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Abstract The introduction of robotic cells to manufacturing systems improved the efficiency, pro-

ductivity and reliability of the system. The main objective of the scheduling problem of multi-item

multi-machine robotic cells is the identification of the optimum robot cycle/s and jobs sequencing

for certain processing conditions which yield the higher possible production rate. The objective of

this work is to solve the scheduling problem in four-machine blocking robotic cells producing iden-

tical and different part types while minimizing the cycle time. A genetic algorithm is developed to

find the parts sequence that minimizes the robot-moves cycle time for each robot cycle. The results

showed that the developed genetic algorithm yields competitive results compared to the results of

the full enumeration of all possible parts sequences. The results show also that the ratio between

the average processing time of all parts and the robot travel time determines the cycle having the

optimal robot-moves.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

In robotic cells, the robot performs a sequence of actions dur-
ing which k parts are produced. This sequence of robot actions
is defined by Sethi et al. [1] as k-unit cycle. A special case of the
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k-unit cycle is the one unit cycle in which only one part enters

the cell and only one part leaves it while each machine is
loaded and unloaded only once. He showed that the number
of all possible robot-moves cycles for one unit cycle robotic cell

is ‘‘m!’’ where m is the number of machines in the cell. For cells
producing identical parts from two up to ‘‘m’’ machines were
studied for scheduling of robot moves that minimize the robot
cycle time. In case of cells producing different part types, the

problem was solved for m machines and sequencing of parts
such as to minimize the makespan [2,3].

Sethi et al. [1] proved that for two machines cell, the opti-

mal one unit cycle is superior to any k-unit cycle and they
conjectured this to be true for ‘‘m P 3’’. Hall et al. [4] proved
that for three machines cells producing identical parts, the
ier B.V. All rights reserved.
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optimum one unit cycle dominates all two unit cycles. Brauner
and Finke [5] confirmed that Sethi et al. [1] conjecture is
valid for two and three machines cell. For four machines the

one unit cycle dominates the two unit cycle in cells with
equidistance machines, and the three-unit cycles dominate all
one unit cycles [5].

Most of the research work in the field of scheduling of ro-
botic cells focused on the study of cells with identical parts [6–
8]. Other researches considered different part types and few

considered Minimal Part Set (MPS) (which is the fixed ratio
between the numbers of produced parts every cycle)
[2,3,5,9,10]. In case of scheduling different parts in a robotic
cell, a focus is made on special category of robot move se-

quences which is called Concatenated Robot Move sequences
(CRM). The CRM is achieved by repeating one unit cycle ‘n’
times to produce ‘k’ parts [11]. Most studies fix the robot move

sequences to be a CRM sequence and then find the MPS part
schedule that minimizes the total cycle time. The best part
schedules for each CRM sequence are then compared [12].

The robot-move cycles can be classified according to the
difficulty of cycle time calculations. The first class includes cy-
cles which are trivially solvable in which their cycle time can be

calculated by derived equations. The second class includes
other cycles which are either solvable in polynomial time or
non-polynomial time. The third class concerns cycles which de-
pend on job sequences, where cycle times cannot be calculated

using equations or exact formulation. These cycles are consid-
ered to be NP-hard and require heuristics for cycle time calcu-
lations as stated by Kamoun et al. [10].

The methods used to solve the robotic cell problem varied
between heuristics, CPM–PERT, linear programming, integer
programming, dynamic programming, branch and bound,

deriving upper and lower bounds while most researchers
solved the problem by formulating it as a Traveling Salesman
Problem (TSP).

Genetic Algorithm (GA) was used to overcome the com-
plexity of solving large scale problems and NP hard cycles
[2,3]. Carlier et al. [2] investigated the problem of ‘‘m’’ ma-
chines robotic cell with a blocking constraint. They proposed

a number of heuristics to minimize the makespan namely;
the approximate decomposition algorithm, the exact branch-
and-bound algorithm and the genetic algorithm. They reported

that the proposed optimization-based approaches deliver high-
quality solutions. The genetic algorithm delivers reasonably
good solutions while requiring significantly shorter CPU times.

Genetic algorithm was also used by Soukhal and Martineau [3]
for solving large scale problems minimizing the makespan for
m machines cells and gave good results.

