μ̄)γ(μ)∗γ(λ)x, x ∈ ranΓ0, (2.7)

and, in particular, M(λ) is a symmetric operator in G for λ ∈ R ∩ ρ(A0). It is important 
to note that
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ranΓ0 = domM(λ) ⊂ domM(μ)∗, λ, μ ∈ ρ(A0). (2.8)

The subspaces G0 and G1 of G in the next definition will play a fundamental role 
throughout this paper.1

Definition 2.7. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗. Then we define 
the spaces

G0 := ran(Γ0 � kerΓ1) and G1 := ran(Γ1 � kerΓ0).

Observe that for the spaces G0 and G1 in Definition 2.7 we have G0×G1 ⊂ ranΓ . Note 
also that the second identity in (2.4) implies

ran γ(λ)∗ = G1, λ ∈ ρ(A0). (2.9)

Proposition 2.8. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with A0 = T �
kerΓ0 and Weyl function M , and let G0 and G1 be as in Definition 2.7. Then the following 
assertions hold for all λ ∈ ρ(A0).

(i) M(λ) maps G0 into G1 and if, in addition, A1 = T � kerΓ1 is self-adjoint, then 
M(λ) � G0 is a bijection onto G1 for λ ∈ ρ(A0) ∩ ρ(A1),

(ii) The range of the boundary mapping Γ = (Γ0, Γ1)� is

ranΓ =
{(

x

x′

)
∈ ranΓ0 × ranΓ1 : x′ = M(λ)x + y, y ∈ G1

}
(2.10)

and, in particular, domM(λ)∗ ∩ G ⊥
1 = {0}.

Proof. (i) We verify M(λ)x ∈ G1 for x ∈ G0. By definition of G0 there exists f1 ∈ kerΓ1
such that Γ0f1 = x. Together with Γ0γ(λ)x = x we conclude γ(λ)x − f1 ∈ kerΓ0 and

M(λ)x = Γ1γ(λ)x = Γ1
(
γ(λ)x− f1

)
∈ G1.

Assume now that A1 is self-adjoint and let λ ∈ ρ(A0) ∩ ρ(A1). Since M(λ) : ranΓ0 →
ranΓ1 is a bijection it suffices to check that M(λ) � G0 maps onto G1. For y ∈ G1 there 
exists f0 ∈ kerΓ0 with Γ1f0 = y and x ∈ ranΓ0 with M(λ)x = y. Hence we obtain

Γ1f0 = y = M(λ)x = Γ1γ(λ)x

and therefore γ(λ)x −f0 ∈ kerΓ1 and Γ0(γ(λ)x −f0) = x ∈ G0. This completes the proof 
of item (i).

1 We emphasize that G0 and G1 in Definition 2.7 do, in general, not coincide with the spaces G0 = ranΓ0
and G1 = ranΓ1; this notation was used in [11,12]. The symbols G0 and G1 will not be used in the present 
paper.
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(ii) We show first that ranΓ is contained in the right hand side of (2.10). Let x̂ =
(x, x′)� ∈ ranΓ and choose f = f0 + fλ ∈ domT = domA0 �Nλ(T ) such that Γf = x̂. 
From (2.6) and Γ0f = x we conclude

x′ = Γ1f = M(λ)Γ0f + Γ1f0 = M(λ)x + y, where y := Γ1f0 ∈ G1,

and hence x̂ belongs to the right hand side of (2.10).
Conversely, let x ∈ ranΓ0 and x′ = M(λ)x + y with some y ∈ G1. Then there exist 

f0 ∈ kerΓ0 with Γ1f0 = y and fλ ∈ Nλ(T ) with Γ0fλ = x. Setting f := f0 + fλ ∈ domT

we find Γ0f = x and from (2.6) we obtain

x′ = M(λ)x + y = M(λ)Γ0f + Γ1f0 = Γ1f,

that is, (x, x′)� ∈ ranΓ and the identity (2.10) is proved.
The remaining assertion in (ii) follows from the representation (2.10) and the fact 

that ranΓ is dense in G × G. �
Let again {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with A0 = T � kerΓ0 and 

Weyl function M . For λ ∈ ρ(A0) define the operators

ReM(λ) := 1
2
(
M(λ) + M(λ)∗

)
, dom

(
ReM(λ)

)
= ranΓ0,

ImM(λ) := 1
2i
(
M(λ) −M(λ)∗

)
, dom

(
ImM(λ)

)
= ranΓ0.

(2.11)

Then M(λ) = ReM(λ) + i ImM(λ) and it follows from (2.7) that

ImM(λ) = Imλγ(λ)∗γ(λ), λ ∈ ρ(A0),

holds. Hence ImM(λ) is a densely defined, invertible bounded operator in G with 
ran(ImM(λ)) ⊂ G1; cf. (2.4). Therefore we may rewrite Proposition 2.8(ii) in the form

ranΓ =
{(

x

x′

)
∈ ranΓ0 × ranΓ1 : x′ = ReM(λ)x + y, y ∈ G1

}
.

The continuous extension of ImM(λ) onto G is given by the closure

ImM(λ) = Imλ γ(λ)∗γ(λ), λ ∈ ρ(A0). (2.12)

It is important to note that for λ ∈ C \ R we have

ker
(
ImM(λ)

)
= ker γ(λ) =

(
ran γ(λ)∗

)⊥ = G ⊥
1 , (2.13)

which may be nontrivial; cf. Proposition 2.17.
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2.3. Extensions of boundary mappings, γ-fields and Weyl functions

Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗. In this section we investigate 
the case where the space G1 = ran(Γ1 � kerΓ0) in Definition 2.7 is dense in G. Under 
this assumption we show that the boundary map Γ0 and the γ-field admit continuous 
extensions. If, in addition, G0 = ran(Γ0 � kerΓ1) is dense in G and A1 = T � kerΓ1 is 
self-adjoint in H then also Γ1 and the Weyl function M admit continuous extensions. 
We point out that in general G1 (or G0) is not dense in G, see Proposition 2.17 for a 
counterexample.

The next proposition is a variant of [28, Proposition 6.3] (see also [26, Lemma 7.22]) for 
quasi-boundary triples and their Weyl functions. It was proved for generalized boundary 
triples in [28], where the additional assumption that G1 is dense in G is automatically 
satisfied; cf. (2.13) and [28, Lemma 6.1]. In the following G ′

1 stands for the anti-dual 
space of G1.

Proposition 2.9. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with Weyl function 
M , set Λ := ImM(i) and assume, in addition, that G1 is dense in G. Then

G1 = ranΛ1/2

and if G1 is equipped with the norm induced by the inner product(
Λ−1/2x,Λ−1/2y

)
G , x, y ∈ G1, (2.14)

then the following assertions hold.

(i) γ(i) extends to an isometry γ̃(i) from G ′
1 onto Ni(A∗),

(ii) ImM(i) extends to an isometry from G ′
1 onto G1.

Proof. Since the space G1 is dense in G the bounded self-adjoint operator Λ = ImM(i) =
γ(i)∗γ(i) is injective and non-negative; cf. (2.12) and (2.13). Hence ranΛ and ranΛ1/2

are dense in G. As in the proof of [28, Proposition 6.3] we equip G := ranΛ1/2 with the 
inner product (

Λ−1/2x,Λ−1/2y
)
G , x, y ∈ G .

Then G is a Hilbert space which is densely embedded in G and hence gives rise to 
a Gelfand triple G ↪→ G ↪→ G ′, where G ′ is the completion of G equipped with the 
inner product (Λ1/2x, Λ1/2y)G , x, y ∈ G. As in [28, Proposition 6.3] one verifies that 
the mapping γ(i) admits a continuation to an isometry γ̃(i) from G ′ onto Ni(A∗) and 
the mapping ImM(i) admits a continuation to an isometry Λ̃ from G ′ onto G with 
Λ ⊂ Λ̃ = γ(i)∗γ̃(i). This implies G = ran γ(i)∗ = G1 by (2.9) and assertions (i) and (ii) 
follow. �
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The next proposition contains a simple but far-reaching observation: If G1 is dense in 
G and G1 is equipped with a Hilbert or Banach space norm such that (G1, ‖ · ‖G1) is a 
reflexive Banach space continuously embedded in G then the boundary map Γ0 can be 
extended by continuity onto domA∗. Although Proposition 2.9 provides a possible norm 
on G1 it is essential for later applications to allow other norms which are a priori not 
connected with the Weyl function.

Proposition 2.10. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with A0 = T �
kerΓ0 and assume, in addition, that G1 is dense in G. Then for any norm ‖ · ‖G1 such 
that (G1, ‖ · ‖G1) is a reflexive Banach space continuously embedded in G, the boundary 
mapping Γ0 admits a unique surjective, continuous extension

Γ̃0 :
(
domA∗, ‖ · ‖A∗

)
→ G ′

1,

where G ′
1 is the anti-dual space of G1. Moreover, the norm ‖ | · ‖ |G1 induced by the inner 

product (2.14) is equivalent to any norm ‖ ·‖G1 such that (G1, ‖ ·‖G1) is a reflexive Banach 
space continuously embedded in G.

Proof. Fix some λ ∈ ρ(A0) and define S := Γ1(A0 − λ̄)−1 = γ(λ)∗. We show first that 
S : H → G1 is closed and continuous. In fact, let hn → h for n → ∞ be a sequence in H
and assume that Shn → k, n → ∞, in G1. Then Shn → k in G as the embedding of G1
into G is continuous, and

Shn = γ(λ)hn → γ(λ)∗h = Sh, n → ∞,

in G due to the continuity of γ(λ)∗ : H → G; cf. Section 2.2. Thus k = Sh and hence S
is closed as a mapping from H into G1. As domS = H we conclude that S : H → G1 is 
continuous. Moreover, since

kerS = ker γ(λ)∗ =
(
ran γ(λ)

)⊥ = Nλ

(
A∗)⊥

the restriction of S onto Nλ(A∗) is an isomorphism from Nλ(A∗) onto G1. Hence the 
adjoint operator S′ : G ′

1 → H is bounded, invertible and by the closed range theorem 
ranS′ = Nλ(A∗). The inverse (S′)−1 is regarded as an isomorphism from Nλ(A∗) onto 
G ′

1 in the sequel. For x ∈ ranΓ0 ⊂ G ′
1 and h ∈ H it follows from(

S′x, h
)
H = 〈x, Sh〉G ′

1×G1 = (x, Sh)G =
(
x, Γ1(A0 − λ̄)−1h

)
G =

(
γ(λ)x, h

)
H,

that S′ � ranΓ0 = γ(λ). We define the mapping

Γ̃0 : domA∗ → G ′
1, f 
→ Γ̃0f =

(
S′)−1

fλ,

where f = f0 + fλ ∈ domA0 + Nλ(A∗) = domA∗. For f ∈ domT decomposed in the 
form f = f0 + fλ with f0 ∈ domA0 and fλ ∈ Nλ(T ) we have
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Γ̃0f =
(
S′)−1

fλ =
(
S′)−1

γ(λ)Γ0fλ =
(
S′)−1

S′Γ0fλ = Γ0fλ = Γ0f,

and hence Γ̃0 is an extension of Γ0. It remains to check that Γ̃0 is continuous. For this 
let f = f0 + fλ ∈ domA∗ and note that fλ = f − (A0 − λ)−1(A∗ − λ)f holds. Since 
(S′)−1 : Nλ(A∗) → G ′

1 is bounded we find

‖Γ̃0f‖G ′
1

=
∥∥(S′)−1

fλ
∥∥

G ′
1
≤

∥∥(S′)−1∥∥(‖f‖H +
∥∥(A0 − λ)−1(A∗ − λ

)
f
∥∥
H
)

≤ c‖f‖A∗

with some constant c > 0.
Let ‖ | · ‖ |G1 be the norm induced by the inner product (2.14) and let ‖ · ‖G1 be an 

arbitrary norm on G1 such that (G1, ‖ ·‖G1) is a reflexive Banach space densely embedded 
in G. Recall that ker γ(i)∗ = Ni(A∗)⊥; cf. (2.5). It follows from Proposition 2.9 that γ(i)∗
is an isometry from Ni(A∗) onto (G1, ‖ | ·‖ |G1) and hence (γ(i)∗ � Ni(A∗))−1 is an isometry 
from (G1, ‖ | · ‖ |G1) onto Ni(A∗). Therefore we obtain

‖|x‖|G1 =
∥∥(γ(i)∗ � Ni

(
A∗))−1

x
∥∥
H ≤ c′‖x‖G1

with c′ > 0 for all x ∈ G1. Hence I : (G1, ‖ · ‖G1) → (G1, ‖ | · ‖ |G1) is continuous and this 
implies the norm equivalence ‖ | · ‖ |G1 ∼ ‖ · ‖G1 . �

If {G, Γ0, Γ1} is a quasi-boundary triple for T ⊂ A∗ with Weyl function M and the 
additional property that A1 = T � kerΓ1 is self-adjoint, then the triple {G, −Γ1, Γ0} is 
also a quasi-boundary triple for T ⊂ A∗ with Weyl function λ 
→ −M(λ)−1, λ ∈ ρ(A1). 
This fact together with Proposition 2.10 implies the following statement.

Corollary 2.11. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ and assume, in 
addition, that A1 = T � kerΓ1 is self-adjoint in H and G0 is dense in G. Then for any 
norm ‖ · ‖G0 such that (G0, ‖ · ‖G0) is a reflexive Banach space continuously embedded in 
G the boundary mapping Γ1 admits a unique surjective, continuous extension

Γ̃1 :
(
domA∗, ‖ · ‖A∗

)
→ G ′

0,

where G ′
0 is the anti-dual space of G0.

We note that in the situation of the above corollary it follows that the closure of 
Im(−M(i)−1) is an invertible bounded operator defined on G. Making use of Proposi-
tion 2.9 for the quasi-boundary triple {G, −Γ1, Γ0} and setting Σ := Im(−M(i)−1) we 
then conclude that the norm ‖ | · ‖ |G0 induced by the inner product

(
Σ−1/2x,Σ−1/2y

)
, x, y ∈ G0,
G
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is equivalent to any norm ‖ · ‖G0 on G0 such that (G0, ‖ · ‖G0) is a reflexive Banach space 
continuously embedded in G.

The next theorem is strongly inspired by regularization techniques used in extension 
theory of symmetric partial differential operators; cf. [39,72]. It will be shown that a 
quasi-boundary triple {G, Γ0, Γ1} with the additional property that G1 is dense in G can 
be transformed and extended to an ordinary boundary triple. Such a type of transform 
appears also in [12,17] and in a more abstract form in [26], see also [74,75]. Here we 
discuss only a situation which is relevant in applications, namely we assume that the 
spectrum of the self-adjoint operator A0 = T � kerΓ0 does not cover the whole real line. 
The more general case is left to the reader; cf. Remark 2.13. Recall that for the Gelfand 
triple G1 ↪→ G ↪→ G ′

1 there exist isometric isomorphisms ι+ : G1 → G and ι− : G ′
1 → G

such that (
ι−x

′, ι+x
)
G =

〈
x′, x

〉
G ′

1×G1
for all x ∈ G1, x′ ∈ G ′

1. (2.15)

Here and in the following G1 is equipped with some norm ‖ · ‖G1 such that (G1, ‖ · ‖G1) is 
a reflexive Banach space continuously embedded in G; cf. Proposition 2.10. Recall that 
according to Proposition 2.9 such a norm always exists (if G1 is dense in G) and that all 
such norms are equivalent by Proposition 2.10.

