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§O. INTRODUCTION 

IN [lo], Hopkins states a remarkable theorem. 

THEOREM. (Hopkins). Let R be a commutative ring. Let D*(R) be the derived category of 

bounded complexes offinitely generated projective R-modules. Then there are maps of sets: 

( 

Triangulated fill subcategories of D*(R) -$ Subsets of Spec(R) 

closed under direct summands > ( 0 closed under specialization > 

where f(L) = {poSpec(R)lposupp X for some XE L} 

and g(P) = 
1 

the smallest triangulated category closed under 

specialization, containing R/p for all PEP 1 

The maps f and g are inverse isomorphisms. 

Following the conventions of algebraists, we will call triangulated subcategories of 
D*(R) epaisse if they are full and closed under direct summands. 

Hopkins’ theorem is a beautiful result. Among other things, it establishes that out of 
something seemingly nonsensical, like the derived category of R, one can recover a very 
sensible object, like Spec(R). However, there is a gap in the proof. Without some added 
hypotheses (e.g. R Noetherian) the theorem is false. A counterexample may be found in 
Section 4. 

I should immediately add that Hopkins obtained his result by studying analogous 
properties in the topological setting, where [6] obtained some really remarkable and 
powerful results. The theorem quoted above occurs in a paper in a conference proceedings, 
where he explained the topological result and remarked in passing that the algebraic 
analogue is also correct. It should be stressed that Hopkins’ result is very intriguing, and 
possibly very important. He discovered a parallel between stable homotopy theory and 
algebraic geometry, and this parallel should be explored further. 

This is perhaps the appropriate point to briefly outline the topological parallel of what 
we do here. The starting point for us (this is historically quite wrong) is that CmSo can be 
given the structure of an Em ring spectrum. Therefore, in some sense it may be viewed as 
a commutative ring, and one may wish to study the algebraic geometry of this curious 

tThis research was partly supported by the Humboldt Stiftung. 
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object. Following the sloppy notation of the topologists, we will freely confuse the spectrum 
Z” So with its associated space QS” = 12” Z” So. Following Waldhausen, such bizarre rings 
will be referred to as brave new rings. 

Although QS” itself is very different from the rings we are used to, its derived category is 
far more ordinary. Any finite CW complex (or rather its suspension spectrum) may be 
viewed as a bounded complex of free E”S” modules. Thus D*(QS’) can be identified with 
the stable homotopy category: the category of finite CW complexes and stable maps 
( = maps defined on sufficiently high suspensions). And whatever may be wrong with QS’, 
II*(QS’) is an ordinary triangulated category. What Devinatz, Hopkins and Smith do in [6] 
is, among other things, classify all the epaisse subcategories of D*(QS’), following a conjec- 
ture of Ravenel. Thus, if we believe Hopkins’ theorem above, this should allow us to define 
Spec(QS’). 

In this paper, we begin by proving that, at least when R is Noetherian, Hopkins’ result is 
true. We tried to keep the proof as similar to Hopkins as possible, so that the gaps in the 
argument could be pointed out. That is Section 1. 

In Sections 2 and 3 .;je study localizing subcategories of the unbounded derived category 
D(R). We define 

Definition 0.1 (Bousfield). A subcategory L in D(R) is called localizing if: 

(0.1.1) It is full 
(0.1.2) It is triangulated 
(0.1.3) It is closed with respect to the formation of arbitrary direct sums. 

Definifion 0.2 (Ravcncl). A subcategory L c D(R) is called smashing if 

(0.2.1) It is localizing 
(0.2.2) Localization at L commutes with direct sums. 

When R is Noetherian, it is not hard to show: 

THEOREM 2.8. There are maps 

where 

Localizing subcategories 

of D(R) 
Subsets o/Spec(R) 

> 

and 
J(L) = {p~Spec(R)l3X~L with X@k(p) # 0} 

g(P) = rhe localizing subcategory generated by k(p),for all PEP. 

These maps are inverse isomorphisms. 

We can also show: 

cl 

THEOREM 3.3. Under the correspondence of Theorem 2.8, the smashing subcategories 
correspond to sets of primes closed under localization (in Grothendieck’s terminology, to 
systems of supports). 