NPhard cycleswere studied by few researchers due to its com-

plexity. NP-hard cycles may result in minimum cycle times when
compared to other cycles. Sadek et al. [9] usedmathematical sim-
ulation to solve theNPhard cycles. In the threemachines robotic

cells there were two NP hard cycles out of all the six cycles. The
two NP hard cycles were proved to be optimal.

Limited work tackled the scheduling problem in four ma-

chine cells [9,13]. The problem of scheduling robot moves
and sequencing parts simultaneously in cells that produce dif-
ferent part types and contain more than three machines was

tackled by Kamoun et al. [10]. They solved the MPS sequenc-
ing under different robot moves cycles in three machines ro-
botic cells. They also gave a methodology for extending this
heuristic to four machines cells. Due to the difficulty of finding
the optimal solutions to the problem of four machines cells;
they found a lower bound and tested the heuristic against it.

Kamoun et al. [10]. concluded that when the robot is rela-

tively slow, the cycle in which the loading of machines is done
in regular sequence (1,2, . . .,m) is probably the optimal cycle
since it has the minimum travel time. While the cycle in which

the loading is done in reversed sequence (m,m – 1, . . ., 1) might
be the optimal cycle when the robot is relatively fast because it
allows each machine as much time for processing as possible. It

was recommended that cycle #1 is the optimum robot cycle
and superior to other cycles for low ratios between processing
time and robot travel time while cycle #24 become the opti-
mum cycle for higher ratios between processing times and ro-

bot travel times. The in-between cycles must be explored as
they may lead to better solutions than cycles #1 and 24.

The objective of this work is to solve the scheduling problem

in four-machine blocking robotic cells producing identical and
different parts while minimizing the cycle time. The problem in-
cludes scheduling of robotmoves and sequencing of parts simul-

taneously. A genetic algorithm is developed to solve the
problem. The solution is based on finding a parts’ sequence
for each robot move cycle. The sequence with minimum cycle

time is considered the best reached one. The performance of
the genetic algorithm is measured by comparing the results with
the results of full enumeration of all possible parts sequences.
The cycle times of the enumerated sequences is calculated for

the 24 robot moves cycles. Mathematical simulation is used to
track the robot actions and used in calculating the cycle time.

The rest of this paper is organized as follows: Section 2 pre-

sents the problem assumptions and configuration. In Section 3,
the algorithm is tested against the full enumeration technique.
Finally, Section 4 concludes the main results.
2. Problem description

The problem tackled in this paper involves the scheduling of

robot moves and sequencing of different parts forming MPS
in blocking flow shop robotic cell. The cell consists of four ma-
chines, input and output buffers and a robot with single

gripper.
The robot is subjected to two types of waits. The first type of

wait takes place when the robot loads certain part on one of the
machines and waits till the machine completes the processing of

that part, and then unloads the part and advance to the nextma-
chine. In this case the waiting time of the robot is equal to the
processing time of the part. The second type of wait takes place

after the robot loads the part as it moves onto perform other
activities while the part is being processed. After finishing the
other activities, the robot returns to unload the part and wait

in front of the machine while the part is still under processing.
In the latter case, the waiting time is equal to the processing time
of the part after subtracting the time of all activities that were
made by the robot while the part is in processing. If the time

of these activities is higher than the processing time of the part,
the robot will be able to unload the part as soon as it reaches the
machine, and hence the wait time is zero.

2.1. Problem assumptions

The following assumptions are considered within the context

of this work.
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(1) A single robot serving a center-robotic cell with no stor-

age buffers.
(2) The robot and the machines can handle only one part at

a time.

(3) All parts are available in the input buffer at the begin-
ning of the cycle (static cell).

(4) The cell is flow shop with no skipping allowed.
(5) The cell produces multiple part types according to cer-

tain MPS. In order to process n jobs, CRM sequences
are considered in which the same robot-move cycle is
repeated n times.

(6) The MPS is produced repetitively at regular intervals.
(7) The travel time of the robot is independent of the part

being processed and assumed constant between any

two successive machines.
(8) The travel time between any two non-successive machines

equals the travel time multiplied by the number of travel
distances between the machines in succession.

(9) The processing, loading, and unloading times are deter-
ministic and constant for all parts and they differ
according to the jobs and processing machines.