Theorem 2.12. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with A0 = A∗ �
kerΓ0, assume that there exists η ∈ ρ(A0) ∩R and that G1 is dense in G. Then the triple 
{G, Υ0, Υ1} with boundary mappings Υ0, Υ1 : domA∗ → G given by

Υ0f := ι−Γ̃0f, Υ1f := ι+Γ1f0, f = f0 + fη ∈ domA0 �Nη

(
A∗),

is an ordinary boundary triple for A∗ with

A∗ � kerΥ0 = A0 and A∗ � kerΥ1 = A� N̂η

(
A∗).

Proof. We verify that the restriction {G, ΥT
0 , ΥT

1 },

ΥT
0 f = ι−Γ0f, ΥT

1 f = ι+Γ1f0, f = f0 + fη ∈ domA0 �Nη(T ),

of the triple {G, Υ0, Υ1} on T is a quasi-boundary triple for T ⊂ A∗, such that the 
boundary mapping ΥT = (ΥT

0 , ΥT
1 )� : domT → G × G is continuous with respect to the 

graph norm of A∗. Then Proposition 2.4 implies that {G, Υ0, Υ1} is an ordinary boundary 
triple for A∗.

Note first that kerΥT
0 = kerΓ0 holds. Thus T � kerΥT

0 coincides with the self-adjoint 
linear operator A0 in H and (iii) in Definition 2.1 holds. In order to check Green’s 
identity observe that for all f ∈ domT the identity ΥT

1 f = ι+(Γ1f −M(η)Γ0f) holds by 
(2.6). Here M is the Weyl function of the quasi-boundary triple {G, Γ0, Γ1} and since by 
assumption η ∈ R ∩ ρ(A0) the operator M(η) is symmetric in G; cf. (2.7). Making use of 
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(2.15) and the fact that 〈·, ·〉G1×G ′
1

is the continuous extension of the scalar product in 
G we compute for all f, g ∈ domT(

ΥT
1 f, ΥT

0 g
)
G −

(
ΥT

0 f, ΥT
1 g

)
G

=
〈
Γ1f −M(η)Γ0f, Γ0g

〉
G1×G ′

1
−

〈
Γ0f, Γ1g −M(η)Γ0g

〉
G ′

1×G1

=
(
Γ1f −M(η)Γ0f, Γ0g

)
G −

(
Γ0f, Γ1g −M(η)Γ0g

)
G

= (Γ1f, Γ0g)G − (Γ0f, Γ1g)G
= (Tf, g)H − (f, Tg)H.

Now we verify that ranΥT is dense in G × G. For this let x̂ = (x, x′)� ∈ G × G. Then 
there exists ξ′ ∈ G1 such that ι+ξ′ = x′ and f0 ∈ kerΓ0 = domA0 such that Γ1f0 = ξ′. 
Note that ranΥT

0 is dense in G since ranΓ0 is dense in G. Hence we find a sequence 
(fn) ⊂ Nη(T ) such that ΥT

0 fn → x, n → ∞. It follows from ΥT
0 f0 = 0 and the definition 

of ΥT
1 that

ΥT (f0 + fn) =
(
ΥT

0 (f0 + fn)
ΥT

1 (f0 + fn)

)
=

(
ΥT

0 fn
ι+Γ1f0

)
=

(
ΥT

0 fn
x′

)
tends to x̂ for n → ∞. Hence (ii) in Definition 2.1 holds and it follows that {G, ΥT

0 , ΥT
1 }

is a quasi-boundary triple.
Now we have to check that ΥT

0 , ΥT
1 : domT → G are continuous with respect to the 

graph norm. It follows from Proposition 2.10 that this is even true for Υ0 = ι−Γ̃0, and 
hence also for the restriction ΥT

0 . For f = f0 + fη ∈ domT with f0 ∈ domA0 and 
fη ∈ Nη(T ) we have

ΥT
1 f = ι+Γ1f0 = ι+Γ1(A0 − η)−1(T − η)f.

Since Γ1(A0 − η)−1 : H → G1 is continuous (see the proof of Proposition 2.10) we 
conclude that ΥT

1 is continuous with respect to the graph norm.
It remains to check that kerΥ1 = domA �Nη(A∗). For the inclusion “⊂” let f ∈ kerΥ1

with f = f0 + fη ∈ domA0 � Nη(A∗). Since Γ1f0 = 0 we find f0 ∈ domA0 ∩ kerΓ1 =
domA and hence f ∈ domA � Nη(A∗). The inclusion “⊃” follows immediately from 
domA ⊂ kerΓ1 and Γ1fη = 0 for fη ∈ Nη(A∗). �
Remark 2.13. We note that the assumption η ∈ R in Theorem 2.12 can be dropped. In 
fact, if η ∈ C \ R replace M(η) and Nη(A∗) by ReM(η) (see (2.11)) and

Qη

(
A∗) :=

{
fη + fη̄ : f ∈ domA∗},

respectively. Here f = f0η + fη = f0η̄ + fη̄ ∈ domA∗ with f0η, f0η̄ ∈ domA0 and 
fη ∈ Nη(A∗), fη̄ ∈ Nη̄(A∗). Instead of (2.6) use the following formula
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Γ1f0 = Γ1f − ReM(η)Γ0f, f = f0 + 1
2(fη + fη̄) ∈ domA0 �Qη

(
A∗),

when verifying Green’s identity in the proof of Theorem 2.12.

With the help of the extensions Γ̃0 and Γ̃1 of the boundary mappings Γ0 and Γ1, 
respectively, also the γ-field and Weyl function can be extended by continuity. Observe 
that by Theorem 2.12 we have ker Γ̃0 = kerΥ0 = domA0 and hence Γ̃0 � Nλ(A∗), 
λ ∈ ρ(A0), is invertible.

Definition 2.14. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with γ-field γ, 
Weyl function M and Aj = T � kerΓj , j = 0, 1.

(i) Assume that G1 is dense in G and let Γ̃0 : domA∗ → G ′
1 be the continuous exten-

sion of Γ0 from Proposition 2.10. Then the extended γ-field γ̃ corresponding to the 
quasi-boundary triple {G, Γ0, Γ1} is defined by

λ 
→ γ̃(λ) :=
(
Γ̃0 � Nλ

(
A∗))−1 : G ′

1 → H, λ ∈ ρ(A0).

(ii) Assume that G0 and G1 are dense in G, that A1 is self-adjoint in H, and let Γ̃1 :
domA∗ → G ′

0 be the continuous extension of Γ1 from Corollary 2.11. Then the 
extended Weyl function M̃ corresponding to the quasi-boundary triple {G, Γ0, Γ1}
is defined by

λ 
→ M̃(λ) := Γ̃1γ̃(λ) : G ′
1 → G ′

0, λ ∈ ρ(A0).

We mention that the values of the extended γ-field γ̃ are bounded linear operators 
from G ′

1 to H, where G1 is equipped with a norm ‖ ·‖G1 such that (G1, ‖ ·‖G1) is a reflexive 
Banach space continuously embedded in G. If also G0 is equipped with a norm ‖ · ‖G0

such that (G0, ‖ · ‖G0) is a reflexive Banach space continuously embedded in G then the 
values of the extended Weyl function M̃ are bounded linear operators from G ′

1 to G ′
0. 

Therefore the adjoints

γ̃(λ)′ : H → G1 and M̃(λ)′ : G0 → G1

are continuous for all λ ∈ ρ(A0). Moreover we obtain the simple identity

M̃(λ)Γ̃0fλ = Γ̃1fλ for all fλ ∈ Nλ

(
A∗), λ ∈ ρ(A0). (2.16)

In the next two lemmas some basic, but important, facts about the extended boundary 
mappings, the extended γ-field and the extended Weyl function are summarized. As 
above it is assumed that G1 is dense in G and that G1 is equipped with a norm such that 
(G1, ‖ · ‖G1) is a reflexive Banach space continuously embedded in G.
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Lemma 2.15. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with γ-field γ, and 
A0 = T � kerΓ0 such that ρ(A0) ∩ R �= ∅. Assume that G1 is dense in G. Then the 
following statements hold.

(i) ker Γ̃0 = kerΓ0 = domA0,
(ii) γ̃(λ) is an isomorphism from G ′

1 onto Nλ(A∗) ⊂ H for all λ ∈ ρ(A0),
(iii) γ̃(λ)′ = Γ1(A0 − λ̄)−1 : H → G1 is continuous and surjective for all λ ∈ ρ(A0),
(iv) the identity

γ̃(λ) =
(
I + (λ− μ)(A0 − λ)−1)γ̃(μ)

holds for all λ, μ ∈ ρ(A0).

Proof. Let {G, Υ0, Υ1} be the ordinary boundary triple for A∗ from Theorem 2.12 and 
denote the corresponding γ-field with β. Then according to Theorem 2.12 statement (i) 
follows from

kerΓ0 = domA0 = kerΥ0 = ker ι−Γ̃0 = ker Γ̃0,

see the text before Definition 2.14. From Proposition 2.10 we obtain that Γ̃0 :
(domA∗, ‖ · ‖A∗) → G ′

1 is continuous and surjective with ker Γ̃0 = domA0; cf. (i). Hence 
Γ̃0 : Nλ(A∗) → G ′

1 is bijective and continuous and this implies (ii). The identity

β(λ) =
(
I + (λ− μ)(A0 − λ)−1)β(μ), λ, μ ∈ ρ(A0),

(see (2.4)) together with the straightforward computation

β(λ) =
(
Υ0 � Nλ

(
A∗))−1 =

(
ι−Γ̃0 � Nλ

(
A∗))−1 = γ̃(λ)ι−1

−

implies (iv). To prove statement (iii) we only have to show that the identity γ̃(λ)′ =
Γ1(A0 − λ̄)−1 holds. With f ∈ H and x ∈ G it follows from(

β(λ)∗f, x
)
G =

(
f, β(λ)x

)
H =

(
f, γ̃(λ)ι−1

− x
)
H

=
〈
γ̃(λ)′f, ι−1

− x
〉

G1×G ′
1

=
(
ι+γ̃(λ)′f, ι−ι−1

− x
)
G

=
(
ι+γ̃(λ)′f, x

)
G

that ι+γ̃(λ)′ = β(λ)∗ = Υ1(A0 − λ̄)−1 = ι+Γ1(A0 − λ̄)−1. Hence we obtain statement 
(iii). �
Lemma 2.16. Let the assumption be as in Lemma 2.15 and assume, in addition, that G0
is dense in G and that A1 = T � kerΓ1 is self-adjoint in H such that ρ(A1) ∩ R �= ∅. 
Moreover, equip G0 with a norm ‖ · ‖G0 such that (G0, ‖ · ‖G0) is a reflexive Banach space 
continuously embedded in G. Then the following statements hold for all λ ∈ ρ(A0).
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(i) ker Γ̃1 = kerΓ1 = domA1,
(ii) Γ̃1f = M̃(λ)Γ̃0f + Γ1f0 for all f = f0 + fλ ∈ domA0 �Nλ(A∗),
(iii) M̃(λ)′x = M(λ)∗x = M(λ̄)x for all x ∈ G0,
(iv) if, in addition, λ ∈ ρ(A1) then M̃(λ) : G ′

1 → G ′
0 and M(λ) � G0 : G0 → G1 are 

isomorphisms,
(v) the range of the boundary mapping Γ̃ is given by

ran Γ̃ =
{(

x

x′

)
∈ G ′

1 × G ′
0 : x′ = M̃(λ)x + y, y ∈ G1

}
.

Proof. Statement (i) follows in the same way as in Lemma 2.15 and from the fact that 
{G, −Γ1, Γ0} is a quasi-boundary triple for T ⊂ A∗.

The identity (2.16) together with f = f0 + fλ ∈ domA0 �Nλ(A∗) yields the identity

Γ̃1f = Γ̃1f0 + Γ̃1fλ = Γ1f0 + M̃(λ)Γ̃0fλ = Γ1f0 + M̃(λ)Γ̃0f,

therefore (ii) holds; cf. (2.6). In order to verify (iii) note first that according to (2.8) we 
have G0 ⊂ ranΓ0 = domM(λ) = domM(λ̄) ⊂ domM(λ)∗. For x ∈ G0 and y ∈ ranΓ0 ⊂
G ⊂ G ′

j , j = 0, 1, we compute

(
M(λ)∗x, y

)
G =

(
x, M(λ)y

)
G =

〈
x, M̃(λ)y

〉
G0×G ′

0

=
〈
M̃(λ)′x, y

〉
G1×G ′

1
=

(
M̃(λ)′x, y

)
G .

As ranΓ0 is dense in G this implies M(λ)∗x = M̃(λ)′x and M(λ̄)x = M(λ)∗x holds by 
(2.7)–(2.8).

By Lemma 2.15(ii) the operator γ̃(λ) is an isomorphism from G ′
1 onto Nλ(A∗). Since 

A1 is self-adjoint in H we have domA∗ = domA1�Nλ(A∗) for λ ∈ ρ(A1). Therefore the 
first assertion in (iv) follows from (i) and Corollary 2.11. The second assertion in (iv) is 
a consequence of (iii). Finally, statement (v) follows from (ii) in the same way as in the 
proof of Proposition 2.8(ii). �

Since kerΓ1 = ker Γ̃1 and kerΓ0 = ker Γ̃0 hold by Lemma 2.16(i) and Lemma 2.15(i) 
we conclude that the spaces G0 and G1 in Definition 2.7 remain the same for the extended 
boundary mappings, i.e.,

G0 = ran(Γ0 � kerΓ1) = ran(Γ̃0 � ker Γ̃1),

G1 = ran(Γ1 � kerΓ0) = ran(Γ̃1 � ker Γ̃0).