In particular, for D(R) we can prove the “smashing conjecture”: all smashing sub- 
categories of D(R) are generated by their intersection with D*(R). Theorem 1.5 (Hopkins’ 
theorem) follows easily from Theorem 2.8 and Theorem 3.3. Thus we have really given two 
proofs of Hopkins’ theorem in this article; one which closely parallels the nilpotence proof 
of Hopkins, and one which goes by way of infinite complexes. 
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Thus for a Noetherian ring, one has a complete and very satisfactory description of the 
spectral theory of its derived category. The whole point of this paper is that, although very 
nice, this is completely beside the point. 

The fact that Noetherian rings are so orderly makes them very different from the 
topological analogue. This theory started with an attempt to understand the “chromatic 
tower” of Ravenel, i.e. the spectrum of QS’. As can be shown by many pathological 
examples, the spectral theory of the category of spectra is anything but simple. It is quite 
different from Noetherian rings. The point of this article is that QS” should simply be 
considered as a fairly ordinary non-Noetherian ring. The pathological behaviour exhibited 
by QS” is closely analogous to what might happen for D(R) for non-Noetherian rings R. 
And it is really here that the gap in [IO] is very fortunate for the subject. As we discuss in 
Section 4, the results in [6] are in fact in perfect harmony with viewing QS” as a non- 
Noetherian discrete ring. But had Hopkins’ theorem been true without restriction, there 
would have been a real difference. In particular, Spec(QS’) as defined from D*(QS’) is 
probably the wrong space. 

Finally, this paper depends on results in Cl], where certain construction in D(R) are 
made formal. At the beginning of Section 2 we list most of the results from [I] which we will 
rely on. 

81. A PROOF OF HOPKINS’ THEOREM 

Hopkins’ proof of this theorem is mostly quite correct, but all the same it seems 
preferable to write up a complete new proof. The main reason is that some of Hopkins’ 
reduction steps become far easier in the Noetherian case. If one accepts that the theorem is 
in any case only true for Noetherian rings, there seems little point in going through general, 
complicated arguments. 

In this section R will always be a Noetherian, commutative ring, and D*(R) will stand for 
the derived category of bounded complexes of finitely generated projective R-modules (in 
the literature this is often referred to as D*(Proj R). When X is an object of D*(R), D(X) will 
stand for its “dual”; D(X) = RHom(X, R). For any two objects X, Yin D*(R), XL @ Y will 
simply be denoted X @ Y. 

THEOREM 1.1. (Smash Nilporence Theorem): Ler f:X 4 Y be a morphism in D*(R). 
Suppose that for every homomorphism g : R -+ k, where k is a field, f @ k = 0. Then J is 

smash-nilpotent: There exists n > 0, so rhat / @ n : X @ ’ + Ya’ ’ is the zero map. 

Prooj: f induces a map/‘: R + D(X) @ Y, and (f’)@” = 0 ifff a ” = 0. Therefore we may 
reduce ourselves to the case X = R. 

We define: 
Ann(f@‘“)= {xERIxf@“=O}. 

Ann(f an) is an ideal of R, and Ann(f ‘a”) c Ann(f on+‘). Because R is Noetherian, the 
ideals must stabilize. There exists n such that Ann(f on) = Ann(f a “) for all m 2 n. 

Replacing f by f *“, we may assume n = 1. We need to show Ann(f) = R. 

We will suppose Ann(f) # R, and prove a contradiction. Because Ann(f) # R, there is 
a minimal prime ideal p c R containing Ann( f ). Localizing the entire problem at p, we may 
assume: 

(1.1.1) R is a local ring, with maximal ideal p. 
(1.1.2) For every n > 0, Ann(f) = Ann(f”). 
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(1.1.3) For some m, pm c Ann(f) c p. 
(1.1.4) /@ R/p = 0. 

Here is where the first serious gap in [lo] occurs. [lo] reasons that f is a morphism 
f: R +X, and it defines a class, which we will also call f; in H’(X). We know that 

f@ R/p = 0. Therefore f = i xfg, where xl~p and gioHo(X). Thus ifp” c Ann(f), then 
1=1 

f -+I = (cx,g,)mfEpmf= 0. 
What is wrong with the argument is that it simply is not true that whenf@ R/p = 0, 

then f = Zxlg, as above. The identity f @ R/p = 0 should be read as an identity in 
H”(X 8 R/p), whereas f = ZXigi asserts that f is already zero in H’(X) @ R/p. In other 
words, we have natural maps 

H’(X) I: Ho(X) @I R/p : H”(X 8 R/p) 

and /I* a(f) = 0. However, this does not imply that a(f) = 0. More concretely, one could 
say this as follows: f QD R/p = 0 means that, up to boundaries,f= Zxlg, where xl~p and 
g, E X ‘, where X is the chain complex 

a d 
. . . +X-i,XO,X1, . . . 

i.e. xf are chains. Of course, f is a cycle: a(f) = 0. In general, we have no reason to expect 
that gf can be chosen to be cycles. 

