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Abstract 

Chen, B., Tighter bound for MULTIFIT scheduling on uniform processors, Discrete Applied 

Mathematics 31 (1991) 227-260. 

We examine one of the basic, well studied problem of scheduling theory, that of nonpreemptive 

assignment of independent tasks on m parallel processors with the objective of minimizing the 

makespan. Because this problem is NP-complete and apparently intractable in general, much 

effort has been directed toward devising fast algorithms which find near optimal schedules. Two 

well-known heuristic algorithms LPT (largest processing time first) and MULTIFIT, shortly MF, 

find schedules having makespans within $, $, respectively, of the minimum possible makespan, 

when the rn parallel processors are identical. If they are uniform, then the best worst-case perfor- 

mance ratio bounds we know are 1.583, 1.40, respectively. In this paper we tighten the bound 

to 1.382 for MF algorithm for the uniform-processor system. On the basis of some of our general 

results and other investigations, we conjecture that the bound could be tightened further to 1.366. 

Keywords. Bin packing, multiprocessor scheduling, heuristic algorithms, uniform processors, 

worst-case analysis, performance ratio. 

1. Introduction 

A well-known deterministic scheduling problem concerns the nonpreemtive 

assignment of independent tasks to a set of processors in an effort to minimize the 

makespan (the total elapsed time from the start of execution until all tasks are com- 

pleted). Formally, we are given a list LZ= {a,, . . . , a,} of independent tasks, each 

task ai having processing time ~(a;) and a set 9 = (PI, . . . , Pm} of m > 2 uniform 

processors. With each P; associated a relative speed (Y~. The objective is to find a 

schedule, i.e., an assignment of 9 to 9, which minimizes the maximum finishing 

time: 

s(9) 
z;(9) = min max - 

ISiSrn Q; ’ 
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where s(S)= C,,, s(a) and the minimization is over all assignments of 9. 

This problem can be readily demonstrated to be NP-complete [5] and is therefore 

intractable in general. Hence practical heuristic algorithms, which provide near op- 

timal solutions, have been enjoying great favor among our schedulers. Two of them, 

called LPT and MULTIFIT, shortly MF, are well known. When all a;‘s are equal 

we know that, [6,7], 

R(LPT) = 4, and R(MF) = $, 

where, R(. ) is defined as follows: 

R(A) = sup [,~~/o,/ zJ&G?): A constructs an assignment 9 of 6% 
1 

, 

where the supremum is over all 9, m and (x;‘s. If a;‘s are not equal, then the best 

results we know are [3,2,4] 

1.52<R(LPT)<1.583 and 1.341<R(MF)<1.4. 

In this paper we show that 

R (MF) < r, 

whereristhepositiverootofequation2r3+4r2-5r-6=O,i.e.,r=1.381501643.... 

After briefly describing the MF algorithm in the next section, in Section 3 we 

assume the existence of a counterexample to a more general bound 1.366, and hence 

the existence of a minimal counterexample whose properties we analyze. In Section 

4 we analyze more specifically a minimal counterexample to the bound 1.382. From 

our assumption contradictions are deduced. Basing the general results obtained in 

Section 3 and some other investigations made, we conjecture that R(MF)< 1.366. 

2. Description of MF and notations 

The scheduling algorithm MF we considered is based on the bin-packing algorithm 

first-fit decreasing (FFD) first. We consider each processor 4 as a bin and its speed 

ai as its capacity, and consider each task ai as item with size .~(a;). When all bin 

capacities are multiplied by a constant, or expansion factor, a deadline is specified 

and hence a successful packing given by FFD is actually a schedule meeting this 

deadline. We would like to find the smallest expansion factor r such that any list 

that can be packed in a set of bins of capacities a,, . . . , a, will be successfully packed 

by the FFD algorithm with the bin capacities multiplied by the expansion factor r. 

To achieve this goal the MF algorithm first arranges the bins in nondecreasing order 

of capacities, and arranges the list of items in nonincreasing order of sizes. Then 

a lower bound and an upper bound are initiated for the expansion factors. At each 

step we apply FFD, i.e., each item is considered in turn to be placed in the first bin 

(the P, with the smallest subscript) in which it will fit, for an expansion factor value 
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of C midway between the current upper and lower bounds. If it succeeds, C becomes 

the new upper bound, otherwise the new lower bound. 

Our main result is that: when the expansion factor is set to be 1.382, then FFD 

will succeed. 

In the following sections we assume to be given a list of items 9 = {at, . . . , a,} 

such that ~(a,) 2 ... ?s(a,J, and a set of m bins with capacities (x1 5 ... 5 CX~. For 

a, b E 9, by a < b we mean a precedes b in g (hence s(a) 2 s(b)). By I: = (6,) . . . , bk) 

we mean that the ith bin is packed with items bt < ... < bk. iPj 1 denotes the number 

of items packed in P;. P;[k] represents the kth item packed in P,. 

3. General properties of a minimal counterexample 

Let r, be the positive root of equation 2r2 - 2r - 1 = 0, i.e., r, = (0 + 1)/2 = 1.366. 

In this section we suppose that there exists a counterexample for expansion factor 

r,, or we will call r,-counterexample, that is, a list 9 of items and a set of bins of 

capacities (x1, . . . , a,,, such that 9 can be packed into these bins but FFD fails to 

pack 9 into the bins even of capacities PI = r,cr,, . . . ,/?,,, = ro’oa,. To simplify our 

argument we assume that 9 and m are minimal-that no set of fewer than m bins 

can be used to provide a counterexample and that, given m, no list with fewer than 

I_9 items will fail to be packed by FFD. All properties we deduced in this section 
also apply to any minimal r-counterexample with routine changes of r. to r for any 
r: r,srr 1.4. 