For later purposes we also note that for a quasi-boundary triple {G, Γ0, Γ1} as in Lem-
mas 2.15 and 2.16, with γ-field γ, Weyl function M , their extensions γ̃(λ) : G ′

1 → H
and M̃(λ) : G ′

1 → G ′
0, and the corresponding ordinary boundary triple {G, Υ0, Υ1} from 

Theorem 2.12 with γ-field β, Weyl function M the following relations hold:
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β(λ) = γ̃(λ)ι−1
− and M(λ) = ι+

(
M̃(λ) − M̃(η)

)
ι−1
− , λ ∈ ρ(A0), (2.17)

where η ∈ ρ(A0) ∩ R is as in Theorem 2.12. In fact, the identity β(λ) = γ̃(λ)ι−1
− was 

already shown in the proof of Lemma 2.15 and the second relation in (2.17) is a direct 
consequence of the definition of the Weyl function M, Lemma 2.16(ii), and the particular 
form of the ordinary boundary triple {G, Υ0, Υ1} in Theorem 2.12. More precisely, for 
fλ ∈ Nλ(A∗) decomposed in the form fλ = f0 + fη with f0 ∈ domA0, fη ∈ Nη(A∗), one 
has

ι+
(
M̃(λ) − M̃(η)

)
ι−1
− Υ0fλ = ι+

(
M̃(λ) − M̃(η)

)
Γ̃0fλ

= ι+
(
Γ̃1fλ − M̃(η)Γ̃0fλ

)
= ι+Γ1f0 = Υ1fλ.

2.4. A counterexample

In this supplementary subsection we show that the assumption G⊥
1 = {0}, which is 

essential for Proposition 2.9, Proposition 2.10, Corollary 2.11 and Theorem 2.12, is not 
satisfied automatically. For this we construct a quasi-boundary triple {H , Υ0, Υ1} with 
the property G ⊥

1 �= {0} as a transform of the quasi-boundary triple in Lemma 2.5(ii).

Proposition 2.17. Let {Nη(A∗), ΓT
0 , ΓT

1 } be the quasi-boundary triple for T ⊂ A∗ from
Lemma 2.5(ii) with ϕ = I, G = Nη(A∗), and let H be an auxiliary Hilbert space. Choose 
a densely defined, bounded operator γ : H → Nη(A∗) such that

ker γ = {0}, ran γ = Nη(T ) and ker γ �= {0},

and let M be an (unbounded) self-adjoint operator in H defined on dom γ. Then 
{H , Υ0, Υ1}, where

Υ0f := γ−1ΓT
0 f, Υ1f := γ∗ΓT

1 f + Mγ−1ΓT
0 f, f ∈ domT,

is a quasi-boundary triple for T ⊂ A∗ such that A0 = T � kerΥ0,

G1 = ran(Υ1 � kerΥ0) = ran γ∗ and G ⊥
1 = ker γ �= {0}.

In particular, if M(·) is the Weyl function corresponding to the quasi-boundary triple 
{H , Υ0, Υ1} then we have M(η) = M and ImM(λ) is not invertible for any λ ∈ C \ R.

Proof. We verify that {H , Υ0, Υ1} is a quasi-boundary triple for T ⊂ A∗. Since M is 
self-adjoint in H and {Nη(A∗), ΓT

0 , ΓT
1 } is a quasi-boundary triple we have
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(Υ1f, Υ0g)H − (Υ0f, Υ1g)H

=
(
γ∗ΓT

1 f, γ−1ΓT
0 g

)
H

−
(
γ−1ΓT

0 f, γ∗ΓT
1 g

)
H

=
(
ΓT

1 f, γγ−1ΓT
0 g

)
Nη(A∗) −

(
γγ−1ΓT

0 f, ΓT
1 g

)
Nη(A∗)

=
(
ΓT

1 f, ΓT
0 g

)
Nη(A∗) −

(
ΓT

0 f, ΓT
1 g

)
Nη(A∗)

= (Tf, g)H − (f, Tg)H

for all f, g ∈ domT , and hence the abstract Green’s identity holds. Observe that

A0 = T � kerΓT
0 = T � kerΥ0

holds since by assumption γ is a bijection from dom γ onto Nη(T ).
Next it will be shown that the range of Υ := (Υ0, Υ1)� is dense in H ×H . Since γ−1

is a bijection from Nη(T ) onto dom γ we have

ranΥ =
{(

γ−1ΓT
0 f

γ∗ΓT
1 f + Mγ−1ΓT

0 f

)
: f ∈ domT

}
=

{(
γ−1fη

γ∗ΓT
1 f0 + Mγ−1fη

)
: f = f0 + fη ∈ kerΥ0 �Nη(T )

}
=

{(
x

y + Mx

)
: x ∈ dom γ, y ∈ ran γ∗

}
.

Here we have used in the last step that ranΓT
1 = Nη(A∗) by Lemma 2.5(ii). Suppose 

that (z, z′) ∈ (ranΥ )⊥. Then

(z, x)H +
(
z′, y

)
H

+
(
z′,Mx

)
H

= 0 (2.18)

for all x ∈ dom γ and all y ∈ ran γ∗. We note that if z′ = 0 then z = 0 as dom γ is dense 
in H . Assume first that z′ ∈ ker γ = (ran γ∗)⊥. Then (z′, y)H = 0, y ∈ ran γ∗, and 
(2.18) yields (

z′,Mx
)
H

= (−z, x)H

for all x ∈ domM . As M is self-adjoint we conclude z′ ∈ domM = dom γ and from 
ker γ = {0} we find z′ = 0. Assume now that z′ /∈ ker γ = (ran γ∗)⊥. Then there exists 
y ∈ ran γ∗ such that (z′, y)H �= 0 which is a contradiction to (2.18) when setting x = 0. 
Thus we conclude z′ = z = 0 and hence ranΥ is dense in H × H .

Since kerΥ0 = kerΓT
0 and ran(ΓT

1 � kerΓT
0 ) = Nη(A∗) we have

G1 = ran(Υ1 � kerΥ0) = ran
(
γ∗ΓT

1 � kerΓT
0
)

= ran γ∗

and therefore G⊥
1 = ker γ �= {0} by assumption. Finally, if M(·) is the Weyl function 

corresponding to the quasi-boundary triple {H , Υ0, Υ1} then it follows from ΓT
1 fη = 0, 
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fη ∈ Nη(T ), and MΥ0fη = Mγ−1ΓT
0 fη = Υ1fη that M(η) = M holds. The fact that 

ImM(λ) is not invertible for λ ∈ C \ R is immediate from (2.13). �
3. Extensions of symmetric operators

The main objective of this section is to parameterize the extensions of a symmetric 
operator A with the help of a quasi-boundary triple {G, Γ0, Γ1} for T ⊂ A∗. In contrast to 
ordinary boundary triples there is no immediate direct connection between the properties 
of the extensions

Aϑ = T � {f ∈ domT : Γf ∈ ϑ} (3.1)

and the properties of the corresponding parameters ϑ in G × G, as, e.g. self-adjointness. 
The key idea in Theorem 3.3 and Theorem 3.4 is to mimic a regularization procedure 
which is used in the investigation of elliptic differential operators and goes back to [39,
72], see also [12,17,26,36,53,60,62]. This also leads to an abstract complete description of 
the extensions Aϑ ⊂ A∗ via the extended boundary mappings Γ̃0 and Γ̃1 in Theorem 3.7. 
The general results are illustrated with various examples and sufficient conditions on the 
parameters to imply self-adjointness, as well as a variant of Krĕın’s formula is discussed.

3.1. Parameterization of extensions with quasi-boundary triples

Let in the following A be a closed, densely defined, symmetric operator in the Hilbert 
space H with equal, in general, infinite deficiency indices. In the first theorem in this 
subsection we recall one of the key features of ordinary boundary triples {G, Γ0, Γ1} for 
A∗: A complete description and parameterization of the extensions AΘ of A given by

AΘ := A∗ �
{
f ∈ domA∗ : Γf ∈ Θ

}
and their properties in terms of linear relations Θ in the boundary space G, see, e.g. 
[27,28,38].

Theorem 3.1. Let {G, Γ0, Γ1} be an ordinary boundary triple for A∗. Then the mapping2

Θ 
→ AΘ = A∗ �
{
f ∈ domA∗ : Γf ∈ Θ

}
= A∗ � ker(Γ1 −ΘΓ0)

establishes a bijective correspondence between the set of closed linear relations Θ in G
and the set of closed extensions AΘ ⊂ A∗ of A. Furthermore,

2 Here and in the following the expression Γ1 − ΘΓ0 is understood in the sense of linear relations if Θ is 
a linear relation, that is, ΘΓ0 is the product of the relation Θ with (the graph of the mapping) Γ0 and the 
sum of Γ1 and −ΘΓ0 is in sense of linear relations. We refer the reader to [6,23,29,30,46] for more details 
on linear relations.
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AΘ∗ = A∗
Θ

and the operator AΘ is symmetric (self-adjoint, (maximal) dissipative, (maximal) ac-
cumulative) in H if and only if the closed linear relation Θ is symmetric (self-adjoint, 
(maximal) dissipative, (maximal) accumulative, respectively) in G.

It is not surprising that Theorem 3.1 does not hold for quasi-boundary triples 
{G, Γ0, Γ1}, see, e.g. [11, Proposition 4.11] for a counterexample. In particular, ϑ =
{0} × G1 ⊂ ranΓ (see Definition 2.7 and Proposition 2.8(ii)) is symmetric and not 
self-adjoint in G but the corresponding extension Aϑ of A in (3.1) coincides with the self-
adjoint operator A0 = T � kerΓ0 in H. Note that for a quasi-boundary triple {G, Γ0, Γ1}
the range of the boundary map Γ = (Γ0, Γ1)� is only dense in G × G, so that for a 
linear relation ϑ in G only the part ϑ ∩ ranΓ can be “detected” by the boundary maps. 
However, even for a self-adjoint linear relation ϑ ⊂ ranΓ the corresponding extension Aϑ

of A in (3.1) is in general not self-adjoint, see Example 4.22. Nevertheless, the following 
weaker statement is a direct consequence of the abstract Green’s identity (2.1); cf. [11, 
Proposition 2.4].

Lemma 3.2. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗. Then the mapping

ϑ 
→ Aϑ = T � {f ∈ domT : Γf ∈ ϑ}

establishes a bijective correspondence between the set of symmetric linear relations ϑ ⊂
ranΓ in G and the set of symmetric extensions Aϑ ⊂ T of A in H.

We also mention that for a quasi-boundary triple {G, Γ0, Γ1} and linear relations 
θ ⊂ ϑ ⊂ ranΓ one has Aθ ⊂ Aϑ ⊂ T ; cf. (3.1).

In the next theorem we make use of a different type of parameterization to characterize 
the restrictions of T with the help of a quasi-boundary triple. The idea of the proof is 
to relate the given quasi-boundary triple {G, Γ0, Γ1} to the quasi-boundary triple in 
Lemma 2.5(ii) and to transform the parameters accordingly. We also point out that 
in contrast to most of the results in Section 2.3 here it is not assumed that the space 
G1 = ran(Γ1 � kerΓ0) is dense in G.

Theorem 3.3. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with γ-field γ and 
Weyl function M . Assume that for A0 = T � kerΓ0 there exists η ∈ ρ(A0) ∩ R and fix a 
unitary operator ϕ : Nη(A∗) → G. Then the mapping

Θ 
→ Aϑ = T � {f ∈ domT : Γf ∈ ϑ} with ϑ = γ(η)∗ϕ∗Θϕγ(η) + M(η)

establishes a bijective correspondence between all closed (symmetric, self-adjoint, (maxi-
mal) dissipative, (maximal) accumulative) linear relations Θ in G with domΘ ⊂ ran(ϕ �
Nη(T )) and all closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accu-
mulative, respectively) extensions Aϑ ⊂ T of A in H.
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Proof. Let Θ be a linear relation in G and decompose f ∈ domT in f = f0 + fη, where 
f0 ∈ domA0 and fη ∈ Nη(T ). Then Γf ∈ γ(η)∗ϕ∗Θϕγ(η) + M(η) is equivalent to

Γ1f = γ(η)∗ϕ∗x + M(η)Γ0f with
(
ϕγ(η)Γ0f

x

)
∈ Θ,

and by (2.6) this can be rewritten as

Γ1f0 = γ(η)∗ϕ∗x with
(
ϕfη
x

)
∈ Θ. (3.2)

Denote the orthogonal projection in H onto Nη(A∗) by Pη. Making use of (2.4) and (2.5)
we find

Γ1f0 = γ(η)∗(A0 − η)f0 = γ(η)∗Pη(A0 − η)f0

and as γ(η)∗ � Nη(A∗) is invertible we conclude together with (3.2)

Γf ∈ γ(η)∗ϕ∗Θϕγ(η) + M(η) if and only if
(

ϕfη
ϕPη(A0 − η)f0

)
∈ Θ (3.3)

for all f = f0 + fη ∈ domT .
According to Proposition 2.3 and Lemma 2.5 the quasi-boundary triple {G, f 
→

ϕfη, f 
→ ϕPη(A0 − η)f0} is the restriction of the ordinary boundary triple {G, f 
→
ϕfη, f 
→ ϕPη(A0 − η)f0} for A∗. Now the statement is a consequence of Theorem 3.1. 
In fact, if e.g. Θ is self-adjoint in G with domΘ ⊂ ran(ϕ � Nη(T )), then by Theorem 3.1
the operator

A∗ �
{
f0 + fη = domA0 �Nη

(
A∗) :

(
ϕfη

ϕPη(A0 − η)f0

)
∈ Θ

}
(3.4)

is a self-adjoint restriction of A∗ in H. As domΘ ⊂ ran(ϕ � Nη(T )) we conclude that 
the domain of the operator in (3.4) is contained in domT . Hence by (3.3) the operator 
in (3.4) can be written as

Aϑ = T � {f ∈ domT : Γf ∈ ϑ} with ϑ = γ(η)∗ϕ∗Θϕγ(η) + M(η) (3.5)

and Aϑ is a self-adjoint operator in H. Conversely, by Theorem 3.1 for any self-adjoint 
extension Aϑ of A which is contained in T there exists a self-adjoint relation Θ in G
such that Aϑ can be written in the form (3.4), where Nη(A∗) can be replaced by Nη(T ). 
Therefore domΘ ⊂ ran(ϕ � Nη(T )) and together with (3.3) we conclude that Aϑ can be 
written in the form (3.5). �

The next theorem is of similar flavor as Theorem 3.3 but more explicit and relevant 
for elliptic boundary value problems; cf. Section 4. Under the additional assumption 
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that the space G1 = ran(Γ1 � kerΓ0) in Definition 2.7 is dense in G a more natural 
parameterization of the extensions is found. Here we will again make use of the Gelfand 
triple G1 ↪→ G ↪→ G ′

1 and the corresponding isometric isomorphisms ι+ and ι− in (2.15). 
We also note that after suitable modifications the assumption η ∈ R can be dropped, 
see Remark 2.13.

Theorem 3.4. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with A0 = T � kerΓ0
and Weyl function M . Assume that there exists η ∈ ρ(A0) ∩ R and that G1 is dense in 
G. Then the mapping

Θ 
→ Aϑ = T � {f ∈ domT : Γf ∈ ϑ} with ϑ = ι−1
+ Θι− + M(η)

establishes a bijective correspondence between all closed (symmetric, self-adjoint, (maxi-
mal) dissipative, (maximal) accumulative) linear relations Θ in G with domΘ ⊂ ran ι−Γ0
and all closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative, 
respectively) extensions Aϑ ⊂ T of A in H.