Naturally, our proof of Hopkins’ Theorem will run somewhat differently. We will prove 
by induction the following assertions: 

F(n): Let R be a local, Noetherian, reduced ring of dimension dim(R) < n. Suppose 
f: R + X satisfies 1.1.1, 1.1.3 and 1.1.4 above. Then f is nilpotent. 

G(n): Let R be a local, Noetherian ring (not necessarily reduced) of dimension 
dim(R) I; n. Let f: R -+ X satisfy 1.1.1, 1.1.3 and 1.1.4 above. Then f is nilpotent. 

We will prove F(n) = G(n) * F(n + 1). Because F(0) is trivial, this shows that 1.1.2 is 
incompatible with 1.1.1, 1.1.3 and 1.1.4; hence our required contradiction. 

F(n) = G(n): Let f: R + X be as in G(n). Then by F(n) we know that f @ R/,adtR, is 
nilpotent. Thus for some m, f" @I R/,.dtR, = 0, and as above we may assume m = 1. By 
Hopkins’ argument f = Cxlgr where xlE rad(R) and g, EX”. But now the x,*s are 
nilpotent in R, not only in RIAnnfr and if (rad(R))” = 0, it follows that 
/@m = (Xx,g,)" = 0 9 even as an element in (XO)om. 

G(n) =P F(n + 1): Let R be a reduced ring of dimension n + 1 2 1. Let f: R 4 X be as 
above. Because R is reduced and pm c Ann( f ), where p is the maximal ideal, there must 
be a regular element in Ann(f); i.e. there is an element xoAnn(f) which is not a zero 
divisor in R. Choose such an x. 
Let f be represented by the map of chain complexes: 

t t 
o-x 1 

t t 
RL X0 

t t 
o-x- 1 

t t 
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Because xl = 0, it follows thatj(x) E X O must be a boundary; i.e. we can extend to a map 
of complexes: 

t t 
0 -x 1 

t T 
R A x0 

XT t 
R AIf-’ 

t t 
0 -x-2 

T T 

But the fact that the sequence 

O-rR% R+RIxR40 

is exact (the regularity of x E R) tells us that the complex + 0 -, R % R + 0 -+ is quasi- 
isomorphic to RfxR. What we have shown is exactly that f factorizes as 

R : RI%,, 5 X. 

Therefore / on+ ’ factorizes as 

and so (I@ RIxR)@” = 0 implies/@‘“+’ = 0. But RIxR is of dimension n, and by G(n) we 
therefore know that /@ RIrR is nilpotent 0 

LEMMA 1.2. Let X and Y be objects in Db(R), and suppose Supp(X) c Supp( Y), that is the 
support of the cohomology ofX is contained in the support of the cohomology of Y. Then X is 
in the epaisse subcategory generated by Y. 

Pro05 The proof is identical with Hopkins’. We included it only for the convenience of 
the reader. 

There is a natural morphism R -+ Y @ D(Y), and we complete it to a triangle 

R L Y@D(Y) 

h\ r( 

Ml 

When a: R -+ k is a homomorphism of R to the field k, then it is clear that if 
ker(a) E Supp( Y),j@ k : k + Y @I D(Y) @I k is a split monomorphism. Therefore h @ k = 0, 
at least for those a: R + k for which ker(a)o Supp( Y). We assumed that 
Supp(X) c Supp( Y), therefore X is quasi-isomorphic to a complex of RI, modules, where 
Supp(R/,) = Supp(X) c Supp( Y). Then h @I R/, satisfies the hypotheses of Theorem 1.1, 
and it follows that h@” @‘R RI, = 0. But then h*” @.R X = h@” @‘R R/, BRl,X = 0. 

h*’ 

For each k, we complete the morphism MT’- R to a triangle 

h” 

MFk- R 
I r( 

N h-’ 
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and the identity II@’ = h o(l @ he’-‘) gives an octahedron: 

and in particular we have for each k a triangle 

By induction on k, one easily proves that Nk -a is in the triangulated category generated by 
Y for every integer k 2 1. Now from the triangle 

hea@ X 

My”@ X-X 

\/ 
N/,m* @I X 

and from the fact that he” 8 X = 0, we deduce that X is a direct summand of Nh.. @I X, and 
is therefore in the epaisse subcategory generated by Y. 0 

LEMMA 1.3. L.et L c D*(R) be epaisse. Let 

P(L) = (p~SpecR13X~L with p~Supp(X)). 

