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Abstract

Broadcasting is attractive in delivering popular videos in video-on-demand service, because the server broadcast bandwidth is
independent of the number of users. However, the required server bandwidth does depend on how much bandwidth each user can
use, as well as on the user’s initial waiting time. This paper addresses the issue of limiting the user bandwidth, and proposes a
new broadcasting scheme, named Generalized Fibonacci Broadcasting (GFB). In terms of many performance graphs, we show
that, for any given combination of the server bandwidth and user bandwidth, GFB can achieve the least waiting time among all the
currently known fixed-delay broadcasting schemes. Furthermore, it is very easy to implement GFB. We also demonstrate that there
is a trade-off between the user waiting time and the buffer requirement at the user.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Video-on-demand (VOD) services aim to deliver videos “instantly” to a large population of users over a high-speed
network with broadcast capability. We use the term “user” to mean either a set-top box (STB) on a TV receiver or a
computer that can receive a digital video, store it in some storage and concurrently play it from storage at the predefined
display rate. The traditional client–server paradigm (so-called “pull technology”) is not suitable for delivering “hot”
or popular videos to a massive number of users, since it does not scale well. To address the scalability issue, many
broadcasting schemes (based on “push technology”) have been proposed since 1995, when the pioneering work [17]
was published. (A little known work [3] with an almost identical idea was first published as a Philips Research Lab
technical report in 1991.) The main idea is to broadcast a set of hot videos periodically, so that a viewer can tune
in onto the particular video that s/he wants to watch. Such a scheme typically divides each video into a sequence of
segments and broadcasts all the segments periodically on separate (logical) channels. While a viewer is watching the
current video segment, it must be guaranteed that the next segment will be downloaded in time for continuous display
(continuity condition). Most of the research literature focuses on minimizing the maximum user waiting time for given
server bandwidth (or equivalently, minimizing the total server broadcast bandwidth for given maximum waiting time).
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The bandwidth here means the sum of the transfer rates (Mbits/s) of the communications channels used concurrently.
Clearly, the STB must be able to receive and process data arriving on several concurrent logical channels. The most
bandwidth-efficient broadcasting schemes that are currently known require the same bandwidth on the user side as that
on server side [5,7,11]. With the current technology, however, the user-side bandwidth (the disk speed, in particular) is
likely to be relatively narrow [9], since the STB must be inexpensive. Of course, the server must transmit a number of
popular videos concurrently, while a given user receives only one of them at a time. Many broadcasting schemes, such
as Pyramid Broadcasting (PB) [17], Permutation-based Pyramid Broadcasting (PPB) [1], Harmonic Broadcasting [7],
and Skyscraper Broadcasting (SB) [6], are based on the fixed start points policy. With this policy, the STB needs to
wait until the beginning of the first segment appears on a channel, before it starts to download the video. More recent
results on the performance limits of the broadcasting schemes based on the fixed start points policy can be found in
[2,16].

The rest of the broadcasting schemes adopts the fixed-delay policy in contrast to the fixed start points policy. In
such schemes, the user starts downloading immediately, but waits for a fixed amount of time before s/he starts viewing
the video. We propose a new fixed-delay broadcasting scheme, named Generalized Fibonacci Broadcasting (GFB), to
address the issue of limiting the user-side bandwidth. This scheme is a generalization of a scheme described in a paper
by Hu [4]. For any given combination of server bandwidth and user bandwidth, GFB can always achieve the least user
waiting time among all the currently known fixed-delay broadcasting schemes. Stated in another way, for any given
combination of user bandwidth and waiting time, GFB requires the least server bandwidth.

Another great advantage of GFB is that it uses much fewer segments (hence logical channels) than most other
schemes for the same combination of the server bandwidth, user bandwidth and waiting time. Moreover, the mapping
from the segments to the logical channels is the simplest possible, i.e., one-to-one. All this implies that it would be very
straightforward to implement GFB.

The rest of the paper is organized as follows. Section 2 reviews the currently known broadcasting schemes that take
user bandwidth limit into consideration. Section 3 introduces GFB and computes its waiting time as a function of
several parameters, such as the server bandwidth, the user bandwidth and the bandwidth of each channel. In Section 4,
we will compare GFB with all other similar schemes currently known, and also discuss how its performance is affected
as its parameter values are changed. We then derive in Section 5 a formula for computing the buffer size required at the
STB. Finally, Section 6 summarizes the contributions of the paper with some remarks. A preliminary version of this
paper containing some of the materials presented here appeared in [19,20].