Proof. Let Θ be a linear relation in G and decompose f ∈ domT in the form f = f0 +fη
with f0 ∈ domA0 and fη ∈ Nη(T ). Then Γf ∈ ι−1

+ Θι− + M(η) if and only if

Γ1f = ι−1
+ x + M(η)Γ0f with

(
ι−Γ0f

x

)
∈ Θ. (3.6)

Eq. (2.6) implies Γ1f−M(η)Γ0f = Γ1f0 and since f ∈ domT we have Γ0f = Γ̃0f , where 
Γ̃0 is the continuous extension of Γ0 to domA∗ from Proposition 2.10. Hence (3.6) is 
equivalent to (

ι−Γ̃0f

ι+Γ1f0

)
∈ Θ. (3.7)

According to Theorem 2.12 the triple {G, f 
→ ι−Γ̃0f, f 
→ ι+Γ1f0} is an ordinary 
boundary triple for A∗. Now the statement follows from Theorem 3.1 and the same 
reasoning as in the proof of Theorem 3.3. �
Corollary 3.5. Let the assumptions be as in Theorem 3.4 and let ϑ be a linear relation 
in G. Then the extension Aϑ of A in H given by

Aϑ = T � {f ∈ domT : Γf ∈ ϑ} (3.8)

is closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative) in H
if and only if the linear relation

Θ = ι+
(
ϑ−M(η)

)
ι−1
− with domΘ ⊂ ran ι−Γ0

is closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative) in G.
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Proof. (⇒) Assume that Aϑ in (3.8) is a closed (symmetric, self-adjoint, (maximal) 
dissipative, (maximal) accumulative) operator in H. According to Theorem 3.4 there 
exists a closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative, 
respectively) linear relation Θ in G with domΘ ⊂ ran ι−Γ0 and

Aϑ = Aθ = T � {f ∈ domT : Γf ∈ θ} with θ = ι−1
+ Θι− + M(η). (3.9)

From ι−1
+ Θι− ⊂ ranΓ0×G1 and Proposition 2.8(ii) we conclude θ ⊂ ranΓ . Furthermore, 

we have θ = ϑ ∩ ranΓ , (see the text below Lemma 3.2). Solving Eq. (3.9) leads to the 
identity

Θ = ι+
(
θ −M(η)

)
ι−1
− = ι+

(
ϑ−M(η)

)
ι−1
− .

(⇐) Let Θ = ι+(ϑ − M(η))ι−1
− with domΘ ⊂ ran ι−Γ0 be a closed (symmetric, 

self-adjoint, (maximal) dissipative, (maximal) accumulative) linear relation in G. From 
ϑ −M(η) = ι−1

+ Θι− ⊂ ranΓ0 ×G1 and Proposition 2.8(ii) we obtain θ = ι−1
+ Θι− +M(η)

with θ = ϑ ∩ ranΓ . According to Theorem 3.4 the extension Aθ = Aϑ given by 
(3.8) is closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative) 
in H. �

We recall that a symmetric linear relation Θ in G with ranΘ = G is self-adjoint in G
with 0 ∈ ρ(Θ). This together with Corollary 3.5 yields the following example.

Example 3.6. Let the assumptions be as in Corollary 3.5 and let ϑ be a symmetric linear 
relation in G such that ran(ϑ −M(η)) = G1. Then

Aϑ = T � {f ∈ domT : Γf ∈ ϑ}

is a self-adjoint extension of A in H.

In the next result the assumptions on the quasi-boundary triple are strengthened 
further such that both boundary maps Γ0 and Γ1 extend by continuity to domA∗. In 
that case one obtains a description of all extensions Aϑ ⊂ A∗ which is very similar to 
the parameterization in Theorem 3.4. The additional abstract regularity result will turn 
out to be useful when considering the regularity of solutions of elliptic boundary value 
problems in Section 4.

Theorem 3.7. Let the assumptions be as in Theorem 3.4 and assume, in addition, that 
A1 = T � kerΓ1 is self-adjoint in H, η ∈ ρ(A0) ∩ ρ(A1) ∩R, and that G0 dense in G. Let 
M̃ be the extension of the Weyl function M from Definition 2.14(ii). Then the mapping

Θ 
→ Ãϑ = A∗ �
{
f ∈ domA∗ : Γ̃ f ∈ ϑ

}
with ϑ = ι−1

+ Θι− + M̃(η)
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establishes a bijective correspondence between all closed (symmetric, self-adjoint, (maxi-
mal) dissipative, (maximal) accumulative) linear relations Θ in G and all closed (symmet-
ric, self-adjoint, (maximal) dissipative, (maximal) accumulative, respectively) extensions 
Ãϑ ⊂ A∗ of A in H.

Moreover, the following abstract regularity result holds: If Θ is a linear relation in G
and S is an operator in H such that T ⊂ S ⊂ A∗ then

domΘ ⊂ ran(ι−Γ̃0 � domS) implies dom Ãϑ ⊂ domS.

Proof. The proof of the first part is very similar to the proof of Theorem 3.4 and will 
not be repeated here. We show the abstract regularity result. Let Θ and S be as in the 
theorem and assume that domΘ is contained in the range of the map ι−Γ̃0 � domS. Let

Ãϑ = A∗ �
{
f ∈ domA∗ : Γ̃ f ∈ ι−1

+ Θι− + M̃(η)
}

be the corresponding extension and let f ∈ dom Ãϑ. As Γ̃ f ∈ ι−1
+ Θι− + M̃(η) we have 

ι−Γ̃0f ∈ domΘ. Since domΘ ⊂ ran(ι−Γ̃0 � domS) there exists an element g ∈ domS

such that ι−Γ̃0f = ι−Γ̃0g holds. Hence we conclude f − g ∈ ker Γ̃0 = domA0 ⊂ domS, 
so that f = g + (f − g) ∈ domS. �

The next corollary is a counterpart of Corollary 3.5 and can be proved in the same 
way using Lemma 2.16(v) instead of Proposition 2.8(ii).

Corollary 3.8. Let the assumptions be as in Theorem 3.7 and let ϑ be a linear relation 
in G ′

1 × G ′
0. Then the extension Ãϑ of A in H given by

Ãϑ = A∗ �
{
f ∈ domA∗ : Γ̃ f ∈ ϑ

}
is closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative) in H
if and only if the linear relation

Θ = ι+
(
ϑ− M̃(η)

)
ι−1
−

is closed (symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative) in G.

A simple application of Theorem 3.7 is discussed in the next example.

Example 3.9. Set Θ = 0 in Theorem 3.7. Then ϑ = M̃(η) and it follows that

Ãϑ = A∗ �
{
f ∈ domA∗ : M̃(η)Γ̃0f = Γ̃1f

}
is a self-adjoint extension of A in H. From Lemma 2.16(ii) we obtain that the condition 
M̃(η)Γ̃0f = Γ̃1f is equivalent to Γ1f0 = 0, where f = f0 + fη ∈ domA0 �Nη(A∗). This 
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implies that Ãϑ = A � N̂η(A∗), which coincides with the Krĕın–von Neumann extension 
if A is uniformly positive and η = 0; cf. [51] and, e.g. [47].

3.2. Sufficient conditions for self-adjointness and a variant of Krĕın’s formula

In this subsection we provide different sufficient conditions for the parameter ϑ in 
G × G such that the corresponding extension

Aϑ = T � {f ∈ domT : Γf ∈ ϑ}, ϑ = ι−1
+ Θι− + M(η),

in Theorem 3.4 becomes self-adjoint in H; cf. [11, Theorem 4.8], [13, Theorem 3.11] and, 
e.g. Example 3.6. In Proposition 3.10 below we will make use of standard perturbation 
results, such as the Kato–Rellich theorem. Thus we will restrict ourselves to operators ϑ
instead of relations. Recall also the following notions from perturbation theory: If M is a 
linear operator acting between two Banach spaces then a sequence (xk)k∈N ⊂ domM is 
called M-bounded if (xk)k∈N is bounded with respect to the graph norm of M. A linear 
operator θ is said to relatively compact with respect to M if domM ⊂ dom θ and θ maps 
M-bounded sequences into sequences which have convergent subsequences.

Proposition 3.10. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with Aj = T �
kerΓj, j = 0, 1, and Weyl function M , and assume that A1 is self-adjoint in H and that 
there exists η ∈ ρ(A0) ∩ ρ(A1) ∩ R. Furthermore, suppose that G0 and G1 are dense in 
G and equip G0 and G1 with norms ‖ · ‖G0 and ‖ · ‖G1 such that both (G0, ‖ · ‖G0) and 
(G1, ‖ · ‖G1) are reflexive Banach spaces continuously embedded in G.

If ϑ is a symmetric operator in G such that

G0 ⊂ domϑ and ranϑ � G0 ⊂ G1, (3.10)

and one of the followings conditions (i)–(iii) hold,

(i) ϑ regarded as an operator from G0 to G1 is compact,
(ii) ϑ regarded as an operator from G0 to G1 is relatively compact with respect to M(η)

regarded as an operator from G0 to G1,
(iii) there exist c1 > 0 and c2 ∈ [0, 1) such that

‖ϑx‖G1 ≤ c1‖x‖G ′
1
+ c2

∥∥M(η)x
∥∥

G1
, x ∈ G0,

then Aϑ = T � {f ∈ domT : Γf ∈ ϑ} is self-adjoint in H.

Proof. Note first that condition (i) is a special case of condition (ii). Hence it suffices to 
prove the proposition under conditions (ii) or (iii). By (3.10) the restriction θ := ϑ � G0
maps into G1 and the corresponding extensions of A in H satisfy Aθ ⊂ Aϑ. We show 
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below that (ii) or (iii) imply the self-adjointness of Aθ and hence, as Aϑ is symmetric by 
Lemma 3.2, the self-adjointness of Aϑ.

By Corollary 3.5 the operator Aθ = T � {f ∈ domT : Γf ∈ θ} is self-adjoint in 
H if and only if Θ = ι+(θ − M(η))ι−1

− is self-adjoint in G. Since ϑ is assumed to be 
a symmetric operator the same holds for θ, ι+θι−1

− and Θ. From Lemma 2.16(iv) we 
obtain that M := M(η) � G0 is an isomorphism onto G1. Thus the symmetric operator 
−ι+Mι−1

− defined on ι−G0 is surjective and hence self-adjoint in G. Therefore

Θ = ι+(θ −M)ι−1
− = −ι+Mι−1

− + ι+θι
−1
− (3.11)

can be regarded as an additive symmetric perturbation of the self-adjoint operator 
−ι+Mι−1

− , and the assertion of the proposition holds if we show that Θ is self-adjoint 
in G.

Assume first that condition (ii) holds, that is, θ is relatively compact with respect 
to M, and hence also with respect to −M. Making use of the fact that ι+ : G1 → G
and ι− : G ′

1 → G are isometric isomorphisms it is not difficult to verify that ι+θι−1
− is 

relatively compact with respect to −ι+Mι−1
− in G. Hence by well known perturbation 

results the operator Θ in (3.11) is self-adjoint in G, see, e.g. [73, Theorem 9.14].
Suppose now that (iii) holds and set ξ = ι−x for x ∈ G0. Then∥∥ι+θι−1

− ξ
∥∥
G = ‖θx‖G1 ≤ c1‖x‖G ′

1
+ c2‖Mx‖G1 = c1‖ξ‖G + c2

∥∥ι+Mι−1
− ξ

∥∥
G

shows that the symmetric operator ι+θι−1
− is ι+Mι−1

− -bounded with a relative bound 
c2 < 1. Hence the Kato–Rellich theorem [65, Theorem X.12] implies that Θ in (3.11) is 
a self-adjoint operator in G. �

The next proposition is of the same flavor as Proposition 3.10. It can be proved 
similarly with the help of a variant of the Kato–Rellich theorem due to Wüst; cf. [65, 
Theorem X.14] and [77].

Proposition 3.11. Let the assumptions be as in Proposition 3.10 and assume that there 
exists c > 0 such that

‖ϑx‖G1 ≤ c‖x‖G ′
1
+

∥∥M(η)x
∥∥

G1
, x ∈ G0.

Then Aϑ = T � {f ∈ domT : Γf ∈ ϑ} is essentially self-adjoint in H.

Example 3.12. Let ϑ be a symmetric operator in G with G0 ⊂ domϑ, such that ϑ is 
continuous from (G0, ‖ · ‖G ′

1
) to G1. Then condition (iii) in Proposition 3.10 is satisfied 

with c2 = 0 and hence the extension Aϑ of A is self-adjoint in H.
Now consider ϑ := M(η) � G0 as an operator from G0 to G1. Then Proposition 3.11

implies that Aϑ is essentially self-adjoint in H. In fact, as in Example 3.9 one verifies 
Aϑ = A � N̂η(T ), which is a proper restriction of Ãϑ = A � N̂η(A∗) from Example 3.9.
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For completeness we provide a version of Krĕın’s formula for quasi-boundary triples 
in Corollary 3.14 which can be viewed as a direct consequence of Krĕın’s formula for the 
ordinary boundary triple in Theorem 2.12. A similar type of resolvent formula can also 
be found in [26, Theorem 7.26] for generalized boundary triples. For the convenience of 
the reader we first recall Krĕın’s formula for ordinary boundary triples, see, e.g. [27]. 
The point, continuous and residual spectrum of a closed linear relation is defined in the 
same way a for a closed linear operator; cf. [29,30].

Theorem 3.13. Let {G, Γ0, Γ1} be an ordinary boundary triple for A∗ with γ-field γ and 
Weyl function M and A0 = A∗ � kerΓ0, let Θ be a closed linear relation in G and let 
AΘ be the corresponding closed extension in Theorem 3.1. Then for all λ ∈ ρ(A0) the 
following assertions (i)–(iv) hold.

(i) λ ∈ σp(AΘ) if and only if 0 ∈ σp(Θ −M(λ)), in this case

ker(AΘ − λ) = γ(λ) ker
(
Θ −M(λ)

)
,

(ii) λ ∈ σc(AΘ) if and only if 0 ∈ σc(Θ −M(λ)),
(iii) λ ∈ σr(AΘ) if and only if 0 ∈ σr(Θ −M(λ)),
(iv) λ ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ −M(λ)) and the formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ −M(λ)

)−1
γ(λ̄)∗

holds for all λ ∈ ρ(A0) ∩ ρ(AΘ).

The next corollary contains a variant of Krĕın’s formula for quasi-boundary triples; 
cf. [11, Theorem 2.8], [13, Theorem 3.6], and [12, Theorem 6.16] for other versions of 
Krĕın’s formula for the resolvent difference of canonical extensions in the quasi-boundary
triple framework.