The following notations are considered:

Pi Part i, i= 1:n

Sm,4 Robot-moves cycle m in cell contains four machines

I Input buffer

O Output buffer

MM Machine M

MþM Unload machine M

M�M Unload machineM � 1, move to machine M, load machine M

d The travel time between two successive machines

tM,i The processing time of part i on machine M

LM,i The loading time of part i on machine M

UM,i The unloading time of part i from machine M

WM,i The waiting time for part i to be finished on machine M
Table

S1,4
aS2,4
a
3,4

aS4,4
aS5,4
aS6,4

S7,4

S8,4
aS9,4
aS10,4

S11,4
aS12,4

a N
Both input and output buffers are denoted as machine 0.

2.2. Robot moves cycles and cycle time calculations

2.2.1. Derivation of robot moves cycles

In four-machine cell, there are 4! = 24 robot cycles as shown
in Table 1.
1 The cycles available in four machines robotic cell.
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P hard cycles.
For example, the actions of cycle S24,4 and their corre-
sponding times notations are listed in Table 2. Fig. 1 shows
a schematic representation for robot movements in 4 M/C cell

for the same cycle. The following are the descriptions of M/C
notations given in Table 2.

� M�
4 : The cycle starts with the robot moving toM3 and waits

at machine M3 till the processing of part Pi is completed.
After part Pi is finished on M3; the robot unloads it, moves

to machine M4 and loads the part.
� M�

3 : The robot moves to machineM2, and waits till the pro-
cessing of Pi+1 part is completed. After part Pi+1 is finished
on M2; the robot unloads it, moves to machine M3 and

loads the part.
� M�

2 : The robot moves to machine M1, and waits in front of
the machine till part Pi+2 is completed. After part Pi+2 is

finished the robot unloads it, moves to machine M2 and
loads the part.
� M�

1 : The robot moves to the input buffer, picks up part

Pi+3 from the input buffer, moves to machineM1 and loads
the part.
� Mþ

4 : The robot moves to machine M4, and waits in front of

the machine till Pi part is completed. After part Pi is fin-
ished on M4; the robot unloads the part, moves to output
buffer and drops the part.

2.2.2. Cycle time calculations

The cycle time CT depends on the robot actions. It is equal to

the time taken by the robot to complete one cycle where the
robot returns back to its initial position at the beginning of
the cycle. Therefore, it is the summation of robot activities
time. The CT of cycle S24,4 is calculated by Eq. (1). Eqs. (2)–

(5) are used to calculate the waiting times. Each waiting time
for the robot is the maximum of ‘‘zero’’ and the processing
time minus the time of the actions made by the robot after it

loads the machine until it returns to unload it again as illus-
trated in Table 2.

T24 ¼
Xn
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X4
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Xn
i¼1

X4
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Xn
i¼1
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Table 2 The actions of S24,4 with corresponding times.

Actions Time

S24,4 M�4 ;M
�
3 ;M

�
2 ;M

�
1 ;M

þ
4

� �
Wait for part Pi at M3 W3,i

Unload part Pi from M3 U3,i

Move from M3 to M4 d
Load part Pi on M4 L4,i

Move from M4 to M2 2d
Wait for part Pi+1 at M2 W2,i+1

Unload part Pi+1 from M2 U2,i+1

Move from M2 to M3 d
Load part Pi+1 on M3 L3,i+1

Move from M3 to M1 2d
Wait for part Pi+2 at M1 W1,i+2

Unload part Pi+2 from M1 U1,i+2

Move from M1 to M2 d
Load part Pi+2 on M2 L2,i+2

Move from M2 to I 2d
Pick up part Pi+3 at I U0,i+3

Move from I to M1 d
Load part Pi+3 on M1 L1,i+3

Move from M1 to M4 3d
Wait for part Pi at M4 W4,i

Unload part Pi from M4 U4,i

Move from M4 to O d
Drop part Pi at O L0,i

Move from O to M3 2d
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W2;iþ1¼max 0; t2;iþ1�
12dþU0;iþ2þL1;iþ2þW4;i�1þU4;i�1