1.1. Basic notation

For simplicity, we concentrate on broadcasting one video. Throughout the paper we use the following notation:

b: video display (or consumption) rate in Mbits/s;
D: total display duration of each video in seconds;
n: number of segments each video is divided into, which equals the number of channels;
Si : ith segment, i = 1, 2, . . . , n;
Di : duration of segment Si in seconds.

∑n
j=1 Dj = D;

di : =Di/D;
w: initial waiting time (or latency) in seconds from the time a request is made until display starts;
w∗ = w/D: normalized wait time; 0 < w∗ �1.
B: total server bandwidth required to broadcast one video, expressed as a multiple of b (The server bandwidth will be

expressed as either Bb or simply B.);
Bj : bandwidth of the jth broadcast channel as a multiple of b, j = 1, 2, . . . , n; (B = ∑n

j=1 Bj );
U: user bandwidth, expressed as a multiple of b.

2. Previous work

In many existing schemes, the user bandwidth is the same as that the server uses to broadcast a video. Thus, they are
not interesting from our perspective (of limiting the user bandwidth) in this paper. Here we review some of the schemes
in which the user bandwidth is smaller than the server bandwidth.
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PB [17] segments a video in such a way that di+1 = �di holds for all i = 1, 2, . . . , n − 1 for some constant �,
where n is the number of channels. It is shown in [17] that the server bandwidth of PB is given by BPB = �n. The
continuity condition for PB only requires that, at any point, the user download from at most two consecutive channels
(i.e., channels j and j + 1). Since all channels have the same bandwidth in PB, the user bandwidth is thus twice the
channel bandwidth, i.e.,

BUser
PB = 2(BPB/n) = 2�. (1)

The optimal value for � that minimizes BPB is typically larger than 2 [17]. Therefore, if such a value is chosen for �, it
follows from Eq. (1) that BUser

PB > 4.
PPB [1] is similar to PB, except that each channel is subdivided into p staggered subchannels, and the user uses at

most one channel at a time. The user bandwidth requirement in PPB is thus

BUser
PPB = BPPB/(np). (2)

If the “optimal” value for � that minimizes BPPB is used, the user bandwidth for PPB (when p = 2) is usually greater
than 2.5.

SB [6] uses three service processes or threads to receive and playback data segments. As two loader processes
download from two streams at the display rate b and fill a buffer with downloaded data, the other thread displays the
data. So the user bandwidth requirement of SB is

BUser
SB = 2, (3)

which is independent of the server broadcast bandwidth.

2.1. Modified schemes to limit user bandwidth

Pâris and Long studied the issue of limiting user bandwidth in [14]. They modified two existing broadcast protocols,
namely, Fast Broadcasting (FB) [8] and New Pagoda Broadcasting (NPB) [11], so that the user bandwidth would never
exceed three or four times the display rate b. The modified FB with the user bandwidth limited to 3 and 4 will be
referred to as FB-3 and FB-4, respectively. Similarly, the modified NPB with the user bandwidth limited to 3 and 4 will
be referred to as NPB-3 and NPB-4, respectively. Their study shows that the modification entails a server bandwidth
increase by no more than 15%. The server bandwidth requirements of FB-3 and NPB-3 are compared in Fig. 5 in
Section 4.

2.2. Fixed-delay schemes

The schemes based on the fixed-delay policy use “greedy” downloading. Namely, the user (STB) starts to download
data from the moment it decides to download and display a specific video (this time will be referred to as time 0), and
the waiting time (or latency) is always the same, i.e., independent of the time the request is made.

Poly-Harmonic Broadcasting (PHB) [13] was the first scheme to utilize the fixed-delay policy and greedy download-
ing. To achieve reasonably short waiting time, it must use an excessively large number of channels with increasingly
smaller bandwidth. So, this scheme is considered to be of only theoretical interest.

Unlike PHB, both Greedy Equal Bandwidth Broadcasting (GEBB) [5] and Fixed-Delay Pagoda Broadcasting (FDPB)
[12] use channels of equal bandwidth. The latter has a parameter m defined by m = Nw∗, where w∗ denotes the
normalized waiting time and N is the number of pages (or fixed-size segments). When parameter m is increased,
keeping w∗ fixed, its bandwidth requirement decreases, but N must be increased proportionally. The above three
schemes all require the user to download data from all channels concurrently, and are the most “efficient” among
the fixed-delay schemes in the sense that the asymptotic lower bound on their waiting time is the shortest possible.
However, the “costs” incurred in getting close to this bound as their parameters are changed are different for the three
schemes. The optimization of the number of subchannels in FDPB is discussed in [10].