We assume by the minimality that the FFD packed all items but the last. Let 

.9= {P,, . ..) P,} be this packing of {w)- the /ast}. For convenience we normalize 

all bin capacities and item sizes so that the final has size 1. Let P* = {PI*, . . . , P,*} 
be some fixed optimal packing of 9 into bins of capacities aI,. . . , a,,, . Without loss 

of generality, we may assume s(P1*) 5 ... ~s(P,;1’), where S(Pi*) = C aE p, * s(a). Let 

d,=s(P;)-s(e*) and a;=-d,. 
First of all, we use the concept of domination from [l] and [4] to give 

Definition 3.1. A union of bins Uiel e c 9 is said to dominate UIEJ P,* c 9” if 

(i) There is a bijection CJ : I- J, such that a;~ (x,(;) for every i E I, and 

(ii) UiE, e= {a,, . . . , as} and UjEJ Pj*= {b,, . . . . b,}. There is a function 

f:{bl,...,b,}-t{al,..., as} such that for each ak, 

c (s(b): f(b) = ak} 5s(ak). 

Lemma3.2 [4]. For any Z,Jc{l,...,m}, lZ(=lJl, UiCIe cannot dominate 

UjEJ e*’ 

Sketch of proof. If we had such a domination, removal of bins U,,, P, and the 

items packed in them would result in a smaller counterexample. 0 
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Lemma 3.3. For i = 1, . . . , m, s(s) > rOcrj - 1 and dj> (rO - l)q - 1. In particular, if 
(xi> l/(rO- 1) then d,>O. 

Proof. The fact that the last item has size 1 and it cannot fit in any bin gives that 

s(P;)+l>p;. Sinces(P;*)saiwe haves(P;)-s(P,*)>(j3i-1>-cxj=(rO-l)cw,-1. 0 

Lemma 3.4. For any fl* E 9*, ifi*1 12. Hence CIj? 2 for all j. 

Proof. Suppose e*= {x}. If fi was empty when x was to be packed, then x was 

packed in a bin no later than P; since it was fit in 4. Thus the bin dominates e*. 

If P, was not empty, then the first item in c must precede x and P; dominates fi*. 

In either case Lemma 3.2 is contradicted. 

Since I~j*i 12 and s(a)? 1 for any aE9, aj~2 follows. 3 

Lemma 3.5. If cxi< 2r, then iP,* ( = 2. Let e* = (a, b). Then both a and b are packed 
by FFD after 5. 

Proof. (P;*l =2 is trivial since 2r0<3. Suppose aEP, (jsi). Since /3,=r001jZ2ro> 
u,>s(a) +s(b), b would fit in PI. Thus b E P, (k< j) else Pj would dominate Pj*. 
But then Pk must also contain an item at least as large as a since Pk L 2r,>s(a). 
Hence Pk dominates P;*. In either case we contradict Lemma 3.2. Suppose now 

b E 4 (j< i) and a E Pk (k> i). Since pjl 2ro>s(a) we know that PJ contains 

another item at least as large as a. Hence Pj dominates P,*, causing another contra- 

diction. 0 

Lemma 3.6. lP, 1 = 1 iff s(c)<s(fl*). 

Proof. If le. 1 = 1 then s(e*) must be greater than s(e) else P, dominates e*. Sup- 

pose s(q)<s(q*). By Lemma 3.3 we then have ai< l/(ro- 1)<3. If IsI 22 then 

lr: 1 = Ifi*1 = 2. Let P;*= (a, 6) and c= (u, u). Since a was after E: by Lemma 3.5 we 

have s(u)>s(a). Hence s(b)>s(u) by Lemma 3.2. Since b cannot be packed before 

E: by Lemma 3.5, it was not fit in I:. Hence S(U) + s(b) >/I,. But since s(a) + s(b) c: 
crj we then have 

S(U)-.s(a)>p,-ai = (ro- 1)qL2(ro- 1). 

Hence S(U) > 2ro - 1, and 

1 
ajLs(Pj*)>s(P,) = s(u)+s(u)~2ror -, 

r,- 1 

contradicting our assumption. 0 

For convenience, we give the following 
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Definition 3.7. An item x E _!Z? is said to be normal if s(x) <pi , otherwise abnormal. 
A bin P, E 9, or c* E W* is normal if all items in it are normal, otherwise abnormal. 

As in [I] and [4], we classify the bins of 9 and items of 9 by type according to 

the following scheme. If, after I: receives its first item, there is a total of k items 

in Pj when the next item is placed in a bin that follows Pi, then E: is called a k-bin. 

The k items are called regular. If no additional items are placed in 9 it is called 

regular, otherwise fullback and the subsequent item(s) are called fullback item(s). 
Items in a regular k-bin will be called of type X,, the first k items in a fallback 

k-bin will be of type Yk and fallback items of type Fk. Let b(e) = C {a E 4: a is 

regular}. 

Lemma 3.8. If cwj<2r0, then iP;( =1,2. If 181 =2, then P; is a fullback l-bin, 
s(P, [ 11) > 2r, - 1 and dj> 1 - r,(3 - 2r,). 

Proof. Suppose e= (b,, b,, . . . , bk), kr 2. By Lemma 3.5 we can assume fl*= (b, c). 

Since b was placed after P, by Lemma 3.5, s(b)ss(b,) and hence s(c)>s(bl) 
by Lemma 3.2. Since c was placed after 4, c could not fit in P,. Hence 

s(c)>s(b]) + ... + s(bk) 2 k. Moreover 2r0 > cr;zz s(b) + s(c) 2 2s(c) > 2k z 4, a con- 

tradiction. Hence kc 1, and 4 is a fallback l-bin if 14 122. 

Suppose Ie 1 = 2 and d,s,u, where ,U = 1 - rO(3 - 2r,). Then 

~(8) =~(b,)+~(bl)~ai+/~u. 

Since c could not fit in 4 according to the above discussion, 

s(b,) + s(c) > /3; = roai . 

Hence on one hand, 

or 
s(c)--(bl)>(rO- l)c+,u, 

Thus 

s(c)>1 +(ro- l)a;-,D. 

+ai~+(s(b)+s(c))rs(c)>l+(ro-l)~,-~. 