þL0;i�1þW3;iþU3;iþL4;i

� �� �
ð3Þ

W3;i ¼max 0; t3;i�
12dþW1;iþ1þU1;iþ1þL2;iþ1þU0;iþ2

þL1;iþ2þW4;i�1þU4;i�1þL0;i�1

� �� �
ð4Þ

W4;i ¼max 0; t4;i�
12dþW2;iþ1þU2;iþ1þL3;iþ1þW1;iþ2

þU1;iþ2þL2;iþ2þU0;iþ3þL1;iþ3

� �� �
ð5Þ

The waits of the robot at different machines are interdepen-

dent on each other for all cycles. In the present case, to find the
robot wait at M1 (W1,i+2) the wait at M2, M3 and M4 (W2,i+1,
W3,i and W4,i�1) must be known. The wait at M2 depends on

the wait on M3 and M4, while the wait at M3 depends on
the wait at M1 and M4. Finally the wait at M4 depends on
the wait at M1 and M2. Therefore, the waits of this cycle

cannot be calculated directly. The same can be noticed for
M1

M2

Input
buffer

Figure 1 The movements d
the cycles marked with ‘a’ in Table 1. Accordingly, the waiting
times and the CT can only be determined by simulating the ro-
bot actions for the robot cycle under consideration.

2.2.3. Simulation of robot cycles

In the beginning of the simulation, all the machines are consid-
ered idle where jobs enter the cell one by one. When all the ma-

chines in the cell are occupied and simulation is made after
reaching the steady state; the cycle time is then calculated. A
simulation matrix such as that given in Fig. 2 is composed

according to the following steps.

Step 1: The job data is organized in three different matrices

(the first for loading, the second for unloading and the third
for processing). Each matrix consists of four rows
(machines) and n columns (jobs). Each cell in the matrix

contains the time corresponding to job n on machine m.
Step 2: Filling the simulation matrix in Fig. 2 with relevant
data, each time as stated in the robot moves actions.
1. In the first row; the robot travels between machines with-

out performing any action. The first job is picked up from
the input buffer and loaded to the first machine.

2. In the second row; the robot unloads machine 1 and

loads the job on machine 2. It picks up the following
job and loads it on machine 1.

3. In the third row; the robot unloads machine 2 and loads

the job on machine 3, unloads machine 1 and loads the
job on machine 2, and picks up the following job and
loads it on machine 1.

4. In the fourth row; the robot unloads machine 3 and
loads the job on machine 4, unloads machine 2 and
loads the job on machine 3, unloads machine 1 and
loads the job on machine 2, picks up the following job

and loads it on machine 1, and finally unloads machine
4 and drops the job in the output buffer.

5. In each of the following rows; the robot repeats the

same actions done in the fourth row, while changing
the jobs.

Step 3: The CT is calculated by summing number of rows
equal to the number of jobs. The steady state is reached if
two successive groups of rows (where the number of rows
equal to the number of jobs) have the same total time.

The total time in this case is equal the cycle time.
M4

M3

Output
buffer

one by the robot in S24,4.



Figure 2 The robot actions matrix in S24,4.

Table 3 Example of inversion mutation operator.

Original gene 2 3 1 4 2 3 1 2 4 3

Modified gene 2 3 1 1 3 2 4 2 4 3
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2.3. The developed genetic algorithm

The following steps are taken within the context of GA
solution.

Step 1: Encoding the solution and generating the initial
population.
A Number of chromosomes equal to the population size
are generated to represent the sequences at which the
parts enter the cell. The length of each chromosome is

n genes, where n equals the sum of the numbers forming
the ratios of MPS. Genes are filled into the chromosome
randomly while maintaining the number of genes corre-
sponding to each part equal the corresponding ratio of

that part in the MPS. As an example: if the ratio of
MPS is (2,3,4) then n = 9 (chromosome length), the
number of units from part 1 is 2, the number of units

from part 2 is 3 and the number of part units from 3
is 4. Consequently, the resulted chromosome will be
{123231323}.

Step 2: Evaluating the chromosomes.
Different chromosomes are evaluated using fitness func-
tion representing the CT. The fitness function is calcu-

lated from simulation with an objective of minimizing
the cycle time.

Step 3: Crossover operator.
Crossover is the process of combining two chromosomes

(parents) having good function to produce better chro-
mosomes (children). Set Partition crossover operator is
used in the present work.

In set partition cross over operator, the first two non-
empty sets of numbers are created and filled randomly
with part numbers (1,2,3, . . .,n); each number should be

placed in one set only, while each set is assigned to one
of the parents. The genes of the parents are scanned
sequentially starting by the first gene in the first parent
then the first gene in the second parent then the second

gene in the first parent then the second gene of the second
parent. If a gene of certain parent matches any number in
the set of that parent it will be located in the new individ-

ual. After scanning all the genes in the two parents, the
child produced will have the same length of parents while
maintaining the number of genes corresponds to each

part and equals the ratio of that part in the MPS.
Step 4: Mutation operator.