Put X E D*(R) with Supp(X) c P(L). Then X E L. 

Proo/: Because R is Noetherian, X has only finitely many minimal prime ideals in its 
support. Therefore there are finitely many Y,E L so that u, Supp(Y,) contains all the 
minimal prime ideals in Supp(X), and because U, Supp( Yi) is closed, it contains Supp(X). 
In particular, Supp(X) c Supp( @I &) and then, by Lemma 1.2, it immediately follows that 
XEL. Cl 

LEMMA 1.4. Let p~Spec(R). Then there is in D*(R) an object X with Supp(X) = p. where 
p is the closure of p in Spec R. 

Proo/: Because R is Noetherian, p is finitely generated, say by generators al, . . . , a,. 

Then the Koszul complex 

X= @(R:R) 

is an object of D*(R) with Supp(X) = I. cl 
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THEOREM 1.5. There are maps: 

Epaisse subcategories 

of Db(R) 

Subsets of Spec(R) closed under 

localization > 

where 

f(L) = (p~.Spec(R)(3X~15 with p~Supp(X)) 

and 

g(P) = (XELISupp(X) = P}. 

These maps are inverse isomorphisms. 

Proof By Lemma 1.3 f is injective, whereas Lemma 1.4 is the surjectivity off: Cl 

Remarks 1.6. Theorem 1.1 is [lo], Theorem 10(i). As we have already said, Lemma 1.2 is 
lifted straight out of [lo]; it is the proof to Theorem 11 in [lo]. Theorem 11 of [lo] is 
actually our Theorem 1.5, and in the argument of [lo], Lemmas 1.3 and 1.4, with the appeal 
to the Noetherian hypothesis, are both missing. Thus there are three points where we used 
the Noetherian hypothesis, namely the proofs of Theorem 1.1, Lemma 1.3 and Lemma 1.4. 

What is true without the Noetherian hypothesis? Lemma 1.4 is definitely false; 
a counterexample may be found in Section 4. Theorem 1.1 (the smash nilpotence) is open. 
However, Lemma 1.2 can be proved in general, by reducing to the Noetherian case. 
Therefore, for arbitrary commutative R, one can show that for the maps/, g of Theorem 1.5, 
gof = 1. For details, see [Appendix]. Lemma 1.3 is also still open, but is probably false in 
general. 

42. LOCALIZING SUBCATEGORIES OF D(R) 

As in Section 1, R is a Noetherian, commutative ring. However, D(R) will from now on 
denote the derived category of unbounded complexes of R-modules. This is in contrast with 
Section 1, where D(X) = RHom(X, R) was the dual of X. The reason for this discrepancy is 
an attempt to be consistent with the literature; Section 1 is consistent with the notation in 
[lo], whereas from now on we will be consistent with the classical algebraic literature. 

We will also be making use of the following results, the proofs of which may be found in 
[l] or [14]: 

(2.1.1) There exists a tensor product D(R) x D(R) + D(R), which we will denote X @I Y. 
(2.1.2) The tensor is bitriangulated; given a triangle Y + Y’ + Y” + x Y and an arbit- 

rary XED(R), there is an induced triangle X @ Y + X @I Y’ + X @I Y” + 
X x XY = x(X @ Y) and similarly for triangles in X. 

(2.1.3) The tensor commutes with direct sums in either variable; the natural map 
@.(X 8 Y.) + X 8 (@. Y.) is an isomorphism. 

(2.1.4) The tensor is associative and commutative; there are natural isomorphisms 

and 
4(a): (X@ Y)@Z = X@(Y@Z) 

(4b): X@ Y= Y@X. 
(2.1.5) Let a: R + k be a homomorphism of R into a field k. Let X E D(R) be arbitrary. 

Then X @I k is a direct sum of suspensions of k. 
(2.1.6) Every XeD(R) is isomorphic to a complex of injectives. 
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Remark 2.2. 2.1.2 and 2.1.3 imply that the tensor product commutes with direct limits. 
Note that the properties are all seemingly trivial and very reasonable. To convince himself 
that a little care is required, the reader should look at the introduction to Cl]. 