FDPB was modified in [12] to limit the user bandwidth. The modified version with the user bandwidth limited to 2
will be referred to as FDPB-2. It is one of the most efficient schemes with a user bandwidth limit.
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3. Generalized Fibonacci Broadcasting (GFB)

The temporal bandwidth map was introduced in [4] and consists of the playout plane and download plane. Fig. 1
illustrates the temporal bandwidth map of a broadcasting scheme presented in [4]. The playout plane shows a sequence
of segments (n = 5 segments in this example) that are displayed. Segment Si is drawn in such a way that its length is
proportional to its display duration, Ddi . The download plane shows that segments S1 and S2 are downloaded during
the initial waiting time (w), starting at time 0. In general, as soon as the downloading of Si completes, its display starts,
and the downloading of Si+2 commences. To satisfy these continuity conditions, the segment durations must be

D1 = 1, D2 = 2, D3 = 3, D4 = 5, D5 = 8, D6 = 13,

if the duration D1 of segment S1 is considered as a unit. They satisfy

D1 = 1, D2 = 2D1, and Di = Di−1 + Di−2, for i = 3, 4, . . . .

It is observed that these numbers are identical to the Fibonacci sequence (if the first term of the Fibonacci sequence
is dropped). We therefore refer to this scheme as Fibonacci Broadcasting. We have n = 5 in this example, but other
integer values for n will work as well.

The server repeatedly broadcasts each of the n segments on a separate channel with bandwidth b (i.e., normalized
bandwidth 1). Therefore, it takes the same amount of time to download a segment as to display it. Note that at most
two segments are downloaded concurrently at any time by a user, namely, the user bandwidth is limited to 2b.

From now on, we will use the normalized duration di of each segment Si over the entire video,

di = Di

/
n∑

j=1

Dj = Di/D. (4)

We thus have

n∑
i=1

di = 1. (5)

In order to see how we could reduce the waiting time w, note that during the display of the last segment S5 in the above
example, there is no downloading activity. This implies that, during this period, the total user bandwidth equal to 2b is
being wasted, while during the display period of segment S4, half of the user bandwidth (equal to b) is being wasted.
If we can use channels for a longer time, then we could make better use of them, thus reducing the wasted bandwidth.
This can be accomplished by increasing the number of segments (channels), while keeping the total server bandwidth
the same, as we see now.

Since it takes (normalized) time d1 to display S1 and S1 must be downloaded in (normalized) time w∗ from a channel
with bandwidth equal to b, we obviously have w∗ = d1. To see the effect of the number of segments n on the waiting
time w∗, let us compute w∗ for Fibonacci Broadcasting with different values of n. For a given value of n in column 1,
column 2 of the table in Fig. 2 shows dn as a multiple of d1.
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Fig. 1. Temporal bandwidth map of Fibonacci Broadcasting.
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Fig. 2. Waiting time vs. server bandwidth in Fibonacci Broadcasting.
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Fig. 3. Illustration of Generalized Fibonacci Broadcasting (GFB): K = 3 and c = 1/g in this illustration.

For each value of n in column 1, column 3 shows the normalized waiting time. The entry at row 2 (n = 3) and
column 3, for example, was computed as follows. Since d3 = 3d1 and d2 = 2d1, we have 1 = d3 + d2 + d1 = 6d1, hence
d1 = 1

6 and w∗ = d1 ≈ 0.1667. Column 3 shows that increasing n is very beneficial for reducing the waiting time.
Unfortunately, increasing n by 1 entails the addition of one more channel of bandwidth b. In this paper, we are

interested in minimizing the waiting time w (or w∗) for fixed server bandwidth and user bandwidth. Therefore, if we
double n, for example, we must cut the bandwidth of each channel by half, so that the total bandwidth requirement
remains the same. With this introduction, we can now present our model. Just like Fibonacci Broadcasting, on the server
side, each video is divided into n segments and each segment Si is broadcast on its dedicated logical channel, so that
the number of channels equals n. Unlike Fibonacci Broadcasting, however, each channel now has the same bandwidth
b/g, where g (> 0) is a configurable parameter. At time 0, the user begins to download video segments from the first
K (instead of 2) channels, where K is an integer constant satisfying 1�K �n. After fixed delay, w (=Dw∗), the user
can begin to display S1.