Mutation is the process of introducing some variations

in the population in order to change the search area
and make sure that the solution is not trapped in local
optimum. The mutation operator used in the present
work is the Inversion method.
In inversion two positions in the chromosome are
selected randomly and the genes between these positions
are inverted. An example is illustrated in Table 3.

Step 5: Termination condition.

The stopping criterion used in present work is specified
Stull number of generations. Steps 2–4 are repeated until
termination condition reached.

The GA Parameters used in the present research are as
follow:

� Population size, 20.
� Number of generations, 100.
� Stull generations, 50.
� Crossover rate, 80%.
� Mutation rate, 20%.

2.4. Full enumeration solution

The values are filled into a matrix where each row contains dif-
ferent sequence of parts. The cycle times of all sequences are

then calculated using simulation. The sequence which has the
minimum CT is considered the optimum sequence for a given
robot-move cycle. This process is repeated for all the robot-

moves cycles. The optimal values which are obtained from
the full enumeration of the all possible sequences are compared
with the results obtained by the application of GA to evaluate
the performance of the later method.

3. Results and discussion

The proposed GA was used to solve the scheduling robot
moves and job sequencing in four machines blocking robotic
cells producing identical or different parts to minimize CT.
The performance of the algorithm was tested against the re-

sults obtained by full enumeration. The effect of processing
time to robot travel time ratio on the optimum CT is then
investigated.

3.1. Evaluating the performance of the developed genetic

algorithm

The results obtained by the proposed GA are evaluated against
the results of full enumeration. The deviation from the optimal



Table 4 The results of evaluating the proposed GA.

Number of parts Number of sequences Min. value of accuracy attained Enumeration time GA time

5 120 100% 2.5 s 44 s

8 40,320 97.32% 15.92 min 1.18 min

9 362,880 98.44% 8.34 h 1.2 min

10 (MPS) 12,600 100% 5.42 h 1.3 min

12 (MPS) 27,720 100% 9 h 1.3 min

10 3,628,800 N/A N/A 1.28 min
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CT and the accuracy of the obtained CT from GA is calculated
from the following equations:

Deviation ¼ Calculated cycle time CTc �Optimum cycle time CTo ð6Þ

Accuracy ¼ 100%� CTc � CTo

CTo

� 100 ð7Þ

The consistency of the results is evaluated based on the re-
sults of solving ten problems (eight parts) five times. The re-

sults of the evaluation are given in Table 4.
In general, the GA’s run time to reach the best solution is

considerably small compared to time taken for full enumera-

tion especially for large number of parts. The GA solution
maintains considerably high accuracy when the number of
parts increases more than 10 parts. The full enumeration tech-

nique fails to reach a solution even for very long run time.
The results of solving six problems using genetic algorithm

are shown in Fig. 3. Problems (1–3) are 15 parts problems while
problems (4–6) are 20 parts problems. Each problemwas solved

10 times. The travel time is 3 unit time and the processing time is
uniformly distributed between (1:100) unit time. It can be con-
cluded from the figure that the maximum deviation in the cycle

time calculated by the genetic algorithm is 3.9%. The results
prove the consistency of the present algorithm for relatively
large problems. No further analysis was possible to evaluate

the accuracy of the results obtained by the algorithm since enu-
meration procedure failed to reach the solution beside the lack
of bench mark problems in literature.

3.2. Relationship between (tp/tt) and the optimum robot moves

cycle

The aim of this section is to determine the relation between tp/
tt (processing time/robot travel time) and robot cycle that
C
yc

le
 T

im
e 

(u
ni

t)

Figure 3 The maximum, minimum, and avera
yields the optimum cycle time. The results of processing five
parts and eight parts are given in Figs. 4 and 5 respectively.

The optimum robot moves cycle has the same pattern in both
cases. At low ratio of (tp/tt) (<0.71) cycle #1 is superior to
other robot cycles as it yields the optimum cycle time. This is

due to the fact that cycle #1 is robot dominant and meanwhile
has the smallest number of moves (10 moves).