Definirion 2.3. A full subcategory L c D(R) is called localizing if it is triangulated and 
closed under arbitrary direct sums. 

With the aid of Definition 2.3, we are ready to quote another result from [l] which we 
will use: 

(2.1.7) Let L be a localizing subcategory of D(R). Suppose XE L, YED(R) arbitrary. 
Then X @ YE L. 

Definition 2.4 (Bousfield). Let L be a localizing subcategory of D(R). The object 
X E D(R) is called L-local if Hom(L, X) = 0 (i.e. for all YE L, Hom( Y, X) = 0). 

Definition 2.5 (Bousfield). Let L be a localizing subcategory of D(R). Let X be an object 
in D(R). The morphism X /, XL is caled a localization of X ifXt is local, and for any L-local 

Hom(/. r 1 
YE D(R), Hom(XL, Y)- Hom(X, Y) is an isomorphism. 

THEOREM 2.6. (Bousfield). Let L be a localizing subcategory of D(R). Then every object 
XE D(R) has a localization (possibly after increasing the universe). In the triangle 

X + Xt + Z + CX, the object Z is in L. 

Remark 2.7. I have attributed all these results to Bousfield, because he is the latest 
author to have worked on them, and he has the best, most general results. However, this 
matter has a long history. Localizations of spaces were first considered by Sullivan, and 
work on the subject was done also by Adams. 

What we will do in this section is to completely describe the localizing subcategories of 
D(R), where R is a Noetherian, commutative ring. We will prove: 

THEOREM 2.8. There are maps of sets: 

Localizing subcategories 

of D(R) 
Subsets of Spec(R) 

> 

where 
f(L) = { PE Spec(R) 13X E L with X @ (R/r& # 0} 

(Here (R/Jo is the quotient field of Rfr. We will often denote it by k(p)) and 

g(P) = the localizing category generated by k(p), for all PEP. 
These maps are inverse isomorphisms. 

The proof of Theorem 2.8 will be a succession of easy lemmas. 

LEMMA 2.9. Let X E D(R) be a complex which consists entirely of injectives, each of which 
is a direct sum of copies of I,, the injective hull of R/r, where p E Spec(R) is given. Then X is in 
rhe localizing category generated by k(p). 

Proof Recall that the injective hull of R/r is an indecomposable injective, and is in fact 
an R, module (elements outside p act invertibly). Further, every element of I, is annihilated 
by p” for some n. 

Thus the complex X has a filtration: 

o= x0 C x, C x2 C *** C x 
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where Xi is the subcomplex of X annihilated by p”. Clearly, X,/X,_ 1 is a complex of vector 
spaces over k(p), and is therefore quasi-isomorphic to a direct sum of suspensions of k(p). 
Thus XI/XI-i is in the localizing subcategory generated by k(p). From the triangle 
X_ -+xI+x,/x&r+Zx~_i, we deduce by induction that so is X, for every i. But 
X’=rl& X,, and by 2.2.2 in [l] a localizing subcategory is closed under the formation of 
direct limits. cl 

Let X be a complex in D(R). By 2.1.6, X is quasi-isomorphic to a complex of injectives. 
Every injective is a direct sum of indecomposable injectives, and these correspond to prime 
ideals in R. Consider the complex obtained by taking in a complex of injectives X all the 
terms isomorphic to direct sums of lP. It is well-known that this is in fact a complex. One 
can obtain it for instance by considering in X @.R R, the subcomplex supported at the 
closed point. In Grothendieck’s notation, this is the complex r,,.(X), where Y = p and 
Y’ = p - {p} are systems of supports in Spec (R). 

LEMMA 2.10. Let P c Spec(R) be given. Suppose X is a complex in D(R) such that for 
p E Spec(R) - P, rp/, _ (rI (X) = 0. Then X is in the localizing subcategory L = g(P) gener- 
ated by all the k(p), PE P. 

Proof Let A c B P’(Spec(R)) be the set of all systems of support Y c P(Spec(R)) such 
that T,(X) is in our localizing subcategory. As localizing subcategories are closed under the 
formation of direct limits, A must be closed under the formation of increasing unions. 
Hence, by Zorn’s Lemma, A contains a maximal element Y. We assert Y = Spec(R). 