Corollary 3.14. Let {G, Γ0, Γ1} be a quasi-boundary triple for T ⊂ A∗ with γ-field γ, 
Weyl function M , Aj = T � kerΓj, j = 0, 1, such that A1 is self-adjoint in H, there 
exists η ∈ ρ(A0) ∩R and G0, G1 are dense in G. Equip G0 and G1 with norms ‖ · ‖G0 and 
‖ ·‖G1 such that both (G0, ‖ ·‖G0) and (G1, ‖ ·‖G1) are reflexive Banach spaces continuously 
embedded in G, and let γ̃ and M̃ be the extensions of γ and M , respectively. Moreover 
let ϑ ⊂ G ′

1 × G ′
0 be a linear relation in ran Γ̃ such that the extension

Ãϑ = A∗ �
{
f ∈ domA∗ : Γ̃ f ∈ ϑ

}
is closed in H. Then for all λ ∈ ρ(A0) the following assertions (i)–(iv) hold.

(i) λ ∈ σp(Ãϑ) if and only if 0 ∈ σp(ι+(ϑ − M̃(λ))ι−1
− ), in this case
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ker(Ãϑ − λ) = γ̃(λ) ker
(
ϑ− M̃(λ)

)
,

(ii) λ ∈ σc(Ãϑ) if and only if 0 ∈ σc(ι+(ϑ − M̃(λ))ι−1
− ),

(iii) λ ∈ σr(Ãϑ) if and only if 0 ∈ σr(ι+(ϑ − M̃(λ))ι−1
− ),

(iv) λ ∈ ρ(Ãϑ) if and only if 0 ∈ ρ(ι+(ϑ − M̃(λ))ι−1
− ) and

(Ãϑ − λ)−1 = (A0 − λ)−1 + γ̃(λ)
(
ϑ− M̃(λ)

)−1
γ̃(λ̄)′

holds for all λ ∈ ρ(Ãϑ) ∩ ρ(A0).

Proof. Let {G, Υ0, Υ1} be the ordinary boundary triple for A∗ in Theorem 2.12 with 
A0 = A∗ � kerΥ0, γ-field β and corresponding Weyl function M in (2.17). By assumption 
we have ϑ ⊂ ran Γ̃ . According to Corollary 3.8 the linear relation Θ = ι+(ϑ − M̃(η))ι−1

−
is closed in G and it follows that Ãϑ and

AΘ = A∗ �
{
f ∈ domA∗ : Υf ∈ Θ

}
coincide. Since M(λ) = ι+(M̃(λ) −M̃(η))ι−1

− by (2.17) we obtain the identity Θ−M(λ) =
ι+(ϑ − M̃(λ))ι−1

− and from β(λ) = γ̃(λ)ι−1
− and β(λ̄)∗ = ι+γ̃(λ̄)′ we then conclude

β(λ)
(
Θ −M(λ)

)−1
β(λ̄)∗ = γ̃(λ)

(
ϑ− M̃(λ)

)−1
γ̃(λ̄)′. (3.12)

Now the assertions follow from Theorem 3.13, Ãϑ = AΘ and (3.12). Note that (ϑ −
M̃(λ))−1 ⊂ G1 × G ′

1 in (3.12) since ϑ − M̃(λ) ⊂ G ′
1 × G1 by Lemma 2.16(v). �

4. Applications to elliptic boundary value problems

In this section the abstract theory from Section 2 and Section 3 is applied to elliptic 
differential operators. In Section 4.1 we first study the Laplacian on bounded Lipschitz-, 
quasi-convex and C1,r-domains with r ∈ (1

2 , 1]. Then we investigate 2m-th order elliptic 
differential operators on bounded smooth domains in Section 4.2 and second order elliptic 
differential operators on domains with compact boundary in Section 4.3.

Throughout this section let Ω ⊂ R
n, n ≥ 2, be a domain with boundary ∂Ω (which 

is at least Lipschitz). In Section 4.1 and Section 4.2 the domain Ω is assumed to be 
bounded, in Section 4.3 the domain Ω may be unbounded as well but its boundary ∂Ω
is assumed to be compact. We denote by Hs(Ω) the Sobolev spaces of order s ∈ R on 
Ω and by Hs(∂Ω) the Sobolev spaces on ∂Ω of order s (with at least s ∈ [−1, 1] in the 
Lipschitz case). By Hs

0(Ω) we denote the closure of C∞
0 (Ω) in Hs(Ω), s ≥ 0, and with 

C∞(Ω) the functions in C∞
0 (Rn) restricted to Ω; see, e.g. [57, Chapter 3].
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4.1. A description of all self-adjoint extensions of the Laplacian on bounded Lipschitz 
domains

In this subsection we give a complete description of the self-adjoint extensions of 
the Laplacian −Δ = − 

∑n
j=1 ∂

2
j on a bounded Lipschitz domain Ω in terms of linear 

operators and relations Θ in L2(∂Ω) with the help of Theorem 3.7. This description 
extends the one by Gesztesy and Mitrea in [36], where the class of so-called quasi-convex 
domains was treated; cf. [36, Definition 8.9]. In addition we introduce Hilbert spaces 
G0 and G1 such that the Dirichlet- and Neumann trace operator admit continuous and 
surjective extensions from the maximal domain of the Laplacian onto the anti-dual spaces 
G ′

1 and G ′
0 respectively.

Let Ω ⊂ R
n, n ≥ 2, be a bounded Lipschitz domain. For s ≥ 0 we define the Hilbert 

spaces

Hs
Δ(Ω) :=

{
f ∈ Hs(Ω) : Δf ∈ L2(Ω)

}
equipped with the norms induced by

(f, g)Hs
Δ(Ω) := (f, g)Hs(Ω) + (Δf,Δg)L2(Ω), f, g ∈ Hs

Δ(Ω).

Note that for s ≥ 2 the spaces Hs
Δ(Ω) coincide with Hs(Ω). Define the minimal and 

maximal realization of the Laplacian in L2(Ω) by

Δmin := −Δ � H2
0 (Ω) and Δmax := −Δ � H0

Δ(Ω),

respectively, and let A := Δmin. It follows from the Poincaré inequality that the norm 
induced by H0

Δ(Ω) is equivalent to the H2-norm on H2
0 (Ω). Hence a usual distribution 

type argument yields

A = Δmin = Δ∗
max and A∗ = Δ∗

min = Δmax;

cf. [70, VI. § 29]. We mention that A is a closed, densely defined, symmetric operator in 
L2(Ω) with equal infinite deficiency indices. Let n = (n1, n2, . . . , nn)� be the unit vector 
field pointing out of Ω, which exists almost everywhere, see, e.g. [57,76]. The Dirichlet 
and Neumann trace operator τD and τN defined by

τDf := f �∂Ω , τNf := n · ∇f �∂Ω , f ∈ C∞(Ω),

admit continuous extensions to operators

τD : Hs
Δ(Ω) → Hs−1/2(∂Ω) and τN : Hs

Δ(Ω) → Hs−3/2(∂Ω) (4.1)

for all s ∈ [ 12 , 
3
2 ]. In particular, according to [36, Lemma 3.1 and Lemma 3.2] the exten-

sions τD and τN in (4.1) are both surjective if s = 1 and s = 3 .
2 2
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In the next theorem we define a quasi-boundary triple for the Laplacian

T := −Δ � H3/2
Δ (Ω) = A∗ � H3/2

Δ (Ω) ⊂ Δmax (4.2)

on the bounded Lipschitz domain Ω with Γ0 and Γ1 as the natural trace maps. In this 
setting it turns out that the spaces G0 and G1 from Definition 2.7 are dense in L2(∂Ω), the 
γ-field coincides with a family of Poisson operators and the values of the Weyl function 
are Dirichlet-to-Neumann maps (up to a minus sign).

Theorem 4.1. Let Ω be a bounded Lipschitz domain, let T be as in (4.2) and let

Γ0, Γ1 : H3/2
Δ (Ω) → L2(∂Ω), Γ0f := τDf, Γ1f := −τNf.

Then {L2(∂Ω), Γ0, Γ1} is a quasi-boundary triple for T ⊂ A∗ = Δmax such that the 
minimal realization A = Δmin coincides with T � kerΓ and the following statements 
hold.

(i) The Dirichlet realization ΔD and Neumann realization ΔN correspond to kerΓ0
and kerΓ1,

ΔD := T � kerΓ0 = Δmax �
{
f ∈ H

3/2
Δ (Ω) : τDf = 0

}
,

ΔN := T � kerΓ1 = Δmax �
{
f ∈ H

3/2
Δ (Ω) : τNf = 0

}
,

(4.3)

respectively, and both operators are self-adjoint in L2(Ω).
(ii) The spaces

G0 = ran(Γ0 � kerΓ1) and G1 = ran(Γ1 � kerΓ0)

are dense in L2(∂Ω).
(iii) The values γ(λ) : L2(∂Ω) ⊃ H1(∂Ω) → L2(Ω) of the γ-field are given by

γ(λ)ϕ = f, ϕ ∈ H1(∂Ω), λ ∈ ρ(ΔD),

where f ∈ L2(Ω) is the unique solution of the boundary value problem

(−Δ− λ)f = 0, τDf = ϕ. (4.4)

(iv) The values M(λ) : L2(∂Ω) ⊃ H1(∂Ω) → L2(∂Ω) of the Weyl function are 
Dirichlet-to-Neumann maps given by

M(λ)ϕ = −τNf, ϕ ∈ H1(∂Ω), λ ∈ ρ(ΔD),
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where f = γ(λ)ϕ is the unique solution of (4.4). The operators M(λ) are bounded 
from H1(∂Ω) to L2(∂Ω) and if, in addition, λ ∈ ρ(ΔN ) then the Neumann-to-
Dirichlet map M(λ)−1 is a compact operator in L2(∂Ω).

Proof. We check that {L2(∂Ω), Γ0, Γ1} is a quasi-boundary triple for T ⊂ A∗. From [33, 
Theorems 2.6 and 2.10, Lemmas 3.4 and 4.8] we obtain that the Dirichlet and Neumann 
Laplacian in (4.3) are both self-adjoint in L2(Ω); for the H3/2-regularity of the Dirichlet 
domain see also [48] or [49, Theorem B.2]. In particular, item (iii) in Definition 2.1 is 
valid and assertion (i) of the theorem holds.

The fact that ranΓ is dense in L2(∂Ω) × L2(∂Ω) will follow below when we verify 
assertion (ii) of the theorem. For the moment we note that item (ii) in Definition 2.1
holds.

The continuity of the trace maps τD, τN : H
3/2
Δ (Ω) → L2(∂Ω) and the fact that 

C∞(Ω) is dense in H3/2
Δ (Ω) (see [22, Lemme 3]) yield Green’s identity

(Tf, g)L2(Ω) − (f, Tg)L2(Ω) = (−Δf, g)L2(Ω) − (f,−Δg)L2(Ω)

= (−τNf, τDg)L2(∂Ω) − (τDf,−τNg)L2(∂Ω)

= (Γ1f, Γ0g)L2(∂Ω) − (Γ0f, Γ1g)L2(∂Ω)

for all f, g ∈ H
3/2
Δ (Ω), that is, condition (i) in Definition 2.1 holds.

Furthermore, as C∞(Ω) is dense in H0
Δ(Ω) = domA∗ it follows that T = A∗ = Δmax

holds. Therefore {L2(∂Ω), Γ0, Γ1} is a quasi-boundary triple for T . Hence we also obtain 
T � kerΓ = A = Δmin from the fact that kerΓ = domA holds in every quasi-boundary
triple.

Next we verify assertion (ii) (which also implies property (ii) in the definition of a 
quasi-boundary triple). Recall that ranΓ1 = L2(∂Ω) by (4.1) and suppose that h ⊥ G0. 
Choose f ∈ domΓ1 such that h = Γ1f . Then for all g ∈ kerΓ1 = domΔN Green’s 
identity yields

0 = (h, Γ0g)L2(∂Ω) = (Γ1f, Γ0g)L2(∂Ω) − (Γ0f, Γ1g)L2(∂Ω)

= (Tf, g)L2(Ω) − (f,ΔNg)L2(Ω)

and since ΔN is selfadjoint by (i) we obtain f ∈ domΔN = kerΓ1 and hence h = Γ1f =
0, that is, G0 is dense in L2(∂Ω). The fact that G1 is dense in L2(∂Ω) follows from [36, 
Lemma 6.3 and Corollary 6.5] since the subspace ran(τN � {f ∈ H2(Ω) : τDf = 0}) of 
G1 is dense in L2(∂Ω). This shows assertion (ii). Since G0 × G1 ⊂ ranΓ also ranΓ is 
dense in L2(∂Ω) × L2(∂Ω) as noted above.

Most of the assertions in (iii) and (iv) are immediate consequences of the defini-
tion of the γ-field and the Weyl function corresponding to the quasi-boundary triple 
{L2(∂Ω), Γ0, Γ1}. For the boundedness of M(λ) regarded as an operator from H1(∂Ω)
into L2(∂Ω) and the compactness of M(λ)−1 as an operator in L2(∂Ω) we refer to [33, 
Theorem 3.7 and Remark 3.8]. �
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Let {L2(∂Ω), Γ0, Γ1} be the quasi-boundary triple for T ⊂ A∗ = Δmax from Theo-
rem 4.1 with Weyl function M . Equip the spaces G0 and G1 with the norms induced 
by

(ϕ,ψ)G0 :=
(
Σ−1/2ϕ,Σ−1/2ψ

)
L2(∂Ω), Σ = Im

(
−M(i)−1),

(ϕ,ψ)G1 :=
(
Λ−1/2ϕ,Λ−1/2ψ

)
L2(∂Ω), Λ = ImM(i);

(4.5)

cf. Section 2.3. As an immediate consequence of Proposition 2.10 and Corollary 2.11, see 
also Definition 2.14, Lemma 2.15 and Lemma 2.16, we obtain a trace theorem for the 
Dirichlet and Neumann trace operator on the maximal domain of the Laplacian.

Corollary 4.2. Let Ω be a bounded Lipschitz domain. Then the following statements hold.

(i) The Dirichlet trace operator τD and Neumann trace operator τN can be extended 
by continuity to surjective mappings

τ̃D : H0
Δ(Ω) → G ′

1 and τ̃N : H0
Δ(Ω) → G ′

0

such that ker τ̃D = ker τD = domΔD and ker τ̃N = ker τN = domΔN . In particular,

H2
0 (Ω) =

{
f ∈ H0

Δ(Ω) : τ̃Df = τ̃Nf = 0
}
.

(ii) For all λ ∈ ρ(ΔD) the values of the γ-field γ from Theorem 4.1 admit continuous 
extensions

γ̃(λ) : G ′
1 → L2(∂Ω), ϕ 
→ γ̃(λ)ϕ = f,

where f ∈ L2(Ω) is the unique solution of (4.4) with ϕ ∈ G ′
1. In particular, the space 

G ′
1 is maximal in the sense that whenever f ∈ L2(Ω) is a solution of the Dirichlet 

problem (4.4) then the boundary value ϕ belongs to G ′
1.