At ratios around 1 (0.95 6 (tp/tt) 6 1.02) cycles #1, 11, 13,

19 and 21 give the optimum cycle times. Although cycle #1
has the minimum number of moves, however, cycles #11, 13
and 19 have the next lowest number of moves with small dif-
ference compared to cycle #1, and consequently give the opti-

mum CT for the same reasons. Starting from tp/tt = 1.02 to
less than 5, cycle #21 yields the optimum cycle time and is
superior to all other cycles. It is noticed that cycle #21 is

mainly robot dominant in most of the cases and turns to be
process dominant in few other cases. In case where Cycle
#21 is robot dominant; it yields the optimum cycle time due

to the least number of moves it contains. When the process
is dominant, it remains the optimum, because after adding
the robot waiting time to the action time, yet the total move
time remains considerably small. Therefore, the difference in

the number of moves in cycle #21 compared to other robot
dominant cycles (which are cycles #6, 9 and 24) keep the supe-
riority of cycle #21.

When (4.92 6 (tp/tt) 6 5), cycles #9, 21 and 24 yield the
optimum CT. This range may be considered as transitional
range of (tp/tt) where more than one cycle have the same CT

knowing that cycles #9 and 24 are robot dominant. For
(5 6 (tp/tt) 6 7.14) cycles #9 and 24 remain robot dominant
and optimum since they have the same number of moves (14

moves). Yet for some ratios of (tp/tt) associated with small tra-
vel time (0.5 unit times), cycle #9 become process dominant
Maximum Cycle Time

Minimum Cycle Time

Average Cycle Time 

Problem No. 

ge cycle time in 15 and 20 parts problems.



Figure 4 The relation between (tp/tt) and the optimum cycle (five parts).

Figure 5 The relation between (tp/tt) and the optimum cycle (eight parts).
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and hence is no more optimum and therefore, leaving cycle #24
to be the sole optimum cycle. For ratios higher than 7.14 all

cycles are process dominant and again cycle #24 is the only
optimum cycle.

The results shown in Fig. 5 for eight parts problems are

quite similar to the results in Fig. 4 for five parts problems ex-
cept that cycle #9 is no more optimum in the range (5 6 (tp/
tt) 6 7.14). It can be concluded that, the number of parts under
processing does not affect the robot cycles that yield the opti-

mum cycle time.

3.3. Robot utilization and robot moves cycles

The utilization of different cycles is calculated based on the fol-
lowing equation.

Utilization ¼ Total action time

Cycle time
ð8Þ

The results shown in Fig. 6 show that the robot utilization is

100% in nine robot cycles. These cycles are all robot dominant
as mentioned before. Cycle #1 has the lowest robot utilization
among all cycles (92.59%).

Fig. 7 represents the utilization of the robot within the pro-
cessing time is equal to the travel time. Cycles 6, 9, 10, 12, 14,
16, 20, 21, and 24 are robot dominant cycles. In this case there
are five optimum cycles which are cycles #1, 11, 13, 19, and 21.
Although these cycles have the same cycle time (350 unit time),
they have different robot utilizations. The only exception is cy-

cle #21 which has 100% robot utilization as shown in Fig. 8.
The differences in robot utilization are related to the number
of travels made by the robot. Cycle #1 has 10 move distances,

while cycles #11, 13, and 19 have 12 move distances and cycle
#21 has 14 move distances. Although the robot travels larger
distances in cycle #21, it waits for equal times in other cycles,
which yields the same cycle time.

A number of experiments were conducted to study the
behavior of a number of selected cycles which have yielded the
optimum cycle time at different levels of the value of (tp/tt) while

scheduling five different types of products on four machine ro-
botic cell. The results are given in Table 5which includes various
ratios of (tp/tt) with the other related resulted which are the CT,

the number of robot move distances, the action time, the robot
waiting time and the robot utilization. The change in (tp/tt) is
made by once varying tp while keeping tt constant and by keep-
ing tp constant while varying the values of tt.

NRD ¼ number of robot moved distances

It is evident from the results that, when (tp/tt) 6 1.0, there
are many cycles that yield the optimum CT with robot utiliza-
tion. The higher the number of robot moves the higher the ro-

bot utilization. Knowing that these cycles are robot dominant
and the processing time is small compared to travel time, the



Figure 6 The robot utilization for (tp/tt) = 1/5.

Figure 7 The robot utilization for (tp/tt) = 5/5.