Suppose Y # Spcc(R). Because R is Noetherian, Spec(R) - Y contains a maximal 
element p. But now 

IyvlPllr(X) = I-~/,-(,)(X) 

and by our hypothesis, either &(P)E L or IF/#_ tP1(X) = 0. By Lemma 2.9, in either case we 
have rp/,, _ (PJ (X)E L. Thus we deduce easily that I yv(pl(X)~ L, and this is a contradiction 
to the maximality of Y. Cl 

LEMMA 2.11. Let P c Spec(R), and let XED(R) be such thatfor all pi P, X @I k(p) = 0. 
Then if L = g(P) is the localizing subcategory generated by all k(p), pa P, then X @ L = 0. 

Proof A trivial consequence of properties 2.1.2 and 2.1.3 of the tensor product. Cl 

LEMMA 2.12. I~XED(R) has the property thatfor eoery p~Spec(R) X 8 k(p) = 0, then 
x = 0. 

Proof By Lemma 2.11. it would follow that for every Yin L = g(Spec(R)), X 8 Y = 0. 
But by Lemma 2.10 we know that g(Spec(R)) = D(R) ( every complex is in L). In particular, 
we deduce that X = X @ R = 0. 0 

LEMMA 2.13. Let X be a complex of injectiues, all of which are direct sums of IJior one 
particular p E Spec(R). Then for all p’ # p, X @I k(p’) = 0. 

Proof: Trivial. Cl 

LEMMA 2.14. If X E D(R) is a complex of injectioes as in Lemma 2.13, then X @ k(p) = 0 ifl 
x = 0. 
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Prooj Lemma 2.12 and Lemma 2.13. 0 

Proof of Theorem 2.8. We have the maps 

Localizing subcategories 

of D(R) 

and we have to show thatfi g and gof are identities. Forfig this is just Lemma 2.11. For 
gof; we observe the following. Let L be a localizing category. Then we need to show 

(1) gof (L) = L. 

To prove this, observe that pEf(L) iff there exists an X with X 8 k(p) # 0. Now 
X @ k(p)~ L because X is (2.1.7). and by 2.1.5, X @ k(p) is a direct sum of suspensions of 
k(p); i.e. k(p) must be in L. (L is epaisse; see Cl]). Thus g of (L), the localizing category 
generated by all k(p), PDF is contained in L. cl 

(2) L = gof(L). 

Let XE L. We know that 

X 8 k(p) = f-/VP- (P)(X) @ k(p) 

and by Lemma 2.14, this is zero if and only if ro/,+ _ 1Pl(X) = 0. By Lemma 2.10, X is in the 
localizing subcategory generated by the k(p)‘s for which l-j//- 
X @ k(p) # 0. Thus XEgOf(L). 

p _ (p)(X) # 0, or equivalently 
0 

53. SMASIIING SUBCATEGORIES OF D(R) 

Dejinition 3.1 (Ravenel). A localizing subcategory L c D(R) is called smashing if local- 
ization commutes with direct sums; i.e. if the natural map $(X,), + ($ X,), is an isomor- 
phism. 

Remark 3.2. If L is smashing, then localizing at L must commute with arbitrary 
homotopy colimits. 

In this section we will classify all the smashing subcategories of D(R), where R is, as 
always, a Noetherian, commutative ring. We will prove: 

THEOREM 3.3. Under the isomorphism of Theorem 2.8, 

Localizing subcategories 

of D(R) 
Subsets of Spec(R) 

> 

the sntclshing subcutegories correspond to systems of support; i.e. to subsets closed under 
specirrlization. 

COROLLARY 3.4. (The stnashiny conjecture): The smashing subcategories of D(R) are 
precisely the locoli~kg subccltegories generated by epaisse subcategories of Db(R). 

Again, the proof of Theorem 3.3 will be by a sequence of easy lemmas. We begin with: 

LEMMA 3.5. Let L be a localizing category, and let p E Spec(R) be a prime. Then either k(p) 
is L-local, or k(p)E L. 
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Prooj: Suppose k(p) is not L-local. Then there exists X E L and a non-trivial morphism 
X + k(p). We then have a commutative diagram 

X 

I 

- k(p) 
1 

X @ k(p) ----r&4 @ k(p) id 

1 
k(p) > 

which establishes that our morphism X + k(p) factors through X @ k(p). But the morphism 
was assumed non-zero, hence X @ k(p) # 0. But X @ k(p) is contained in L because X is, 
and as X @ k(p) is a direct sum of suspensions of k(p), it follows that k(p)E L. Cl 

LEMMA 3.6. Suppose L is smashing. Then for any indecomposable injective I,, either lp~ L 
or I, is L-local. 