As shown in Fig. 3, at this time, downloading from the first channel stops, as the user moves on to download from
channel K + 1, while continuing to download data from channels 2, . . . , K . In general, for i = 1, 2, . . . , n − 1, the
user ceases to receive segment Si+1 when the previous data segment Si has been completely displayed. Since we have
Bi = 1/g for all i by definition, the server bandwidth is simply

BGFB = n/g (6)

and the user bandwidth is limited to K/g, or

BUser
GFB = K/g. (7)
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From Fig. 3, we can derive the continuity conditions of GFB as follows:

d1 = (1/g)w∗, (8)

d2 = (1/g)(w∗ + d1) = [1 + (1/g)]d1,

d3 = (1/g)(w∗ + d1 + d2) = [1 + (1/g)]2d1,

. . .

dK = (1/g)(w∗ + d1 + · · · + dK−1) = [1 + (1/g)]K−1d1, (9)

dK+1 = (1/g)(d1 + · · · + dK) = ([1 + (1/g)]K − 1)d1, (10)

dK+2 = (1/g)(d2 + d3 + · · · + dK+1),

dK+3 = (1/g)(d3 + d4 + · · · + dK+2),

. . .

dn = (1/g)(dn−K + dn−K+1 + · · · + dn−1).

The above recurrence relation resembles the generalized Fibonacci sequence. Hence the name GFB. We use GFB(K/g)
to denote GFB with parameters K and g. The total number of channels, n, is another design parameter, which is not
explicitly specified, since we want to vary it for a fixed pair of K and g values. If we set K = 2 and g = 1, for example,
then each broadcast channel has normalized bandwidth equal to 1/g = 1, and the user downloads data from at most
K = 2 concurrent channels, limiting the user bandwidth to U = K/g = 2. As in Fig. 2, different choices for n lead to
different waiting time w∗.

By substituting Eq. (8) into the equation below it, we can express d2 in the form d2 = f2(g)d1, where f2(g) is a
function of g. Similarly, for each i = 2, . . . , n, we can express di in the form di = fi(g, K)d1, where fi(g, K) is a
function of g and K. Finally, by substituting all di into Eq. (5), we get

d1 = 1

1 + ∑n
i=2 fi(g, K)

. (11)

Since w∗ =gd1 from Eq. (8), we now can express w∗ in terms of g and K. Note that d1 of Eq. (11), hence w∗, implicitly
depends on n. Given g and K, for different values of n, one can compute B = n/g and w∗.

Fibonacci Broadcasting is clearly a special case of GFB, where g = 1. In Fig. 4, {di} for two different combinations
of parameter values are plotted. The +’s represent d1, d2, . . . , d6, when K =2, g=1, and n=6, which can be computed
from the above recurrence relation (they are also given in Fig. 2). Similarly, the ×’s at 0.5, 1, 1.5, . . ., 5.5, and 6 (on the
horizontal axis) represent d1, d2, . . . , d12, when K =4, g =2, and n=12. Thus, in these two cases, the user bandwidth
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is the same since K/g = 2. It is seen from Fig. 4 that d1 for the latter case is much smaller than that of the former.
Therefore, increasing the number of channels from 6 to 12 has a beneficial effect of reducing the waiting time w∗ =gd1,
since g doubled but d1 was reduced to much less than half.

4. Comparisons

In Section 4.1, we compare several known schemes with fixed user bandwidth and GFB(K/g). We first fix the user
bandwidth to 3 or 2, and compare the server bandwidth and/or waiting time (w) of different schemes.

4.1. GFB vs. other broadcasting schemes with user bandwidth limit

Fig. 5 compares the waiting time of FB-3 [14] and NPB-3 [14] with that of GFB(9/3), each of which limits the user
bandwidth to 3. It is seen that FB-3 is the clear loser among the three. Actually, the relationship between the waiting
time w and the server bandwidth B for FB-3 is the same as that for GFB(3/1) shown in Fig. 9. However, FB-3 uses
much more segments (hence channels).