Figure 8 The robot utilization percentage for optimum cycles for (tp/tt) = 5/5.
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cycle time is the same while utilization differs. Generally, the
only decisive factor in determining the optimum cycles is the
value of (tp/tt) regardless of the individual values of tp and tt.

An important remark can be observed from Table 5 which
is, by increasing the processing time or (tp/tt) the cycles become
process dominant and the number of cycles yielding optimum

CT decreases. Cycle #24 proved to perform well at high values
of (tp/tt). The robot utilization continually decreases at values
of (tp/tt) > 10 reaching considerably small values at high val-

ues of (tp/tt).
Based on the degradation phenomena of robot utilization

at high values of (tp/tt), it can be concluded that the use of ro-
bot is economically justified in flow-shop manufacturing cells
when (tp/tt) is small. The use robots become less economically
justifiable at high values of (tp/tt) and other types of material
handling equipment may be recommended.
4. Conclusions and recommendations

A genetic algorithm was developed and used to solve the prob-

lem of scheduling robot moves and jobs sequencing in four-
machines blocking robotic cells producing identical or differ-
ent jobs to minimize the cycle time. The developed GA was

tested against the full enumeration procedure and showed high
performance in solving the problem.



Table 5 Detailed results of different Cycles yielding optimum CT.

tp/tt Cycle Cycle

time

NRD Action

time

Waiting

time

Utilization

%

tp/tt Cycle Cycle

time

NRD Action

time

Waiting time Utilization

%

tp/tt Cycle Cycle

time

NRD Action

time

Waiting

time

Utilization % tp/tt Cycle Cycle

time

NRD Action

time

Waiting

time

Utilization

%

1/1= 
1.0 

1 70 10 50 20 71.4 1/3 = 0.33 1 170 10 150 20 88.2 1/5 = 0.2 1 270 10 250 20 92.6 1/7 = 0.14 1 370 10 350 20 94.6

9 80 16 80 0 100 9 240 16 240 0 100 9 400 16 400 0 100 9 560 16 560 0 100

11 70 12 60 10 85.7 11 190 12 180 10 94.7 11 310 12 300 10 96.8 11 430 12 420 10 97.7

13 70 12 60 10 85.7 13 190 12 180 10 94.7 13 310 12 300 10 96.8 13 430 12 420 10 97.7

19 70 12 60 10 85.7 19 190 12 180 10 94.7 19 310 12 300 10 96.8 19 430 12 420 10 97.7

21 70 14 70 0 100 21 210 14 210 0 100 21 350 14 350 0 100 21 490 14 490 0 100

24 80 16 80 0 100 24 240 16 240 0 100 24 400 16 400 0 100 24 560 16 560 0 100

5/1 = 5.0 1 150 10 50 100 33.3 5/3 = 1.67 1 250 10 150 100 60 5/5=
1.0 

1 350 10 250 100 71.4 5/7 = 0.72 1 450 10 350 100 77.8

9 80 16 80 0 100 9 240 16 240 0 100 9 400 16 400 0 100 9 560 16 560 0 100

11 115 12 60 55 52.2 11 230 12 180 50 78.3 11 350 12 300 50 85.7 11 470 12 420 50 89.4

13 110 12 60 50 54.5 13 230 12 180 50 78.3 13 350 12 300 50 85.7 13 470 12 420 50 89.4

19 115 12 60 55 52.2 19 230 12 180 50 78.3 19 350 12 300 50 85.7 19 470 12 420 50 89.4

21 80 14 70 10 87.5 21 210 14 210 0 100 21 350 14 350 0 100 21 490 14 490 0 100

24 80 16 80 0 100 24 240 16 240 0 100 24 400 16 400 0 100 24 560 16 560 0 100

20/1= 
20.0 

1 450 10 50 400 11.1 20/3 = 6.7 1 550 10 150 400 27.3 20/5 = 4.0 1 650 10 250 400 38.5 20/7 = 2.86 1 750 10 350 400 46.7

9 170 16 80 90 47.1 9 240 16 240 0 100 9 400 16 400 0 100 9 560 16 560 0 100

11 340 12 60 280 17.6 11 420 12 180 240 42.9 11 500 12 300 200 60 11 620 12 420 200 67.7

13 260 12 60 200 23.1 13 380 12 180 200 47.4 13 500 12 300 200 60 13 620 12 420 200 67.7