(iii) For all λ ∈ ρ(ΔD) the values M(λ) of the Weyl function M from Theorem 4.1
admit continuous extensions

M̃(λ) : G ′
1 → G ′

0, ϕ 
→ M̃(λ)ϕ = −τ̃Nf, λ ∈ ρ(ΔD),

where f = γ̃(λ)ϕ is the unique solution of (4.4) with ϕ ∈ G ′
1.

Applying Theorem 2.12 to the quasi-boundary triple {L2(∂Ω), Γ0, Γ1} from Theo-
rem 4.1 we get a Lipschitz domain version of the ordinary boundary triple for the 
Laplacian as it appears already in the smooth case in [39], see also, e.g. [10,12,17,53]. 
Recall that there exist isometric isomorphisms ι+ : G1 → L2(∂Ω), ι− : G ′

1 → L2(∂Ω)
such that (ι−x′, ι+x)L2(∂Ω) = 〈x′, x〉G ′×G1 ; cf. (2.15).
1
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Corollary 4.3. Let η ∈ ρ(ΔD) ∩ R and let Υ0, Υ1 : H0
Δ(Ω) → L2(∂Ω) be given by

Υ0f := ι−τ̃Df, Υ1f := −ι+τNfD, f = fD + fη ∈ domΔD �Nη

(
A∗).

Then {L2(∂Ω), Υ0, Υ1} is an ordinary boundary triple for A∗ = Δmax with A∗ � kerΥ0 =
ΔD and

A∗ � kerΥ1 = Δmin+̇
{
(fη, ηfη)� : −Δfη = ηfη, fη ∈ H0

Δ(Ω)
}
.

In the present setting Theorem 3.7 can be applied to the quasi-boundary triple from 
Theorem 4.1. This yields a description of all self-adjoint extensions Δϑ ⊂ Δmax of the 
minimal Laplacian Δmin in L2(Ω) on bounded Lipschitz domains.

Corollary 4.4. Let Ω be a bounded Lipschitz domain, G0, G1 be as in Theorem 4.1, 
η ∈ R ∩ρ(ΔD) ∩ρ(ΔN ) and M̃(η) : G ′

1 → G ′
0 be the extended Dirichlet-to-Neumann map. 

Then the mapping

Θ 
→ Δϑ = Δmax �
{
f ∈ H0

Δ(Ω) : ϑτ̃Df + τ̃Nf = 0
}
, ϑ = ι−1

+ Θι− + M̃(η),

establishes a bijective correspondence between all closed (symmetric, self-adjoint, (max-
imal) dissipative, (maximal) accumulative) linear relations Θ in L2(∂Ω) and all closed 
(symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative, respectively) 
extensions Δϑ ⊂ A∗ = Δmax of A = Δmin in L2(Ω). Moreover, the following regularity 
result holds: If Δs is an extension of T in (4.2) such that Δs ⊂ A∗ = Δmax then

domΘ ⊂ ran(ι−τ̃D � domΔs) implies domΔϑ ⊂ domΔs. (4.6)

We note that the abstract propositions from Section 3.2 can be applied to the quasi-
boundary triple {L2(∂Ω), Γ0, Γ1}, see also Section 4.3. We leave the formulations to the 
reader and state only a version of Krĕın’s formula as in Corollary 3.14.

Corollary 4.5. Let Ω be a bounded Lipschitz domain, γ̃(λ) : G ′
1 → L2(Ω) and M̃(λ) :

G ′
1 → G ′

0 be the extended γ-field and Dirichlet-to-Neumann map from Corollary 4.2. Let 
ϑ ⊂ G ′

1 × G ′
0 be a linear relation in ran(τ̃D, −τ̃N ) such that

Δϑ = Δmax �
{
f ∈ H0

Δ(Ω) : ϑτ̃Df + τ̃Nf = 0
}

is closed in L2(Ω). Then for all λ ∈ ρ(ΔD) the following assertions (i)–(iv) hold.

(i) λ ∈ σp(Δϑ) if and only if 0 ∈ σp(ι+(ϑ − M̃(λ))ι−1
− ), in this case

ker(Δϑ − λ) = γ̃(λ) ker
(
ϑ− M̃(λ)

)
,
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(ii) λ ∈ σc(Δϑ) if and only if 0 ∈ σc(ι+(ϑ − M̃(λ))ι−1
− ),

(iii) λ ∈ σr(Δϑ) if and only if 0 ∈ σr(ι+(ϑ − M̃(λ))ι−1
− ),

(iv) λ ∈ ρ(Δϑ) if and only if 0 ∈ ρ(ι+(ϑ − M̃(λ))ι−1
− ) and

(Δϑ − λ)−1 = (ΔD − λ)−1 + γ̃(λ)
(
ϑ− M̃(λ)

)−1
γ̃(λ̄)′

holds for all λ ∈ ρ(Δϑ) ∩ ρ(ΔD).

In the following we slightly improve Lemma 3.2 by using the fact that ker τN =
ker τ̃N = domΔN .

Lemma 4.6. Let Ω be a bounded Lipschitz domain and let ϑ be a linear relation in L2(∂Ω). 
Then

Δϑ := Δmax �
{
f ∈ H0

Δ(Ω) : ϑτ̃Df + τ̃Nf = 0
}

has regularity domΔϑ ⊂ H
3/2
Δ (Ω). Moreover, Δϑ is symmetric in L2(Ω) if and only if 

ϑ is symmetric L2(∂Ω).

Proof. For f ∈ domΔϑ we have ϑτ̃Df = −τ̃Nf ∈ L2(∂Ω) as ϑ is assumed to be a linear 
relation in L2(∂Ω). By (4.1) there exists g ∈ H

3/2
Δ (Ω) such that τNg = τ̃Nf and hence

f − g ∈ ker τ̃N = ker τN = domΔN ⊂ H
3/2
Δ (Ω).

Therefore f = (f − g) + g ∈ H
3/2
Δ (Ω) and domΔϑ ⊂ H

3/2
Δ (Ω) holds. In particular, we 

have

Δϑ = Δmax �
{
f ∈ H

3/2
Δ (Ω) : ϑΓ0f − Γ1f = 0

}
, (4.7)

where {L2(∂Ω), Γ0, Γ1} is the quasi-boundary triple from Theorem 4.1. Then by 
Lemma 3.2 Δϑ is symmetric in L2(Ω) if and only if ϑ is symmetric L2(∂Ω). �

The next theorem is a slightly improved Lipschitz domain version of [11, Theorem 4.8], 
see also [12, Theorem 6.21].

Theorem 4.7. Let Ω be a bounded Lipschitz domain and let ϑ be a bounded self-adjoint 
operator in L2(∂Ω). Then

Δϑ := Δmax �
{
f ∈ H0

Δ(Ω) : ϑτ̃Df + τ̃Nf = 0
}

(4.8)

is a self-adjoint operator in L2(Ω) with compact resolvent, semibounded from below and 
regularity domΔϑ ⊂ H

3/2
Δ (Ω).
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Proof. It follows from Lemma 4.6 that domΔϑ ⊂ H
3/2
Δ (Ω) holds and hence Δϑ is given 

by (4.7), where {L2(∂Ω), Γ0, Γ1} is the quasi-boundary triple for T ⊂ Δmax from Theo-
rem 4.1 with Weyl function M . According to Theorem 4.1(iv) the Neumann-to-Dirichlet 
maps M(λ)−1, λ ∈ ρ(ΔD) ∩ ρ(ΔN ), are compact operators in L2(∂Ω), and hence [12, 
Theorem 6.21] implies that Δϑ is a self-adjoint operator in L2(Ω). The compactness of 
the resolvent of Δϑ follows from [11, Theorem 4.8] applied to the quasi-boundary triple 
{L2(∂Ω), Γ1, −Γ0} and the parameter Θ = −ϑ−1.

It remains to show that Δϑ is semibounded from below. If ϑ = 0 this is obviously 
true. Suppose ϑ �= 0, let 0 < ε ≤ 1/‖ϑ‖ and choose cε > 0 such that

‖τDg‖2
L2(∂Ω) ≤ ε‖∇g‖2

L2(Ω)n + cε‖g‖2
L2(Ω), g ∈ H1(Ω);

see, e.g. [35, Lemma 4.2]. For f ∈ domΔϑ Green’s identity together with −τNf = ϑτDf

(see (4.8)) implies

(Δϑf, f)L2(Ω) = ‖∇f‖2
L2(Ω)n + (ϑτDf, τDf)L2(∂Ω)

≥ ‖∇f‖2
L2(Ω)n − ‖ϑ‖ ‖τDf‖2

L2(∂Ω)

≥ ‖∇f‖2
L2(Ω)n − ε‖ϑ‖‖∇f‖2

L2(Ω)n − cε‖ϑ‖‖f‖2
L2(Ω)

≥ −cε‖ϑ‖ ‖f‖2
L2(∂Ω). �

In the next corollary we formulate a version of Theorem 4.7 for Robin boundary 
conditions.

Corollary 4.8. Let Ω be a bounded Lipschitz domain and let α ∈ L∞(∂Ω) be a real 
function on ∂Ω. Then

Δα := Δmax �
{
f ∈ H0

Δ(Ω) : α · τ̃Df + τ̃Nf = 0
}

(4.9)

is self-adjoint operator in L2(Ω) with compact resolvent, semibounded from below and 
regularity domΔα ⊂ H

3/2
Δ (Ω). In (4.9) the multiplication with α is understood as an 

operator in L2(∂Ω).

In the end of this subsection we establish the link to [36] and briefly discuss two 
more special cases of bounded Lipschitz domains: so-called quasi-convex domains in 
Theorem 4.9 and C1,r-domains with r ∈ (1

2 , 1] in Theorem 4.10.
For the definition of quasi-convex domains we refer to [36, Definition 8.9]. We mention 

that all convex domains, all almost-convex domains, all domains that satisfy a local 
exterior ball condition, as well as all C1,r-domains with r ∈ (1

2 , 1] are quasi-convex, 
for more details on almost-convex domains see [58]. The key feature of a quasi-convex 
domain is that the Dirichlet- and Neumann Laplacian have H2-regularity,

domΔD ⊂ H2(Ω), domΔN ⊂ H2(Ω). (4.10)
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For the next theorem we recall the definition of the tangential gradient operator

∇tan : H1(∂Ω) → L2(∂Ω)n, ∇tanf :=
(

n∑
j=1

nj∂τj,kf

)�

k=1,...,n

from [36, (6.1)]. Here ∂τj,k := nj∂k−nk∂j , j, k ∈ {1, . . . , n}, are the first-order tangential 
differential operators acting continuously from H1(∂Ω) to L2(∂Ω).

Theorem 4.9. Let Ω be a quasi-convex domain. Then the following statements hold.

(i) The spaces G0 and G1 in Theorem 4.1 are given by

G0 =
{
ϕ ∈ H1(∂Ω) : ∇tanϕ ∈ H1/2(∂Ω)n

}
,

G1 =
{
ψ ∈ L2(∂Ω) : ψ n ∈ H1/2(∂Ω)n

}
,

and for the norms ‖ · ‖G0 and ‖ · ‖G1 induced by the inner products in (4.5) the 
following equivalences hold:

‖ϕ‖G0 ∼ ‖ϕ‖L2(∂Ω) + ‖∇tanϕ‖H1/2(∂Ω)n , ϕ ∈ G0,

‖ψ‖G1 ∼ ‖ψ n‖H1/2(∂Ω)n , ψ ∈ G1.

(ii) The Dirichlet trace operator τD and Neumann trace operator τN admit continuous, 
surjective extensions to

τ̃D : H0
Δ(Ω) →

({
ψ ∈ L2(∂Ω) : ψ n ∈ H1/2(∂Ω)n

})′
,

τ̃N : H0
Δ(Ω) →

({
ϕ ∈ H1(∂Ω) : ∇tanϕ ∈ H1/2(∂Ω)n

})′
.

Proof. Let Ω be a bounded Lipschitz domain. It follows from the considerations in [55, 
Section 7] (see also [36, Theorem 6.1]) that the trace operator f 
→ (τDf, τNf)�, f ∈
C∞(Ω), admits a continuous extension to a mapping from H2(Ω) onto the space of all 
(ϕ, ψ)� ∈ H1(∂Ω) ×L2(∂Ω) such that ∇tanϕ +ψ n ∈ H1/2(∂Ω)n; here H1(∂Ω) ×L2(∂Ω)
is equipped with the norm

‖ϕ‖H1(∂Ω) + ‖ψ‖L2(∂Ω) + ‖∇tanϕ + ψn‖H1/2(∂Ω)n .

The kernel of this extension of (τD, τN )� is H2
0 (Ω). This implies that the Dirichlet trace 

operator τD admits a continuous extension to a surjective mapping from{
f ∈ H2(Ω) : τNf = 0

}
onto

{
ϕ ∈ H1(∂Ω) : ∇tanϕ ∈ H1/2(∂Ω)n

}
and the Neumann trace operator τN admits a continuous extension to a surjective map-
ping from
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{
f ∈ H2(Ω) : τDf = 0

}
onto

{
ψ ∈ L2(∂Ω) : ψ n ∈ H1/2(∂Ω)n

}
;

cf. [36, Lemma 6.3 and Lemma 6.9]. Now let Ω be a quasi-convex domain. Then ac-
cording to [36, Lemma 8.11] the regularity properties (4.10) hold, and since G0, G1 are 
Hilbert spaces, which are dense in L2(∂Ω) the assertions follow from Proposition 2.10
and Corollary 2.11. �

We note that Theorem 4.9 is essentially the same as [36, Theorems 6.4 and 6.10], 
and also implies [36, Corollaries 10.3 and 10.7]. Theorem 4.9 together with Corollary 4.4
yields results of similar form as in [36, Sections 14 and 15]; the Krĕın type resolvent 
formulas in [36, Section 16] can also be viewed as consequences of Corollary 4.5.

In the next theorem we treat the case of C1,r-domains with r ∈ (1
2 , 1]. In a similar 

manner as above this theorem combined with the earlier abstract results leads to various 
results on self-adjoint realizations or Krĕın type resolvent formulas in the flavor of [36].

Theorem 4.10. Let Ω be a C1,r-domain with r ∈ (1
2 , 1]. Then the following statements 

hold.

(i) The spaces G0 and G1 in Theorem 4.1 are given by

G0 = H3/2(∂Ω) and G1 = H1/2(∂Ω)

and the norms induced by the inner products in (4.5) are equivalent to the usual 
norms in H3/2(∂Ω) and H1/2(∂Ω), respectively.

(ii) The Dirichlet trace operator τD and Neumann trace operator τN admit continuous, 
surjective extensions to

τD : H0
Δ(Ω) → H−1/2(∂Ω) and τN : H0

Δ(Ω) → H−3/2(∂Ω).