Hence 

(* - ro)2ro > (+ - r,)cq> 1 -fi, 

a contradiction, which shows that d;>p. 
On the other hand, since s(b) + s(c) 5 a,, combining (3. l), we get 

s(b,)>s(b)+(r,- 1)(Yiz2ro-1. 0 

(3.1) 

Lemma 3.9. If P; is a normal and regular k-bin, then each item in it exceeds 
(I /k)(fli- 1) in size unless P, is the last such bin. If Pi is a fullback k-bin, then 
b(P;) > (k/(k f l))pi. If in addition Pi is normal then each regular item in it exceeds 
(l/(k+ l))pi in size unless 4 is the last such bin. 
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Proof. Let P and P be normal and regular k-bins (i<j). If there is an item of pl., 

say aePi, such that s(a)i(l/k)(P;- l), then ~(P~[l])~s(a)~(l/k)(~,- 1). Hence 

S<Pj) = i s(P[[t])5ks(P[l])rP;-1 rpj-l, 
I=1 

which contradicts Lemma 3.3. 

Suppose P is a fallback k-bin. If b(P)< (k/(/z+ l))j& then s(P[k])s (l/k) x 

b(P) 5 (1 /(k + l))&. Hence any item succeeding P[k] can fit in P, contradicting 

the type of P;. Thus b(P) > (k/(k + 1))pi. Let P and PI be normal fallback k-bins 

(i<j). Then s(P,[l])r(l/k)b(P)>(l/(k+ l))b, since b(P,)>(k/(k+ l))pj. For any 

regular item UEP;, s(a)2s(Pj[l])>(l/(k+ l))DjL(l/(k+ l))pi since a precedes 

q11. 0 

Lemma 3.10. Zfe= {x} then IsI = 1 for all j<i. 

Proof. By Lemmas 3.3 and 3.6, 

S(X) = S(s) < S(Pi*) ( (xi < ~C2r,~/I, ~pj. 
0 

Hence x is normal and P was not empty when x was to be packed. Thus s(P, [I])? 

s(x). Since pjlPj, Pj could be packed with more than one item if so could Pj. 

Set l=max{i: 141 = 1, 1 cism}. Such an I should exist. Otherwise s(P)zs(P*) 

for all 1 sism by Lemma 3.6, and we would have 

s(9) = 1 + i s(P;) L 1 + i s(P*) = 1 +s@?). 
I=1 ,=l 

Let 7;cP (i= 1, . . ..I). Then T, < .-. < 7; (a,< l/(ro- 1)). They are the only items 

of type Xi. 0 

Lemma 3.11. For Iris/, s(?;)>2ro- 1. Zf 7;~l$* then ajL2ro. 

Proof. s(T)=s(P)>p,- 1 =rocri- lr2r,- 1. If T:EP* then ajZs(e*)L 1 +-~(T)>2re 

since lP,*/L2. 0 

Lemma 3.12. Let q be a normal k-bin (kr2) and Is*] =2. If P,* is also normal 
then P.*[l] is the regular item of a normal l-bin. 

Proof. Let q*=(a,b) and P=(u,u ,... ). If s(a)ss(u) then by Lemma 3.2, 

s(b)>s(u), and hence b is packed before Pi since IJ is regular. Let b E Pj. Then 

P,[l] < u since P is normal. Hence P dominates P*, which contradicts Lemma 3.2. 

Therefore we must have s(a)>s(u). If UE P then a = P[l] otherwise 4 would 

dominate P*. If 14 I= 1 then we are done. Suppose 14 1~2. Then Z$[2] cannot be 
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regular. Otherwise b < Pj[2] and hence b E Pjj, where Pj, is before Pj, which implies 

that 4, dominates P* since P,[l] < a. 0 

Lemma 3.13. Let rOsrl 1.4. Then in any minimal r-counterexample, s(7;)<2. 

Immediate results of Lemma 3.13 are: 

Corollary 3.14. If Pj is a fullback l-bin and ai? 2r,, then P; [ I] is abnormal. 

Proof. Suppose to the contrary that P[l] is normal. We show that s(P, [1])>2 and 

thus we have our contradiction by the fact that s(f:[l])>s(7;) and /3,</?;. If czi> 3 

then by Lemma 3.9, 

s(P; [ 11) > +P, = +r,q 2 +rO > 2. 

So we assume 2r,,<a;<3. Then IP*i =2 and let fl*=(a,b). Since 

s(a) 5 at-s(b) 5 a, - 1 < +rOcxi and i/3; < s(P;[l]), 

we have s(P;[l])>s(a). Hence s(b) >5[2] by Lemma 3.2. Since P;[l] is normal, any 

bin before P was not empty when P[ l] was to be packed. Hence if b ~4 then j> i 
or else Pj would dominate P* since it contains another item as large as P;[l]. This 

means that b could not fit in P: 

s(S[11)+#) > Pi. 

Noting that s(a) +s(b)~ a;, we then have 

s(P,[l])-s(a)>@,-l)ajr(rO--1)2r,= 1. 

Hence s(P[l])>s(a)+ 122. 0 

Corollary 3.15. cr, I: ... I a/ < 2 + 2.z0/r0, where q, = 4 - r,. 

Proof. Since p,<s(7;)+ 1 by Lemma 3.3, p,<3, or a/<3/r0=2+(3-2r&r0. 0 

As for the proof of Lemma 3.13, we leave it until finishing the proof of our main 

result. Then a sketch of proof is enough to make things clear. 

4. Proof of the main result 

In this section r is exclusively used to denote the positive root of equation 

2r3 +4r2- S-6=0 (i.e., r= 1.381501643...). By using a little sophisticated weight 

function w, we prove that the MF algorithm for scheduling uniform processors pro- 

duces a schedule whose length is at most r times the minimal schedule length. 

As preparations for the proof, we let 
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(r,= 2+2A (ArO), 

& =+-r-(r-l)A=0.118498...-(r-l)A, 

= 2-4r+f-4(r- l)A = 0.093243...-4(r- l)A, 

A =3(&+6)- 3-4 
( > 

= y - 15r+; - 15(r- 1)A =0.530625... - 15(r- 1)A. 

Lemma 4.1. For Isis/, s(q)>2r- 1 +2rA and ~,I...Ic?,<~E. 