19 340 12 60 280 17.6 19 420 12 180 240 42.9 19 500 12 300 200 60 19 620 12 420 200 67.7

21 230 14 70 160 30.4 21 290 14 210 80 72.4 21 350 14 350 0 100 21 490 14 490 0 100

24 120 16 80 40 66.7 24 240 16 240 0 100 24 400 16 400 0 100 24 560 16 560 0 100

50/1 = 50.0 1 1050 10 50 1000 4.8 50/3 = 16.7 1 1150 10 150 1000 13 50/5 = 10.0 1 1250 10 250 1000 20 50/7 = 7.14 1 1350 10 350 1000 25.9

9 395 16 80 315 20.3 9 435 16 240 195 52.2 9 475 16 400 75 83.2 9 560 16 560 0 100

11 790 12 60 730 7.6 11 870 12 180 690 20.7 11 950 12 300 650 31.6 11 1030 12 420 610 40.8

13 560 12 60 500 10.7 13 680 12 180 500 26.5 13 800 12 300 500 37.5 13 920 12 420 500 45.7

19 790 12 60 730 7.6 19 870 12 180 690 20.7 19 950 12 300 650 31.6 19 1030 12 420 610 40.8

21 530 14 70 460 13.2 21 590 14 210 380 35.6 21 650 14 350 300 53.8 21 710 14 490 220 69

24 270 16 80 190 29.6 24 310 16 240 70 77.4 24 400 16 400 0 100 24 560 16 560 0 100

100/1 = 100.0 1 2050 10 50 2000 2.4 100/3 = 33.3 1 2150 10 150 2000 7 100/5=
20.0 

1 2250 10 250 2000 11.1 100/7 = 14.29 1 2350 10 350 2000 14.9

9 770 16 80 690 10.4 9 810 16 240 570 24.9 9 850 16 400 450 43.5 9 890 16 560 330 60.4

11 1540 12 60 1480 3.9 11 1620 12 180 1440 11.1 11 1700 12 300 1400 17.6 11 1780 12 420 1360 23.6

13 1060 12 60 1000 5.7 13 1180 12 180 1000 15.3 13 1300 12 300 1000 23.1 13 1420 12 420 1000 29.6

19 1540 12 60 1480 3.9 19 1620 12 180 1440 11.1 19 1700 12 300 1400 17.6 19 1780 12 420 1360 23.6

21 1030 14 70 960 6.8 21 1090 14 210 880 19.3 21 1150 14 350 800 30.4 21 1210 14 490 720 40.5

24 520 16 80 440 15.4 24 560 16 240 320 42.9 24 600 16 400 200 66.7 24 640 16 560 80 87.5
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Enumeration was efficient only in scheduling small size
problems incorporating a limited number of jobs in a four ma-
chine robotic cell. As the number of jobs increases, enumera-

tion fails to reach a solution. On the other hand, GA proved
to be efficient in solving problems with large number of parts
in considerably short time, whether the problems are uncon-

strained or constrained (MPS) and with identical or non-iden-
tical parts in four machines robotic cells.

The ratio between the mean processing time and robot tra-

vel time plays major role in determining which robot cycle has
the minimum cycle time. In general, cycle #24 gives the mini-
mum cycle time for values of (tp/tt) higher than 5 which agree
with previous research in the field. Although cycle #9 yielded

optimal cycle time in the same range of (tp/tt), cycle #24 is most
dominant. For lower values of (tp/tt), other cycles show better
cycle times. Among these cycles are cycles number 11, 19, 13,

and 21. It was shown that cycle #21 is superior to other cycles
for (tp/tt) in the range between 1.02 and 5. Cycle #1 is the opti-
mum robot cycle and superior to other cycles for low ratios of

(tp/tt) lower than 0.95.
The cycle/s that yields the optimum robot cycle time are

independent of the number of jobs being processed. Although

more than one cycle may give the minimum robot cycle time,
the best cycle is determined based on the robot utilization,
the smaller the utilization the better the cycle. Also robot uti-
lization determines the optimum robot cycle(s) when all cycles

are process dominant.
For future work, more efforts may be directed to solve the

k-unit cycles, where the number of robot cycles and corre-

sponding NP-hard cycles are considerably higher than that
of the present case. It is also worthy solving problems that con-
sider skipping one or more machine for some parts and that

which consider picking up, dropping and loading/unloading
operations.
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