Moreover, the following regularity result holds: For 0 ≤ s ≤ 3
2

domΘ ⊂ Hs(∂Ω) implies domΔΘ ⊂ Hs
Δ(Ω). (4.11)

Proof. Note that (4.10) holds for the Dirichlet and Neumann Laplacian and that the 
trace operator f 
→ (τD, τN )�, f ∈ C∞(Ω), admits a continuous extension to a mapping 
from H2(Ω) onto H3/2(∂Ω) × H1/2(∂Ω), see, e.g. [54, Theorem 2]. Hence statements 
(i) and (ii) follow from Proposition 2.10 and Corollary 2.11. It remains to verify the 
regularity result (4.11). Let Δs := Δmax � Hs

Δ(Ω) with 0 ≤ s ≤ 3
2 , so that T in (4.2)

is contained in Δs ⊂ A∗ = Δmax. Since ran(τ̃D � domΔs) = Hs−1/2(∂Ω) and ι− is an 
isometry from Hs−1/2(∂Ω) onto Hs(∂Ω) the assertion (4.11) follows from the abstract 
regularity result (4.6) in Corollary 4.4. �
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4.2. Elliptic differential operators of order 2m on bounded smooth domains

In this subsection we briefly illustrate some of the abstract results from Section 2 and 
Section 3 for elliptic differential operators of order 2m on a bounded smooth domain. 
The description of the selfadjoint realizations in this case can already be found in Grubb 
[39], other extension properties obtained below can be found in the monograph of Lions 
and Magenes [52]. We also refer the reader to the classical contributions [8,9,16,32,39,
52,68] for more details on the notation and references, and to, e.g. [17,45,53] for some 
recent connected publications.

Let Ω ⊂ R
n, n ≥ 2, be a bounded domain with C∞-boundary ∂Ω. Let A and T

be the realizations of the 2m-th order, properly elliptic, formally self-adjoint differential 
expression

L :=
∑

|α|,|β|≤m

(−1)|α|∂αaαβ∂
β , aαβ ∈ C∞(Ω),

on H2m
0 (Ω) and H2m(Ω), respectively; cf. [52, Chapter 2.1] for more details. As in 

Section 4.1 we define the Hilbert spaces

Hs
L (Ω) :=

{
f ∈ Hs(Ω) : L f ∈ L2(Ω)

}
, s ≥ 0, (4.12)

with norms induced by the inner products given by

(f, g)Hs
L (Ω) := (f, g)Hs(Ω) + (L f,L g)L2(Ω), f, g ∈ Hs

L (Ω). (4.13)

We note that Hs
L (Ω) = Hs(Ω) with equivalent norms if s ≥ 2m and that C∞(Ω) is 

dense in Hs
L (Ω) for s ≥ 0. The minimal and the maximal realization of the differential 

expression L are given by

Lmin := A = L � H2m
0 (Ω) and Lmax := A∗ = L � H0

L (Ω),

respectively. We mention that A is a closed, densely defined, symmetric operator in 
L2(Ω) with equal infinite deficiency indices.

In the next theorem a quasi-boundary triple for the elliptic differential operator T
is defined. Here we make use of normal systems D = {Dj}m−1

j=0 and N = {Nj}m−1
j=0 of 

boundary differential operators,

Djf :=
∑

|β|≤mj

bjβ ∂
βf �∂Ω , f ∈ H2m(Ω), mj ≤ 2m− 1, (4.14)

Njf :=
∑

|β|≤μj

cjβ ∂
βf �∂Ω , f ∈ H2m(Ω), μj ≤ 2m− 1, (4.15)

with C∞ coefficients bjβ , cjβ on ∂Ω and which cover L on ∂Ω; cf. [52, Chapter 2.1].
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Theorem 4.11. Let D be a normal system of boundary differential operators as in (4.14). 
Then there exists a normal system of boundary differential operators N of the form (4.15)
of order μj = 2m −mj − 1, such that {L2(∂Ω)m, Γ0, Γ1},

Γ0, Γ1 : H2m(Ω) → L2(∂Ω)m, Γ0f := Df, Γ1f := Nf,

is a quasi-boundary triple for T ⊂ A∗. The minimal realization A = Lmin coincides with 
T � kerΓ and the following statements hold.

(i) The Dirichlet realization LD and Neumann realization LN correspond to kerΓ0
and kerΓ1,

LD := T � kerΓ0 = Lmax �
{
f ∈ H2m(Ω) : Df = 0

}
,

LN := T � kerΓ1 = Lmax �
{
f ∈ H2m(Ω) : Nf = 0

}
,

respectively, and LD is self-adjoint in L2(Ω).
(ii) The spaces

G0 := ran(Γ0 � kerΓ1) =
m−1∏
j=0

H2m−mj−1/2(∂Ω),

G1 := ran(Γ1 � kerΓ0) =
m−1∏
j=0

Hmj+1/2(∂Ω), (4.16)

are dense in L2(∂Ω)m.
(iii) The values γ(λ) : L2(∂Ω)m ⊃

∏m−1
j=0 H2m−mj−1/2(∂Ω) → L2(Ω) of the γ-field are 

given by

γ(λ)ϕ = f, ϕ ∈
m−1∏
j=0

H2m−mj−1/2(∂Ω), λ ∈ ρ(LD),

where f ∈ L2(Ω) is the unique solution of the boundary value problem

(L − λ)f = 0, Df = ϕ. (4.17)

(iv) The values M(λ) : L2(∂Ω)m ⊃
∏m−1

j=0 H2m−mj−1/2(∂Ω) → L2(∂Ω)m of the Weyl 
function are given by

M(λ)ϕ = Nf, ϕ ∈
m−1∏
j=0

H2m−mj−1/2(∂Ω), λ ∈ ρ(LD),

where f = γ(λ)ϕ is the unique solution of (4.17).
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Proof. First we remark that C∞(Ω), and hence H2m(Ω), is dense in H0
L (Ω). This 

implies T = A∗. According to [52, Chapter 2.1] for a given normal system D of boundary 
differential operators as in (4.14) there exists a system a normal system N of boundary 
differential operators of the form (4.15) of order μj = 2m −mj − 1 such that {D, N} is 
a Dirichlet system of order 2 m, which acts as a mapping from H2m(Ω) onto

m−1∏
j=0

H2m−mj−1/2(∂Ω) ×
m−1∏
j=0

Hmj+1/2(∂Ω) ↪→ L2(∂Ω)2m. (4.18)

The kernel of this map is H2m
0 (Ω) and Green’s formula

(L f, g)L2(Ω) − (f,L g)L2(Ω) = (Nf,Dg)L2(∂Ω)m − (Df,Ng)L2(∂Ω)m

holds for all f, g ∈ H2m(Ω); cf. [52, Theorem 2.2.1]. From (4.18) we conclude that (4.16)
holds and the spaces G0 and G1 are dense in L2(∂Ω)m. This also implies that ranΓ is 
dense in L2(∂Ω)m×L2(∂Ω)m. Moreover A0 := T � kerΓ0 = LD is self-adjoint in L2(Ω)
by [52, Theorem 2.8.4]. Hence {L2(∂Ω)m, Γ0, Γ1} is a quasi-boundary triple for T ⊂ A∗

with T � kerΓ = Lmin = A. The remaining statements follow from the definition of the 
γ-field and the Weyl function. �

The next two corollaries show that the abstract theory from Section 2.3 implies some 
fundamental extension results due to Lions and Magenes. The proofs immediately fol-
low from Proposition 2.10, Corollary 2.11 and standard interpolation theory of Sobolev 
spaces, see also Lemma 2.15 and Lemma 2.16.

Corollary 4.12. Let {L2(∂Ω)m, Γ0, Γ1} be the quasi-boundary triple for T ⊂ A∗ from
Theorem 4.11 with Weyl function M . Then the following statements hold.

(i) The mapping Γ0 = D admits a continuous extension to a surjective mapping

D̃ : H0
L (Ω) →

m−1∏
j=0

H−mj−1/2(∂Ω) (4.19)

such that ker D̃ = kerD = dom LD.
(ii) The norm

∥∥Λ−1/2f
∥∥
L2(∂Ω)m , Λ := ImM(i), f ∈

m−1∏
j=0

Hmj+1/2(∂Ω),

defines an equivalent norm on 
∏m−1

j=0 Hmj+1/2(∂Ω).

In the next corollary we assume, in addition, that LN = T � kerΓ1 is self-adjoint.
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Corollary 4.13. Let {L2(∂Ω)m, Γ0, Γ1} be the quasi-boundary triple for T ⊂ A∗ from
Theorem 4.11 with γ-field γ and Weyl function M . Assume that the realization LN of 
L is self-adjoint in L2(Ω). Then the following statements hold.

(i) The mapping Γ1 = N admits a continuous extension to a surjective mapping

Ñ : H0
L (Ω) →

m−1∏
j=0

H−2m+mj+1/2(∂Ω) (4.20)

such that ker Ñ = kerN = dom LN .
(ii) The norm

∥∥Σ−1/2f
∥∥
L2(∂Ω)m , Σ := Im

(
−M(i)−1

)
, f ∈

m−1∏
j=0

H2m−mj−1/2(∂Ω),

defines an equivalent norm on 
∏m−1

j=0 H2m−mj−1/2(∂Ω).
(iii) The values of the γ-field γ and the Weyl function M admit continuous extensions

γ̃(λ) :
m−1∏
j=0

H−mj−1/2(∂Ω) → L2(Ω),

M̃(λ) :
m−1∏
j=0

H−mj−1/2(∂Ω) →
m−1∏
j=0

H−2m+mj+1/2(∂Ω),

for all λ ∈ ρ(LD).
(iv) The restrictions

D̃ � Hs
L (Ω) : Hs

L (Ω) →
m−1∏
j=0

Hs−mj−1/2(∂Ω),

Ñ � Hs
L (Ω) : Hs

L (Ω) →
m−1∏
j=0

Hs−2m+mj+1/2(∂Ω), (4.21)

are continuous and surjective for all s ∈ [0, 2 m].

Corollary 4.12 and Corollary 4.13 imply that the maximal possible domain for a quasi-
boundary triple with boundary mappings D̃ and Ñ is given by the space H2m−1/2

L (Ω), 
see also [9].

Proposition 4.14. Let s ∈ [0, 2m], Ts := Lmax � Hs
L (Ω), assume that LN is self-adjoint 

and let
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Γ s
0 : Hs

L (Ω) →
m−1∏
j=0

Hs−mj−1/2(∂Ω), Γ s
0 f := D̃f,

Γ s
1 : Hs

L (Ω) →
m−1∏
j=0

Hs−2m+mj+1/2(∂Ω), Γ s
1 f := Ñf.

Then the spaces

G0 = ran
(
Γ s

0 � kerΓ s
1
)

=
m−1∏
j=0

H2m−mj−1/2(∂Ω),

G1 = ran
(
Γ s

1 � kerΓ s
0
)

=
m−1∏
j=0

Hmj+1/2(∂Ω)

are dense in L2(∂Ω) and do not depend on s. Moreover, if s ∈ [2m − 1
2 , 2m] then 

ranΓ s
0 ⊂ L2(∂Ω)m, ranΓ s

1 ⊂ L2(∂Ω)m, and {L2(∂Ω)m, Γ s
0 , Γ

s
1 } is a quasi-boundary

triple for Ts ⊂ A∗ = Lmax.

By applying Theorem 2.12 to the quasi-boundary triple {L2(∂Ω)m, Γ0, Γ1} from The-
orem 4.11 one obtains an ordinary boundary triple which appears implicitly already in 
[39], see also [17,41] and [53, Propositions 3.5, 5.1]. The details of the formulation are left 
to the reader. As an example of the consequences of the abstract results from Section 2
and Section 3 we state only a version of Krĕın’s formula for the case of 2m-th order 
elliptic differential operators. We leave it to the reader to formulate the other corollaries 
from the general results, e.g. the description of the closed (symmetric, self-adjoint, (max-
imal) dissipative, (maximal) accumulative, respectively) extensions Lϑ ⊂ Lmax of Lmin

in L2(Ω), regularity results or sufficient criteria for self-adjointness, see also Section 4.3
for the second order case.

Corollary 4.15. Let {L2(∂Ω)m, Γ0, Γ1} be the quasi-boundary triple from Theorem 4.11, 
and let γ̃(λ) and M̃(λ), λ ∈ ρ(LD), be the extended γ-field and Weyl function, respec-
tively. Assume that LN is self-adjoint, that

ϑ ⊂
m−1∏
j=0

H−mj−1/2(∂Ω) ×
m−1∏
j=0

H−2m+mj+1/2(∂Ω)

is a linear relation in ran(D̃, Ñ) and that the corresponding extension

Lϑ := Lmax �
{
f ∈ H0

L (Ω) : ϑD̃f − Ñf = 0
}

is closed in L2(Ω). Then for all λ ∈ ρ(LD) the following assertions (i)–(iv) hold:
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(i) λ ∈ σp(Lϑ) if and only if 0 ∈ σp(ι+(ϑ − M̃(λ))ι−1
− ), in this case

ker(Lϑ − λ) = γ̃(λ) ker
(
ϑ− M̃(λ)

)
,

(ii) λ ∈ σc(Lϑ) if and only if 0 ∈ σc(ι+(ϑ − M̃(λ))ι−1
− ),

(iii) λ ∈ σr(Lϑ) if and only if 0 ∈ σr(ι+(ϑ − M̃(λ))ι−1
− ),

(iv) λ ∈ ρ(Lϑ) if and only if 0 ∈ ρ(ι+(ϑ − M̃(λ))ι−1
− ) and

(Lϑ − λ)−1 = (LD − λ)−1 + γ̃(λ)
(
ϑ− M̃(λ)

)−1
γ̃(λ̄)′

holds for all λ ∈ ρ(Lϑ) ∩ ρ(LD).

4.3. Second order elliptic differential operators on smooth domains with compact 
boundary

In this section we pay particular attention to a special second order case which appears 
in the literature in different contexts, see, e.g., [10,12–14,42–44].