Proof. By Lemma 3.3 we have 

s(T,)=s(P,)>&-1 =rcx,-1 =(2+2A)r-1=2r-1+2/-A. 

Hence, for any is 1, 

~(7;) 1 s(T) > 2r- 1 + 2rA. 

On the other hand, 

a, = S(P/*> - S(P/) I a/ - S(7;) < c!/ - (p, - 1) 

= 1 -(r- l)a,= 1 -(r- 1)(2+2A) = (3-2r)-2(r- 1)A. 

Since @,*)I ... %s(P,*) and s(P,)r 1.. ?s(P,), it is then immediate that a, 5 ... 5 
_ 
d,. 0 

Let 
2r-t 1 

A0 = - 
4(r2 - 1) 

1 = 0.035445..., 

p,, = (:-2r)i,+ (t-2,+ I> = 1.188404..., 

a’= (2r- l)+,u,+2rA = 2.951407...+2rA, 

a”=&(l+4+&- 4-4A = 3.863662...-4A. 

We use also X, to represent the set of all items of type X, if no confusion is caused. 

Lemma 4.2. A < &. 

For the same reason as for Lemma 3.13, we leave the proof to the next section, 

where a sketch is enough. 

Now we can define the following weight function w: 
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Table 1 

s,=(b++)r/(r-l)-+, s2=($+f)r/(r-I)-_1 

Item type a,<2r Zrsa;<a” 

XI 

Yl 

6 

x2;l 

Yzh 

F2 

X,’ 

Y3,F3 

x4 

others 

s 

S-3& S-(&+6) 

S-A S-(&+6) 

s-(r-l)‘, if ~5.9,. 

s-(E+/$), if s,<s5s2, 
P; normal, 1 f: fl XI 1 = 1, 

S-(&+6), otherwise. 

s-(&+6) 

S-A, if a, < a’, 
S-2& otherwise. 

S-(&+6), if a,<a’, or p, -s(P,)<2i0, or P, abnormal, 

s--E, otherwise. 

s-(&+6) 

s-(&+B) if P, abnormal, 

S-C, otherwise. 

S--E 

a If a is the last item in the last normal regular 2-bin, then w(a) =~(a)-A. 

b If a is the last regular item in the last normal fallback 2-bin and a, < a’, 8, - s(P,) < ~0 - 1, then W(U) = 

s(a)-A. 
u If a is one of the last two items in the last normal regular 3-bit, then w(a)=s(a)-(&id). 

If a is the last item in 2 then w(a) = s(a) - E. Let a E fl. If cxj2 a” then w(a) = 

s(a) - E. Other details are in Table 1. 

We use w(d;) to denote w(c) - w(c*) and w(aj) = -w(d,). 

The remainder of the proof consists mainly of a weight argument. It will be proved 

that: 

The FFD bins P= {Pi, . . . . P,,,} can be grouped so that the total weights of items 

in each group are often greater than that of items in the group of optimal bins cor- 

responding those FFD bins. In case they are not, the loss of weights can be compen- 

sated for by a gain from other groups. 

Formally, by a sequence of case analyses, we show that: 

Theset {l,..., m} of indices can be partitioned into 4, . . . , I, (i.e., Zj O Zj = 0, i #j, 

u:=, Z;={l,..., m}) such that for any ZE 9 = {Z,, . . . , I[}, the following conditions, 

which will be called D(Z), will be satisfied: 

El ~(6) 1 ;;, MS*) + kI&, 

where k,=max{O, CiG, (151 - ifl*j)}; or 
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B. Chen 

and 

& N?*>< c w(S)+I;Ic. 
icl 

An argument about the conservation of total weights and numbers of items in g 

will then allow us to contradict the assumption that we had a counterexample. 

We use 9 to record our appropriate partition of { 1, . . . , m}. Initially we let 9 = 0. 

4. I. P, is a regular l-bin 

The fact from Lemma 3.11 that any item of type X, cannot be packed in c* 

shows that 

w(P;*) i s(p;*) - 2E. 

By Lemma 4.1 we then have 

W(q)- W(Pj*) 1 s(S)-(s(Pi*)-2E) = 2&--d, > 0. 

Hence we set 9= 9U {i}. 
Before analyzing further, we give the following: 

Lemma4.3. Suppose lel=kr2 and w(fl)=s(pi)-p (p10). If d,>p+(k-4)e 
then an appropriate set I of indices containing i can be decided so that condition 
D(I) is satisfied. 

Proof. Suppose first that P;* fl X, = 0. Then w(c*) <s(q*) - 2s. Hence 

w(di) 2 (S(c)-p)-(S(P)*)-2E) = d;+2E-_ 2 (k-2)~. 

Therefore we can let I= {i}, and set 9 + 9 U I. 

Suppose now /p,*IlX,l = 1, and 7;~P;:*(l <jlI). Then w(fi*)~s(P;*)-E. Hence 

w(d;) =_ (s(s)-p)-(s(p;*)-E) = d;+&-p. 
Thus 

w(d;) > (k- 3)&, if k L 3, 

and 

w(ai) < E, if k = 2. 

In either case we can let I= {i, j} and set .a* (9- (j}) U I. 
If /4*(7X,1 r2 then let Z’={j: ~;EC*, 1 Q<l). Since 

w(di)rdi-~>(k-4)&, if kr4, 

w(d;) < E, if k = 3, 
and 

w(c?;) < 2.5, if k=2, 
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we can let I=Z’U{i} and set ~*(.z-U,,, (j})UI’. 0. 

4.2. E: is a fallback l-bin 

Case 1: aj<2r. By Lemma 3.8 we have 14 I= 2 and d,> 1 - 2re. Since w(e) = 

s(q) - (A + 3~) and w(P;*) <s(P;*) - 28, we obtain 

Let Z={i} and #*#VI. 

Case 2: (xi2 2r. 
Case 2.1: 14 1 = kr4. Since w(e) =s(e) - k(E+ 6), if we can show that d,> 

k(E + 6) + (k - 4)c, then by Lemma 4.3 we are done. So we suppose to the contrary 

that d,s k(2& + S) - 4~. Noting that the first item of fl must be larger than half the 

bin size by Lemma 3.9, we then have 

~(9) > max{rcr;- 1,2(k- 1)). 