Proof As in Lemma 2.9, I, is a direct limit of objects that can be obtained as extensions 
of k(p). Because L is smashing, direct limits commute with L-localization, and of course 
localization always respects triangles. Because k(p)L = k(p) or zero, it follows that (I,), = I, 
or zero. 

LEMMA 3.7. Let pi q be primes in R. If L is a smashing subcategory and k(p)E L, then 

k(q) E L. 

Prooj There is a non-zero map RI,, + RI,, which induces a non-zero map of the 
injective hulls I, + I,. If k(p)E L, then fpo L, and (I,), = 0. Therefore, I, cannot be L-local; 
for if I, were L-local, then we would have an isomorphism 

Hom(f,, I,) z Hom((f% i4) 

= Hom(0, I,) = 0 

which contradicts the existence of our non-zero map I,+ I,. Thus (Iq)‘ # I,, and by 
Lemma 3.5 we deduce that (I,), = 0 and k(q)‘ = 0, i.e. k(q)E L. cl 

Proojof Theorem 3.3. It follows immediately from Lemma 3.7 that, under the corres- 
pondence of Theorem 2.8, smashing subcategories correspond to families of prime ideals 
closed under localization ( = support systems). It remains to show that every support 
system corresponds to a smashing subcategory. One way to do this is to observe that every 
support system is generated by objects in D*(R), and is therefore trivially smashing. Cl 

Remark 3.8. The reader can reflect that Hopkins’ Theorem ( = Theorem 1.5) follows 
easily from Theorem 2.8 and Theorem 3.3. Thus we have really given two different proofs of 
Hopkins’ Theorem. 

f-l. REMARKS ABOUT THE NON-NOETHERIAN CASE 

In the non-Noetherian case the situation is far more complicated. Let us consider: 

Example 4.1. Let R = k[X,, Xl, . . . ] be the polynomial ring in infinitely many vari- 
ables. There is an obvious homomorphism R + k which sends all Xi to zero. Its kernel m is 
maximal. We can consider the support system {m}, consisting of the singleton closed point. 
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It is very clear that there is no finite complex of projectives whose support is only m. Thus 
in the Hopkins correspondence, there is no epaisse subcategory of D*(R) corresponding 
to {m). 

This example is more significant that meets the eye at first glance. Following contempor- 

ary fads, one wants to view the stable homotopy category as the category of modules over 
the “brave new ring” QS”. We now know the structure of the epaisse subcategories of this 
triangulated category. Thanks to 163 and [13], there is a “chromatic tower” of “prime” 
ideals. It can be defined as follows. Consider the fields K(Q, 0) and K,(p) where K(Q, 0) is 
the Eilenberg-McLane spectrum, whereas K,(p) is the ith Morava K-theory at the prime p. 
To each of these corresponds a “prime” epaisse subcategory; it can be defined as the smallest 
epaisse L with L @ K # 0. If we denote these by L(K), then every epaisse subcategory is 
a join of L(K)‘s, and the L(K)‘s are not joins of smaller localizing subcategories (in this 
sense, the L(K)‘s are very analogous to the sets I, where p is a prime in R and the 
correspodence is as in Theorem 1.5). But, of course, the sad thing about the analogy is that 
for any prime ~~22 we have inclusions L(Ki(p))s L(Ki+ I(p)), and there are infinitely many 
Morava K-theories. This was used by topologists to conclude that QS” is really different 
from discrete rings; it is possible in QS” to construct an unbounded, ascending chain of 
prime ideals; in discrete rings, such a chain must be contained in a maximal ideal. 

What Example 4.1 shows is that what happens for QS” is not at all unlike discrete rings. 
The same will happen to the ring R of Example 4.1; it is possible to construct a chain of 
prime ideals in R such that the corresponding localizing subcategories form an unbounded 
chain; in Spec(R) there is a natural bound, namely the maximal ideal m, but there is no 
localizing subcategory corresponding to it. Moreover, in QS” there is a natural analogue to 
m, namely the Eilcnberg-McLane spectrum K(Z/,,, 0). This is a field which does not under 
the corrcspodence, give rise to any cpaisse subcategory. 