Fig. 6 compares, FDPB-2 (with its parameter m = 100) [12], GFB(6/3) and GFB(8/4), all of which limit the user
bandwidth to 2. (The waiting time achieved by FDPB-2 for the server bandwidth above 7 are not available to us.) For
example, for server bandwidth of 7, GFB(6/3) and FDPB-2 achieve waiting times of 42.7 and 49.3 s, respectively, for
a 120 min video. GFB(6/3) achieves this using n = 7g = 21 segments (i.e., 21 logical channels). Each “channel” (of
bandwidth equal to the display rate b) of FDPB-2, however, is divided into many “subchannels” (e.g., 7 “channels” are
divided into 458 “subchannels”). “Subchannels” are really separate logical channels, and as such require demultiplexing
within a “channel” at the user, which incurs additional processing time. It is also observed that, with server broadcasting
bandwidth of 4 and 5, FDPB-2 achieves shorter waiting times than GFB(6/3). A nice feature of GFB(K/g), however,
is that there are so many ways to choose the parameters K and g, while keeping the user bandwidth U =K/g fixed. For
example, Fig. 6 also plots GFB(8/4), which has shorter waiting time than both FDPB-2 and GFB(6/3). FDPB-2 also has
a parameter m that can be increased to improve its performance. However, it will increase the number of “subchannels”
even further.

4.2. Choosing values for K and g

In Fig. 7, we vary parameters K and g, while keeping user bandwidth U =K/g fixed at 2. Note that the waiting time
w∗ becomes shorter, as K is increased.
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Fig. 8 is a similar graph with K/g = 4. The first five curves from the top are for K = 5, 6, 7, 8 and 9, respectively.
The bottom two curves are for K = 20 and 21, and they are hardly distinguishable.

From Figs. 7 and 8, we can see that if we keep the user bandwidth U=K/g constant, increasing K and g proportionally
leads to reduced server bandwidth for GFB(K/g). Note that K is an integer, but g can be an arbitrary positive number.
In general, there is not much gain when g (=K/U) is increased beyond 4 (for U �4; larger for U = 2). For the bottom
two overlapping curves, g�10 holds.

To see the relative effect of changing K with U = K/g fixed vs. changing U, Fig. 9 plots two curves, GFB(3/1) and
GFB(6/2), together with GFB(2/1) and GFB(4/2). An interesting phenomenon is the relative performance of GFB(4/2)
vs. GFB(3/1). Even though GFB(4/2) limits the user bandwidth to 2, while GFB(3/1) limits it to 3, GFB(4/2) performs
better than GFB(3/1). This implies that increasing the number of user channels K from 3 to 4 more than compensates
for the reduction of user bandwidth from 3 to 2. However, if we compute the values of g=K/U for these two cases, we
get g = 1 for GFB(3/1) and g = 2 for GFB(4/2). Based on this and other evidences, we believe that g is more important
than K in determining the performance of GFB(K/g) when U varies.

Finally, Fig. 10, shows the performance of GFB(K/g), when K is varied while keeping g constant (g = 2 in this
case). From this figure, we can see how quickly the performance improves as K is increased. In the extreme case where
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the user downloads from all available broadcast channels concurrently (K = n), GFB coincides with Greedy Equal
Bandwidth Broadcasting [5] (see Section 2.2).

4.3. Buffer requirement

Let tj denote the time (measured from the display start time) when segment Sj has just been downloaded and is
about to be displayed. It is easy to see that tj can be calculated as

tj =
j−1∑
i=1

Di = D

j−1∑
i=1

di .

Clearly, at time tj . the buffer must contain all of segment Sj . In addition, parts of segments Sj+1, Sj+2, . . . , Sj+K−1
are also in the buffer, since up to K segments are concurrently downloaded. Let m= j +K − 1. Since the downloading
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of Sm completes at time tm, after the display start time of segment Sj it will take time tm − tj until the downloading of
Sm will complete. Let us use the notation

T (j, m) = tm − tj = D

m−1∑
i=j

di .

Since each channel has bandwidth b/g, the total download time Tm for segment Sm (of size Ddmb ) is given by

Tm = Ddmg.

The amount of data in segment Sm is Ddmb. Therefore, the amount of data Pj (m) from segment Sm that is in the buffer
at time tj is

Pj (m) = Ddmb

(
Tm − T (j, m)

Tm

)
= Db

⎛
⎝dm − 1

g

m−1∑
i=j

di

⎞
⎠ .

Define u(j) = min{n, j + K − 1} as the maximum segment number that is buffered at time tj . The amount of data in
the buffer at time tj is given by

Ddjb +
u(j)∑

m=j+1

Pj (m) = Db

⎡
⎣dj +

u(j)∑
m=j+1

⎛
⎝dm − 1

g

m−1∑
i=j

di

⎞
⎠

⎤
⎦

= Db

⎡
⎣u(j)∑

m=j

dm − 1

g

u(j)∑
m=j+1

m−1∑
i=j

di

⎤
⎦

= Db

⎡
⎣u(j)∑

m=j

dm − 1

g

u(j)−1∑
i=j

(u(j) − i)di

⎤
⎦ .