Hence 

d;?s(fi)-a;>max{(r-l)a;-1,2(k-1)-a;}. 

Therefore 

(r- l)a;- 1 < k(2&+6)-4&, 
and 

2(k- 1)-cx, < k(2&+6)-4&. 

Combining the two inequalities, we get 

(r-1)(2-2&-_)k-4(r-l)*<(r-l)cr;<(2&+d)k+(l-4&), 
or 

k< 
4(r- l)‘+(l-4~) 4r2-4r- 1 

(r-1)(2-2&-6)-(2&+6) 5 6r2-3r-7 
< 4, 

a contradiction. 

Case 2.2: lP; 1 = 3. Since e[l] is abnormal by Corollary 3.14, we have s(e)> 

p, +222r+2. Hence 

dj?max{2r+2-cr;,(r-l)cr-1) ?2r-?. 
r 

But 

hence 

d;> 3(e+d)-e. 

Noting that w(c) = s(c) - 3(& + a), we are then done by Lemma 4.3. 

Case 2.3: 141 =2. The fact that c[l] is abnormal implies that 

d,rmax{2r+1-aj,(r-l)aj-l}?2r-1-2>26. 
r 
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Since w(e) = s(c) - 2(e + 6) we are also done by Lemma 4.3. 

4.3. e. is a regular 2-bin 

(At most (d - (r- 1)2 + &) of weight is needed for compensation to this class of 

bins.) 

If 4 is abnormal, then d,zmax{2r+ 1 -a;, (r- l)a;- 1) z2r- 1-2/r. If fl* is 

abnormal, then djz (r - l)a, - 11 (r- 1)(2r + 1) - 1. Hence 

d,>min 2r-I-2 (r-1)(2r+l)-1 =2r-1-?>26 
( r’ > r 

if at least one of Pi and Pi* is abnormal. Therefore, considering that W(q)> 

s(s) - 2(a + a), we are done by Lemma 4.3. 

In the following we then suppose that both f: and q* are normal. (If P; is the last 

normal regular 2-bin, then we add (d - (r - 1)2 + 6) of weight to its second item.) 

Case 1: fl*flX, =0. If Ifi*lr3 then w(e*)-3~ and d;>(r- l)a;-12 

3(r- l)- 1=3r-4>26-&. Hence 

Set Z-{i} and 9=9lJZ. 

If lq*l =2 then, by Lemma 3.12 P;*[l] is a normal, regular item in a fallback 

l-bin since p,*nX, =0. Hence w(Z$*[l])=s(Z$*[l])-3~ by Corollary 3.14. Thus 

w(Pi*) I s(P;*) - 4~ and 

since di>O by Lemma 3.6. 

Set I= {i} and S= 9UZ. 

Case 2: 1fi*nXJ =l. Then w(P;,*)<s(P,*)-E. Let TE,* (lsjlf) and I:= 

(u,, u,). Then, by Lemma 4.1, ai>2r(l+ A). We are to show that w(&)<E so as to 

set Zt {i,j} and 9= (9- {j})UZ. 

Let 

si =+5++)-+; s2 =++i)-3; 

e(x) = 1 1, x>o, 

0, x50; 

4 = mw -s,); 632 = iqs(u2) -s,). 

Case 2.1: s(u2)>s,. Then 

W(s) =s(fl)-(2~+(++&(e~+e~))d), 

di>max{s(ui)+S(U2)-ai,(r-l)ai-1) 
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r-l 
L (s(u,) + s(u*) - 2s+-- 

r--l 
+(2s*+ l)-- 1 

r r 

r-l 
= 3 + (.s(u,) - sz)+- 

r-l 

r 
+w42)-szy- 

Noting that 8, = 0 iff 
r-l 

-ms < (s(q) -sz)---- IO (t= 1,2), 
r 

we then have 

Hence 

d; > (4 + $6, + 8,))6 

or 

w(d,)>d;+c-(2&+ 

W@,> < E. 

(i + +<e, + e,))s) > -E, 

Case 2.2: s(u~)~sl<s(ul). If 9 is not the last normal regular 2-bin, then 

~(Pj)=s(P,)-(r-l)2-(&+(~+~0e,)~). Since, by Lemma 3.9, s(~~)>~(~,-l)~ 

+(2r2(1 +A)-l)zr’(l +A)-+, we have 

r-l 
dj::max((r2-~)+~(~,)-~~,(r-l)a;-l1)~(~(~I)+r2(1+~)+~)-- 1 

r 
r-l 

z(S(z4J-SZ)~+ 
> 

+(r(r-1)(1 +A)-+) 

r-l 
2 @04 -s*) r ---++@t((r-I)‘-&). 

Since 8, = 0 iff 
r-l 

-&S < (s(q) -s2)- I 0, 
r 

we obtain dj>(r-l)2-E+(1 +&B,)is_ Hence 

w(d,)r~+&-(&+(~+~B,)6+(r-_)*)>-e, 
or 

PC@;) < E. 

If P, is the last normal regular bin, then w’(P,) = s(P,)-((r-1)2+e+ 

($ + &tYi)s- ATi), where w’ stands for the new weight after compensation. Since 

and 

d, = (s(q) - ~(7;)) + s(u2) - (s(e*> - ~(7;)) 5 s(u2) - 1, 

d,>(r-l)cr,-1 z(s(7j)+l)(r-1)-l, 

we have 

s(uZ)>(s(TJ)+l)(r-1)-1(2r+2rA)(r-1). 
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Hence 
r-l 

d,rmax{~(~~)+~(~~)-a,,(r-1)a~-1)L(s(u,)+s(u~)+1)----- 1 
r 

r-l 

( 

r-l 

> 

r-l 
r (s(ul)-sz)r+ (SZ++)r--+ +(2r(r-l)(l +A)++)-----+ 

r 

r-l 
= (Qh) - %- +#+ 

r 
2(r-1)2(1 +A)-& 

> 

>2(r-I)“(l+A)-$+(I++8,)6. 