Let Ω ⊂ R
n, n ≥ 2, be a bounded or unbounded domain with a compact C∞-smooth 

boundary ∂Ω and consider the second order differential expression on Ω given by

L = −
n∑

j, k=1

∂jajk∂k + a

with coefficients ajk ∈ C∞(Ω) such that ajk(x) = akj(x) for all x ∈ Ω and j, k ∈
{1, . . . , n}, and a ∈ L∞(Ω) real. In the case that Ω is unbounded we also assume that 
the first partial derivatives of the functions ajk are bounded in Ω. Furthermore, the 
ellipticity condition 

∑n
j, k=1 ajk(x)ξjξk ≥ c 

∑n
k=1 ξ

2
k is assumed to hold for some c > 0

and all ξ ∈ R
n and x ∈ Ω. As in Section 4.2 we define the Hilbert spaces Hs

L (Ω) and 
inner products via (4.12) and (4.13), respectively. The minimal and maximal realization 
of the differential expression L are

A = Lmin = L � H2
0 (Ω) and A∗ = Lmax = L � H0

L (Ω),

and we set T := L � H2(Ω). The minimal operator A is a closed, densely defined, 
symmetric operator in L2(Ω) with equal infinite deficiency indices. The Dirichlet and 
Neumann trace operator are defined by

τD = f �∂Ω and τNf =
n∑

j,k=1

ajknj∂kf �∂Ω , f ∈ C∞(Ω),

and extended by continuity to a surjective mapping (τD, τN )� : H2(Ω) → H3/2(∂Ω) ×
H1/2(∂Ω); cf. [52]. Here n = (n1, n2, . . . , nn)� denotes the unit vector field pointing out 
of Ω.
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The next theorem is a variant of Theorem 4.1 and Theorem 4.11 with D = τD and 
N = −τN ; cf. [12,13]. We do not repeat the proof here and refer only to [16, Theorem 5]
and [9, Theorem 7.1] for the self-adjointness of LD and LN , respectively. As in the 
previous theorems the spaces G0 and G1 from Definition 2.7 turn out to be dense in 
L2(∂Ω), the γ-field coincides with a family of Poisson operators and the values of the 
Weyl function are (up to a minus sign) Dirichlet-to-Neumann maps.

Theorem 4.16. Let T = L � H2(Ω) and let

Γ0, Γ1 : H2(Ω) → L2(∂Ω), Γ0f := τDf, Γ1f := −τNf.

Then {L2(∂Ω), Γ0, Γ1} is a quasi-boundary triple for T ⊂ A∗ = Lmax such that the 
minimal realization A = Lmin coincides with T � kerΓ and the following statements 
hold.

(i) The Dirichlet realization LD and Neumann realization LN correspond to kerΓ0
and kerΓ1,

LD := T � kerΓ0 = Lmax �
{
f ∈ H2(Ω) : τDf = 0

}
,

LN := T � kerΓ1 = Lmax �
{
f ∈ H2(Ω) : τNf = 0

}
,

respectively, and both operators are self-adjoint in L2(Ω).
(ii) The spaces

G0 := ran(Γ0 � kerΓ1) = H3/2(∂Ω),

G1 := ran(Γ1 � kerΓ0) = H1/2(∂Ω),

are dense in L2(∂Ω).
(iii) The values γ(λ) : L2(∂Ω) ⊃ H3/2(∂Ω) → L2(Ω) of the γ-field are given by

γ(λ)ϕ = f, ϕ ∈ H3/2(∂Ω), λ ∈ ρ(LD),

where f ∈ L2(Ω) is the unique solution of the boundary value problem

(L − λ)f = 0, τDf = ϕ. (4.22)

(iv) The values M(λ) : L2(∂Ω) ⊃ H3/2(∂Ω) → L2(∂Ω) of the Weyl function are given 
by

M(λ)ϕ = −τNf, ϕ ∈ H3/2(∂Ω), λ ∈ ρ(LD),

where f = γ(λ)ϕ is the unique solution of (4.22).
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Let {L2(∂Ω), Γ0, Γ1} be the quasi-boundary triple from Theorem 4.16. In the same 
way as in (4.19) and (4.20) we obtain that (τD, τN )� admits a continuous extension to 
a mapping

(τ̃D, τ̃N )� : H0
L (Ω) → H−1/2(∂Ω) ×H−3/2(∂Ω),

where for all s ∈ [0, 2] the restrictions

τ̃D � Hs
L (Ω) : Hs

L (Ω) → Hs−1/2(∂Ω),

τ̃N � Hs
L (Ω) : Hs

L (Ω) → Hs−3/2(∂Ω),

are continuous and surjective; cf. (4.21).
The quasi-boundary triples in the next proposition were first introduced in [11] on 

the domains H2(Ω) and H3/2
L (Ω). We note that the latter space coincides with the first 

order Beals space B1
L (Ω), see [9].

Proposition 4.17. Let s ∈ [0, 2], Ts := Lmax � Hs
L (Ω), and let

Γ s
0 : Hs

L (Ω) → Hs−1/2(∂Ω), Γ s
0 f := τ̃Df,

Γ s
1 : Hs

L (Ω) → Hs−3/2(∂Ω), Γ s
1 f := −τ̃Nf.

Then the spaces

G0 = ran
(
Γ s

0 � kerΓ s
1
)

= H3/2(∂Ω),

G1 = ran
(
Γ s

1 � kerΓ s
0
)

= H1/2(∂Ω),

are dense in L2(∂Ω) and do not depend on s. Moreover, if s ∈ [ 32 , 2] then ranΓ s
0 ⊂

L2(∂Ω), ranΓ s
1 ⊂ L2(∂Ω), and {L2(∂Ω), Γ s

0 , Γ
s
1 } is a quasi-boundary triple for Ts ⊂

A∗ = Lmax.

Next we apply Theorem 2.12 to the quasi-boundary triple from Proposition 4.17. This 
boundary triple appears already in [39] in an implicit form, see also [10,12,17,41,53,62]. 
Let ι± : H±1/2(∂Ω) → L2(∂Ω) be a pair of isometric isomorphisms such that

(
ι−x

′, ι+x
)
L2(∂Ω) =

〈
x′, x

〉
H−1/2(∂Ω)×H1/2(∂Ω)

holds for all x ∈ H1/2(∂Ω) and x′ ∈ H−1/2(∂Ω); cf. (2.15).

Corollary 4.18. Let η ∈ ρ(LD) ∩ R and define Υ0, Υ1 : H0
L (Ω) → L2(∂Ω) by

Υ0f := ι−τ̃Df, Υ1f := −ι+τNfD, f = fD + fη ∈ dom LD �Nη

(
A∗).
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Then {L2(∂Ω), Υ0, Υ1} is an ordinary boundary triple for A∗ = Lmax with A∗ � kerΥ0 =
LD and

A∗ � kerΥ1 = Lmin+̇
{
(fη, ηfη)� : L fη = ηfη, fη ∈ H0

L (Ω)
}
.

As in Section 4.1 we apply Theorem 3.7 to the quasi-boundary triple from Theo-
rem 4.16. The regularity statement can be proven in the same way as in Theorem 4.10.

Corollary 4.19. Let η ∈ R ∩ ρ(LD) ∩ ρ(LN ) and M̃(η) : H−1/2(∂Ω) → H−3/2(∂Ω) be 
the extended Dirichlet-to-Neumann map. Then the mapping

Θ 
→ Lϑ = Lmax �
{
f ∈ H0

L (Ω) : ϑτ̃Df + τ̃Nf = 0
}
, ϑ = ι−1

+ Θι− + M̃(η),

establishes a bijective correspondence between all closed (symmetric, self-adjoint, (max-
imal) dissipative, (maximal) accumulative) linear relations Θ in L2(∂Ω) and all closed 
(symmetric, self-adjoint, (maximal) dissipative, (maximal) accumulative, respectively) 
extensions Lϑ ⊂ Lmax of Lmin in L2(Ω). Moreover, the following regularity result holds: 
For s ∈ [0, 2]

domΘ ⊂ Hs(∂Ω) implies dom Lϑ ⊂ Hs
L (Ω).

The next corollary is a consequence of Proposition 3.10 and Proposition 3.11. In item 
(i) we obtain an additional regularity statement.

Corollary 4.20. Let η ∈ R ∩ ρ(LD) ∩ ρ(LN ) and M(η) : H3/2(∂Ω) → H1/2(∂Ω) be the 
Dirichlet-to-Neumann map from Theorem 4.16(iv). Let ϑ be a symmetric linear operator 
in L2(∂Ω) such that

H3/2(∂Ω) ⊂ domϑ and ran
(
ϑ � H3/2(∂Ω)

)
⊂ H1/2(∂Ω), (4.23)

and assume that there exist c1 > 0 and c2 ∈ [0, 1] such that

‖ϑx‖H1/2(∂Ω) ≤ c1‖x‖H−1/2(∂Ω) + c2
∥∥M(η)x

∥∥
H1/2(∂Ω), x ∈ H3/2(∂Ω).

Then the following statements hold.

(i) If c2 ∈ [0, 1) then

Lϑ = Lmax �
{
f ∈ H0

L (Ω) : ϑτ̃Df + τ̃Nf = 0
}

(4.24)

is self-adjoint in L2(Ω) with regularity dom Lϑ ⊂ H2(Ω).
(ii) If c2 = 1 then Lϑ in (4.24) is essentially self-adjoint in L2(Ω) with regularity 

dom Lϑ ⊂ H
3/2
L (Ω).
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Proof. (i) The restriction θ := ϑ � H3/2(∂Ω) : H3/2(∂Ω) → H1/2(∂Ω) satisfies the 
assumptions in Proposition 3.10(iii) and hence we conclude that

Lθ = Lmax �
{
f ∈ H2(Ω) : θτDf + τNf = 0

}
is self-adjoint in L2(Ω). As in Lemma 4.6 one verifies that the operator Lϑ is a symmetric 
extension of the self-adjoint operator Lθ and hence both coincide.

(ii) follows in the same way as (i) from Proposition 3.11 and the reasoning in 
Lemma 4.6. �

In the next example we consider a one parameter family Lϑα
of extensions of Lmin

which correspond to ϑα = αM(η). It turns out that for α �= 1 the extensions are 
self-adjoint and for α = 1 essentially self-adjoint.

Example 4.21. Let M(η) : H3/2(∂Ω) → H1/2(∂Ω) be as in Corollary 4.20 and consider 
the symmetric operators ϑα := αM(η), α ∈ R, in L2(∂Ω) with domϑα = H3/2(∂Ω)
and α ∈ R. Then according to Corollary 4.20 the extension

Lϑα
= Lmax �

{
f ∈ H0

L (Ω) : ϑατ̃Df + τ̃Nf = 0
}

= Lmax �
{
f ∈ H2(Ω) : αM(η)τDf + τNf = 0

}
in (4.24) is self-adjoint if |α| < 1 and essentially self-adjoint if |α| = 1. Here we have used 
τ̃Df = τDf and τ̃Nf = τNf for f ∈ H2(Ω). It follows in the same way as in Example 3.9
that

Lϑ1 = Lmax �
{
f ∈ H2(Ω) : M(η)τDf + τNf = 0

}
= Lmin+̇

{
(fη, ηfη)� : L fη = ηfη, fη ∈ H2(Ω)

}
.

We also remark that

L ϑ1 = Lmin+̇
{
(fη, ηfη)� : L fη = ηfη, fη ∈ H0

L (Ω)
}

= Lmin+̇N̂η

(
A∗).

For α ≤ −1 and α > 1 we make use of Corollary 3.5. For this we set

Θα := ι+
(
ϑα −M(η)

)
ι−1
− = (α− 1)ι+M(η)ι−1

− , domΘα = H2(∂Ω),

and note that the operators Θα are self-adjoint in L2(∂Ω). Hence Corollary 3.5 yields 
that for α ≤ −1 and α > 1 the extensions Lϑα

are self-adjoint in L2(Ω).

The following example is related to the case α = 1 in the above example. It contains 
an observation which can also be interpreted from a slightly more abstract point of 
view. Namely, Example 4.22 shows that there exists a quasi-boundary triple {G, Γ0, Γ1}
for T ⊂ A∗ and a self-adjoint relation ϑ in G with ϑ ⊂ ranΓ such that the extension 
Aϑ := T � {f ∈ domT : Γf ∈ ϑ} is not self-adjoint in H; cf. Section 3.1.
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Example 4.22. Let {L2(∂Ω), Γ s
0 , Γ

s
1 } be the quasi-boundary triple from Proposition 4.17

for s = 3
2 defined on the domain of

T3/2 = Lmax � H3/2
L (Ω) ⊂ A∗.

The values of the corresponding Weyl function M3/2 are mappings from H1(∂Ω) to 
L2(∂Ω). For η ∈ R ∩ ρ(LD) ∩ ρ(LN ) set ϑ := M3/2(η) with domϑ = H1(∂Ω). Then ϑ
is a bijective symmetric operator in L2(∂Ω) and hence self-adjoint. As in Example 3.9
one verifies that the corresponding extension Lϑ is given by

Lϑ = Lmax �
{
f ∈ H

3/2
L (Ω) : ϑτ̃Df + τ̃Nf = 0

}
= Lmin � N̂η(T3/2)

and that L ϑ = Lmin � N̂η(A∗) = A∗ � kerΥ0 holds; here Υ0 is the boundary mapping 
from Corollary 4.18. Therefore Lϑ is a proper restriction of the self-adjoint extension 
L ϑ and it follows, in particular, that Lϑ is essentially self-adjoint, but not self-adjoint 
in L2(Ω).

Proposition 3.10 together with well known compact embedding properties of Sobolev 
spaces yield some simple sufficient conditions for self-adjoint realizations of L .

Proposition 4.23. Let ϑ be a symmetric operator in L2(Ω) such that (4.23) holds, and 
assume that ϑ is continuous as a mapping from H3/2−δ1(∂Ω) to H1/2+δ2(∂Ω), where 
δ1 ∈ [0, 32 ], δ2 ≥ 0 and δ1 + δ2 > 0. Then

Lϑ = Lmax �
{
f ∈ H0

L (Ω) : ϑτ̃Df + τ̃Nf = 0
}

is self-adjoint in L2(Ω) with regularity dom Lϑ ⊂ H2(Ω).

Proof. Observe that at least one of the embeddings H3/2(∂Ω) ↪→ H3/2−δ1(∂Ω) or 
H1/2+δ2(∂Ω) ↪→ H1/2(∂Ω) is compact; cf. [76, Theorem 7.10]. Hence we conclude that 
θ := ϑ � H3/2(∂Ω) : H3/2(∂Ω) → H1/2(∂Ω) is a compact operator. Therefore Proposi-
tion 3.10(i) yields that Lθ is self-adjoint in L2(Ω) with regularity dom Lθ ⊂ H2(Ω); cf. 
the proof of Corollary 4.20. It follows as in Lemma 4.6 that Lϑ is a symmetric extension 
of the self-adjoint operator Lθ and hence both operators Lϑ and Lθ coincide. �

Finally we illustrate Proposition 4.23 with a simple example.

Example 4.24. Let 0 < ε ≤ 3
2 and assume that

α ∈ M
(
H3/2(∂Ω), H1/2+ε(∂Ω)

)
or α ∈ M

(
H3/2−ε(∂Ω), H1/2(∂Ω)

)
,
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where M(·, ·) denotes the space of all pointwise multipliers; cf. [56,71]. Then it follows 
from Proposition 4.23 that

Lα = Lmax �
{
f ∈ H0

L (Ω) : α · τ̃Df + τ̃Nf = 0
}

is self-adjoint in L2(Ω) with regularity dom Lα ⊂ H2(Ω). In particular, since Cr(∂Ω) ⊂
M(H1/2(∂Ω), H1/2(∂Ω)) for r ∈ (1

2 , 1) the assertion holds for all α ∈ Cr(∂Ω), r ∈
(1
2 , 1).
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