Note that the above buffer size depends on g, K, n and di . Quantity dj in turn is a function of K, g and n.
Fig. 11 plots the buffer size at the points in time when a segment has been completely downloaded and is about to

be displayed. The server bandwidth is set to 5, so that B = n/g = 5, and each user can download from up to K = 4
channels. We vary the parameter g in GFB(4/g) from 1 to 4. For GFB(4/1), for example, we get n = 5 from n/g = 5.
In other words, the video is divided into five segments, and each segment is broadcast on a channel with bandwidth
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Fig. 11. Buffer size comparison (B = 5).

equal to the display rate b. Each of the five data points on the solid curve in Fig. 11 shows the amount of data in the
buffer at the time when the corresponding segment has just been downloaded in its entirety. Initially segments S1 to
S4 are downloaded from channels 1 to 4. Once S1 has been completely downloaded and its display starts, segment S5
starts to be downloaded on channel 5. From this time on, the buffer is filled at the rate of 4b, while data are taken out
of the buffer for display at the rate of b. Therefore, the buffer grows at the net rate of 3b. As the display of S1 finishes,
so does the downloading of S2. From then on, only segments S3 to S5 will enter the buffer at a total rate of 3b (net rate
is 2b). Eventually, while S4 is being displayed only S5 is downloaded, so that the net rate into the buffer becomes 0.
During this time, the buffer size stays the same, as seen in Fig. 11. Let us now consider GFB(4/4). Since K = 4 and
g = 4 in this case, we have U = K/g = 1, i.e., the user’s bandwidth is only b. Since the downloading rate is the same
as the display rate, the buffer size stays constant as seen in the bottom curve in Fig. 11. Towards the end, however, less
than four channels of bandwidth b/4 are used, and therefore, the buffer size starts to decrease. Since n/g = 5, we have
n = 20. This is why there are 20 data points in the bottom curve. In Fig. 11, the segment numbers are “normalized”, so
that segment Si is plotted at horizontal position i/g.

It can be seen that the maximum buffer size (peak of each curve) is larger for larger U. In the worst case (GFB(4/1)),
as much as 50% of the video is in the buffer. However, there is a trade-off between the buffer size and the waiting time,
and the waiting time is smaller for larger U, as we observed in Fig. 10.

5. Summary and conclusion

We have proposed a new broadcasting scheme, called Generalized Fibonacci Broadcasting (GFB). It has three
configurable parameters, n, g and K, where g > 0 and K is an integer such that 1�K �n. In GFB(K/g), the server
uses n channels, broadcasting each video segment on a dedicated channel with bandwidth b/g, where b (Mbits/s) is
the video display rate. The user downloads data from at most K out of the n channels. Therefore, the user bandwidth
is limited to Kb/g, and the server bandwidth is nb/g. This gives a service provider great flexibility in choosing the
appropriate parameter values, according to the technology (and the budget) available in the given environment, such
as the bandwidths available to the users as well as the server. We demonstrated that increasing K and g proportionally,
while keeping user bandwidth Kb/g fixed, has the effect of reducing the server bandwidth required to achieve a given
waiting time (or reducing the waiting time for a given server bandwidth). Choosing a value g < 1 is possible, but the
performance degrades.

Another great advantage of GFB is that it will be straightforward to implement it. For example, GFB(6/3) with n=21
broadcasting channels (hence 21 segments) can achieve a shorter waiting time (about 0.6% of the total video length)
than FDPB-2 (with parameter m = 100), which is one of the most efficient broadcasting schemes with user bandwidth
limit that are currently known. In actual implementation, it may be desirable to choose an integer as g. Then an existing
channel with bandwidth b could be time-division multiplexed into g logical subchannels relatively easily. Last but not
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least, GFB gives fine-grained choices for the server and user bandwidths, provided by different combinations of K
and g. It is clear that GFB can be combined easily with the idea of “aggressive preloading” [15] (prefix caching) to
reduce the waiting time and/or the server bandwidth. The only change required is to set w∗ = d0 in Eqs. (8) and (9)
and to change Eq. (5) to

∑n
i=1 di = 1, where d0 is the normalized duration of the cached prefix. Recently, William and

Kirkpatrick derived an asymptotic lower bound for the server bandwidth of GFB [18].
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