By simple calculation and noting that A < A,, we 

2(r-l)2(l+A)-$+(l+$0,)6>(r- 

Hence 

have 

1)2-&+(&+$8J6-&. 

or 

W’(di) = W’(S) - w(P;*) 2 d; + E - ((r - 1)2+E+(~+&e,)s-&)> -&. 

w’(d;) < E. 

Case 2.3: s(uI) ssI. Then w(e) =s(e) - 2(r - l)2. Noting that ai > 2r( 1 + A), we 

have 

and 

d, > (r-l)a;-1 2 2r(r-1)(1 +1)-l L 2(r-1)2-2e, 

or 

w(d;) 2 d, + E - 2(r - 1)2 > -E, 

w(ts,) < E. 

Case 3: Ie*nX,1?2. By Lemma 4.1 we have a,?2(2r-1) and hence d;? 
2(2r- l)(r- 1) - 1>26. Since w(c) =s(fi) - 2(& + S) we are then done by Lem- 

ma 4.3. 

4.4. r: is a fallback 2-bin 

(At most d - (2~ + 6+ &) of weight is needed for compensation to this class.) 

At first we suppose P; is not the last normal, regular fallback 2-bin. 

Case 1: q<(x’. If JP;j 24 then s(P;) > 3 * 2 = 6 since each regular item exceeds the 

sum of all fallback items in size, and hence j$ 2s(Pj)>6, contradicting that (Y, <a’. 

Therefore j PiI = 3. We have w(P;) = S(Pi) - (A + 2~ + 26). By Lemma 3.9 we also 

have S(P)) 2 1 + b(Pi) > 1 + +p,, and hence 

d,>l+f~~-aj=l-(1-Qr)~~>1-(1-~r)cr’>d-&+26. 

If lc*/r3 then P,*nX,=0 or else aj2(2r-1 +2rA)+2>a’. Hence w(P,*)< 

s(P;*) - 3e, and 
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w(d;)rd;+3&-((d+2&+26)>0. 

Set 1= {i} and St 9UI. 

Suppose IP,*l = 2 and let P* = (x, c). Since both P* and P have to be normal by 

the restriction ai < a’, we know that x E Pj is regular and aj < 2r from Lemma 3.12 

and Corollary 3.14. 

If x is of type Y,, then w(x) =s(x) - 3~ and we obtain w(P,*) rs(P;-*) - 4a, since 

c cannot be of type X,. Hence 

w(d;) 2 d;+4&-((d +2&+26) > E. 

Set I = {i} and .JJ= SU I. Suppose x is of type X,. Let Pj* = (a, b) and let a’ denote 

the largest item among a, b and c. Then ~(a’) 5 max { 1 + 21,,~e} =po since s(x) > 

2r-1+2rA by Lemma 4.1 and s(x)+s(c)<2r-l+2r~+,~~. But ,~~<+r~r$/?,< 

s(P[2]) by Lemma 3.9, hence ~(a’) <s(P;[2]). In addition we have .~(a’) >s(P [3]) 

since otherwise Pj UP; would dominate Pj* U P;*. 
Case 1.1: a’ was packed before fl. Then a’E Pk is a fallback item since s(a’) < 

s(P;[2]). Pk is a normal l-bin or else Pj U Pk would dominate Pj* U P;*. Hence 

w(a’) = s(a’) -A, and 

w(d;)+w(d,)rd;+d-(d+2e+26)zdj-2(&+6)>0. 

Case 1.2: a’ was packed after 4. Then a’ could not fit in 6, which implies that 

or 

/I;-s(P;)<s(a’)-1 5po-l, 

or 

di~(r-l)a,+1-,uo~2r(r-1)+1-~o>d+2~+6. 

Hence 

W(d;)+ W(dj) ~ d;+E-(il +2~+26) > 0. 

Set 1= {i,j} and (S= 9- {j})UI. 

Case 2: a’5 ai < an. For the same reason as in Case 1, we have 151 = 3. Hence 

w(P;)=s(P;)-(4&+26). As in Case 1 we have d,>l -(I -+r)a;>l -(I -+~)a”> 
4~ + 26. Then by Lemma 4.3 we are done. 

Case 3: ai2au. Let IP,l=2+k (kzl). Then w(q)=s(P;)-(k+2)& and d;? 
max{k-(1-~r)cr,,(r-l)a~-1}~3(k+l)(r-l)/r-1>2(k+1)~. The last inequali- 

ty holds since k + 1 > r/(2r2 - 3). Hence 

w(d;) L d; - (k+ 2)~ 2 ke. 

Set I= {i}and #= 4UZ. 

Now we show that if Pi is the last normal, regular fallback 2-bin, then d - 

(2~ + S + &) of weight compensation can make up the loss. 

We only need to check when ai <a’ and pj -s(s) <pcco - 1 since otherwise no 

compensation is needed as was proved above (note: pi -s(P;)rp,- 1 implies ,!_fuo< 
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s(Pi[2])). The following proof is almost the same as that of Case 1. We have jP;i = 3 

and 

w’(Pi)=w(Pj)+d-(2&+~+~) 

=s(P;)-(2/4+&+6)-(-4+2&+6-t&) 

= S(Pi) - (n + 3E + 26 + ~), 

where w’ is the new weight after compensation. 

If lP;*j r3 then w(P;*)rs(P,*)-3~ and hence 

w’(d;) = w’(P;) - w(P;*) 2 d; + 3E - (n + 3E + 26 + &) > 0. 

Set Z= {i> and #at #VI. 