What I tried to show in this paper is that for discrete Noetherian rings, D(R) behaves 
very nicely. Far too nicely to bc at all analogous to the categories of spectra. Thus to study 
QS”, one should begin with the assumption that it behaves like a non-Noetherian ring. It is 
possible to reproduce many, if not all, of the pathological examples of very bad spectra due 
to Bousfield and Ravenel in the category D(R). And my belief is that a thorough under- 
standing of D(R) for non-Noetherian R will help a great deal in elucidating some of the 
remaining problems about the chromatic tower. 
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APPENDIX BY M. BGKSTEDT 

We will show here that even in the non-Noetherian case, there is a construction which, out of the 
epaisse subcategory of Db(R), reconstructs Spec(R). We begin with some straightforward observations: 

LEMMA A.l. Let X E D”(R). Then there exists a Noetherian subring S c R, an object X’E Db(S) and 
an isomorphism X ’ @x S = X. 

Proof: Trivial. 

LEMMA A.2. The set Spec(R) - supp(X) is a quasi-compact open subset of Spec (R). 

Proofi Let Spec(R) + Spec(S) be the natural map. Then supp(X) = cp- *(supp(X’)) corresponds 
to a finitely generated ideal (j’,, . . . ,jn) c R. Thus 

Spec(R) - supp(X) = 6 Spec 
l-1 I) 

is a finite union of quasi-compacts. 0 

LEMMA A.3. Let X and Y be objects o/D’(R) with supp(X) c supp( Y). Then X is in the epaisse 
category generated by Y. 

Prooj Choose a ring S c R and objects X’. Y’ in Db(S) with X = X’ Bs R, Y = Y’ @s R as in the 
proof of Lemma A.2. Suppose supp(X’) = (/t, . . . ,J,) whereas supp(Y’) = (g,, . . . , 9.). Then 
because cp- * (supp(X ‘)) c cp- ‘(supp( Y’)), we have relations: 

A” = c rlJgJ 

for some NE N. rrJE R. Replacing S by S[r,J] c R, we may assume supp(X’) c supp( Y’). Then by the 
Noetherian case of Hopkins’ theorem, X’ is in the epaisse subcategory generated by Y’. Hence the 
Lemma. 0 

Definition A.4. An epaisse subcategory L of Db(R) is called principal if it is generated by one 
element XeDb(R); (X) will stand for the smallest epaisse subcategory containing X. 

Dejnition AS. Let PS(Db(R)) be the set of all principal epaisse subcategories of Db(R). PS(f.) is 
clearly a partially ordered set, ordered by inclusion. 

Dejnirion A.6. A subset S c PS(Db(R)) is calledfiltering if it satisfies the following two hypotheses 

A.6.1: If (X)ePS(Db(R)), (Y)ES and (Y) c (X), then (X)ES. 
A.6.2: If (X) and (Y) are in S, there is a (2)~s with (Z) c (X), (Z) c (Y). 

PROPOSITION A.7. There are inverse isomorphisms 

Filtering subsets f 

> ( 
z 

Closed subsets of 

o/ PS(Db(R)) o Spec(R) > 

where 

j(S) = n SUPP<X) 
<x>rs 
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aJld 

g(P)= {(X)IP = SUPPW)}. 

ProoJ: First observe that g is well defined; given (X) and (Y) in g(P), then (X @ Y) satisfies 
(X @ Y) c (X), (X @ Y) c (Y), and hence A.6.2 is satisfied. 

Step 1. gof = 1. Suppose S is a filtering subset of PS(Db(R)) and suppose supp(X) =f(S). We 
need to show (X ) E S. 

By Lemma A.2, Spec(R) - supp(X) is compact. But n supp( Y) c supp(X) by hypothesis, thus 
<r>*s 

Spec(R) - supp( Y) form an open cover of the quasi-compact Spec(R) - supp(X). Therefore there is 
a finite subcover, 

i supp(Y,) = supp(X). 
f-1 

By A.6.2, there is a (Z) E S with supp(Z) c supp(X). Thus, by Lemma A.3, (Z) c (X) and hence 
by A.6.1, (X)oS. Cl 

Step 2. fig = 1. This is the trivial observation that, given po Spec(R) - P. there is XE Db(R) with 
P c supp(X) but p#supp(X). q 

The reader is invited to see what this gives for QS”. At least one of the authors feels there should be 
a simpler way to describe Spec (R) in terms of localizing subcategories of D(R). 