Suppose IP*I =2 and let P*=(x,c). Then XEP, is regular and aj<2r. If x is of 

type Y, then w(x) =s(x)- 3~ and hence w(P;*)<s(Pi*)-4~. We then have 

JV’(d;)2di+4E-((d+3&+26+&)>&, 

allowing us to set I = {i> and 9~ 4U I. Suppose x is of type Xi. Let Pj* = (a, b) 
and a’, a” be the largest and second largest, respectively, among a, b and c. We have 

s(a’)<po<2r2/3<.s(Pi[1]) and s(a”)sl +2A. Let a”EPi,. If i’<i then a” is a fall- 

back item and 5, has to be a normal l-bin since otherwise Pj U 4, would dominate 

Pj* U P* (noting that pCca + 1 + 2A < 2r). Hence w(a”) =s(a”) -A, implying that 

W’(d~)+W(dj)rdi+n-(n+3&+26+~)>d-3&>0. 

If i’= i then a” < 4[3] by Lemma 3.2 and thus a” =4[2], which implies that w(a”) = 
s(a”) - A and that w’(d,) + w(dj)>O. If i< i’ then since Pj[2] < a” < Pi[3] we have 

j3, - s(q) < 2A. Hence 

dj2(r-_)a;-21~(r-1)2r-2A>d+2.5+26+~, 

making that 

w’(d,)zd;+~-(d+3~+26+&,)>0. 

Therefore, in the case where x is of type Xi, we are allowed to set 1~ {i,j} and 

St (?9- {j}) u I. 

4.5. P. is a regular 3-bin 

(At most 26 of weight compensation is needed in this class.) 

Case 1: 2rsffi<a’, or~i-s(~)<2A0, or Pi is abnormal. If /3,-s(s) < 2& then 

s(P;)>&-2&2o,+(r-l)oi-2&Zs(P*)+(r-l)o;-2&. Hence di>(r-l)2r-2;10’ 

c+3(c+S) and w(di)ldi-3(&+6)9&, allowing US to set Is {i} and 9~ #UZ. 

If P is abnormal then s(P) > 2r + 2. Hence di L max(2r + 2 - a;, (r - l)ai - l} 1 

2r - 3/r> 3(c + S) - E. Noting that w(P) =s(P,) - 3(c + a), we are then finished by 

Lemma 4.3. 
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In the following we then suppose that P is normal and 2rscqca (thus P* is 

also normal else q > 2r + 1 > a’). 

Case1.1: lP;:*1?3. Then 1P*I=3sincea’<4andP*nX,=Osince(2r-l)+2>a’. 

Let Pi*=(a, b, c), and let Pk = (u,, u2, u3) be the first normal regular 3-bin. We 

show that w(d;)?O so as to set I= {i} and zF~( SU Z. Suppose to the contrary that 

W(di)<O. 

Then none of a, b and c satisfies w(. ) =s(. )-A since otherwise w(P*)s 

s(P,*> - (A + 2.e), implying that 

w(d;)~d;+d+2~-3((~+6)=d;+2~- 3-! >2~>0, 
( > r 

a contradiction. 

If it is not true that a < u1 then s(a)ss(ul), which implies that s(b) >s(us) else Pk 
would dominate Pi*. Hence either b or c, say 6, was packed before Pk and thus is 

of type F, or F2. Since (6) >s(b) - A we then have w(b) =s(b) - (E + S), which im- 

plies that b is a fallback item of an abnormal fallback l-bin. But then this abnormal 

fallback 1 -bin dominates P;.* since s(a) + s(c) 5 qs(b) < a’- 1 < 2r. 
Therefore we have a < ui. Let a E Pj, where Pj is a l- or 2-bin before Pk. It is 

apparent that Pj is normal since otherwise Pj would dominate Pj*. a has to be 

regular since otherwise, as in the proof of that a < ul, a would be a fallback item 

of an abnormal fallback l-bin, which then dominates P;*. If s(a)r+r2 then a;? 

s(a) + s(b) + s(c) 2 +r2 + 2 > a’. Hence s(a) < fr2. Then a is neither of type Xi (Lem- 

ma 4.1) nor of type Y, (Lemma 3.8 and Corollary 3.14). If a is of type X2 or Y, 

then, by Lemma 3.9, it has to be the second item of the last such bin since $(/$ - 1) > 

+pj 2 fr2. Hence we have w(a) =s(a) - A, contradicting our earlier conclusion that 

none of a, b and c satisfies w( . ) = s(. ) -A. 
Case 1.2: IPi* j = 2. Let P* = (x, c). Since both P and pi* are normal, x is the nor- 

mal, regular item of a l-bin by Lemma 3.12. Suppose first that P;*flX, #0. Then 

lP;*flX,i =l since 2(2r-l)>(x’>cr,. HencexEPj (1Q~l) and W(C)IS(C)-8. Let 

Pj* = (a, b) and a’ be of maximum size among a, b and c. Then a’ must be packed 

before the first normal regular 3-bin since otherwise the bin and Pj would dominate 

Pi* and Pj*. Let a’EPk. Then Pk is a l-bin or 2-bin before P;. 
If w(d,) ~0 or w(d,) + w(d,) 2 0 then we are done since we can set I = {i,j} and 

9~ (9- (j}) U I. Therefore we suppose that it is otherwise. Then a’ cannot be a 

fallback item. Otherwise either ~(a’) = s(a’) -A, which implies 

since d,s_max{3 -Q;, (r- l)cx;- l} 2 3 -4/r, or Pk is an abnormal fallback l-bin, 

which implies that PjU Pk dominates Pj*U P,*. Therefore a’ is regular. 

Since s(a’) I max { 1 + 2A, /_Q} =puo < +r2 owing to the fact that s(x) > 2r - 1 + 2rA 
by Lemma 4.1 and s(x) + s(c) < a’= 2r - 1 + 2rl +,uu,, the same argument as at the 

end of Case 1.1 shows that ~(a’) = s(a’) -A, which contradicts our assumption as 

was shown above. 

Suppose second that P*nXi =0. Then, by Lemma 3.12, x=P[l], where 4 is a 
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normal fallback l-bin. Hence w(x) = s(x) - 3~. As before, we let P,* = (a, b) and let 

a’ be of maximum size among a, b and c. Almost the same analysis as in the case 

where Pj* fl X, #0 shows that a’ satisfies w( . ) = s( . ) -A, which implies that 

since d,r3-4/r=3(c+d)-_. 

Therefore, in this case, we can set I( {i,j} and $*((9- {j}) U I. (Note: this is 

the only way that a normal fallback l-bin is grouped with other bins.) 

Case 2: a;?(~‘, P; is normal. (If P; is the last such bin then we add 26 of weight 

for compensation.) w(e) = s(q) - 3~. If QiL a” then d;> (r - l)o” - 1 = 4~ and 

hence w(d;) 2 dj - 3~ L 4~ - 3~ = E. By setting I= {i} and S= 9 U Z we are finished. 

Hence we suppose oi < Q”. 

Case2.1: lP,*lr3. If fi*flX,#O then air(2r-1)+2, which implies dir 

(r-l)cx;-1?(2r+l)(r-l)-1>3&. Hence 

w(d;) 2 d; - 3E 10. 

If P,* rl X, = 0 then w(e*) <s(P;*) - 3s and hence w(d;) 2 dj + 3~ - 3~ 2 0. In both 

cases we are allowed to set I= {i} and 4c=9 U I. 

Case 2.2: fl* = (x, c). 

(i) e*nX,=0. If P;* is abnormal, then cxi>2r+ 1. Thus d;r(r- l)a,- 11 

(r - 1)(2r+ 1) - 1 > 2~. Since w(P;.*) <.s(c*) - 2~ we have 

w(d;) L d,+ 2E - 3E > E. 

If Pi* is normal then, by Lemma 3.12, w(x)=s(x)-3~. Considering W(C)IS(C)-&, 

we then have 

w(d;) 1 d;+ 4E - 3E > E. 

Therefore, in either case, we can set I= {i} and 9+ 9 U I. 

(ii) lP,*nX,l=2. Let XE~, and CE~> (lsj,,j,<Z). Since aj>2(2r-1) and 

d;z(r- l)cr;- 1?2(r- 1)(2r- l)- 1>2&, we have 

or 

w(d;) 2 d;- 3E > -&, 

w(q) < E. 

Hence it is valid to set Z={j,,j,,i} and S-(S-{jr}-{jz})UZ. 

(iii) Ic*n X, I= 1. If c is of type Xi then x has to be abnormal, causing that 

(xi>2r+ 2r- 1 > a”, which contradicts our assumption that (~;<a”. Hence we let 

xcPj (1 5jsZ) and Pj*=(a,b). We are to show that w(d,)>O or w(dj)+ w(d,)>O 

so as to set It {i,j} and St(S- {j}) U I. Suppose to the contrary that w(d,)<O 

and w(d,) + w(d,) < 0. 
As usual we let a’ be of maximum size among a, b and c. Since Pi is normal, 

a’ E P, was packed before the first normal regular 3-bin, where P, is a l-bin or 

2-bin. a’ cannot be of type F, or F2. Otherwise either w(a’) <.$a’) - 2c, implying 
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that 

w(di)+w(dj)Ldi+2&-3&=di-&>O 

since 

d;r (r- l)a;- 1 r (/-- l)a’- 11(2r- 1 +/Q&r-l)- 1 > E, 

or Pk is abnormal, causing that Pk dominates Pj *. Therefore a’ is regular. Since a’ 

is normal and not of type X,, the remaining possibilities for Pk are to be normal 

fallback l-bin, normal regular a-bin and normal fallback 2-bin. 

If Pk is a normal fallback l-bin or 2-bin (not the last), then, by Lemmas 3.8 and 

3.9, 

s(a’)>min(fr2,2r-1) =+r2> 1+21. 

Noting that ~(a’) us - (E + a), we then have 

fx > 2r - 1 + Lr2 I 3 9 

d,>(r-l)cr,-12(2r-1+fr2)(r-l)-1>2&-d. 

Hence 

W(d;) + W(c/j) 2 d; + E + s - 3E > 0, 

a contradiction. 

If Pk is a normal regular 2-bin (not the last) then, by Lemma 3.9, 

~(a’) > +(pk - 1) 2 r2 - f. 

Considering that 1 + 2A < r2 - +, we then have a’= C. Hence 

qz (2r- l)+(r2-+), 

and 

d,z (r- 1)(2r+r2-+)- 12 3e-(r- 1)2, 

~(a’) 5 ~(a’) - (r - 1)2, 

we then have 

w(dj)+w(dj)rdj+(r-l)2-33E~0, 

a contradiction. 

As for the case where Pk is the last normal regular 2-bin or fallback 2-bin, either 

the same happens as above, or ~(a’) = .~(a’) -d, which apparently implies 

w(d;)+w(d,)rd;+d-3&z&3&>0. 

Therefore, whatever type Pk may be, we always have a contradiction. 

4.6. Pi is a fallback 3-bin 

Let ifi 1 = 3 + k (k> 1). Then w(q) 2 .s(P,) - (3 + k)(E + S). Since s(e*) 5 oi and, 

by Lemma 3.9, s(fl)zk+b(P,)rk+$/I,, we have 
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S(S) -S(Pi*) 1 k + (ST- l)c~i, 

and hence 

w(d;)~d;-(3+k)(~+~)>k+(~r-l)2r-(3+k)(~+6)r(k+l)~. 

The last inequality holds because it is equivalent to 

kg 
4&f36-(#r- 1)2r 12- 14r-jr2+ 15/r- 16(r- l)A 

l-2&-_ = 6r-5/r-4+6(r- 1)A ’ 

which is valid since the right-hand side is less than 1. 

4.7. Pj is a regular 4-bin 

If P, is abnormal then s(fi)>2r+3. Hence di2max{2r+3--cx;,(r-l)a,-l}> 

2r + 1 -4/r> 4(& + 8). Since w(e) = s(c) - 4(& + a), we are done by Lemma 4.3. In 

the following we suppose 4 is normal. 

Case 1: P,*nX,=O,qnormal. Thend,>max{4-a,,(r-I@-1}>4-5/r>3&. 

w(c) = s(F’;) - 4~. We show that w(di) L 2.5 so as to set I= {i} and 4= 4 U I. 

If lP;*l? 3 then w(P;*) %s(P;*) - 3~ and hence 

Suppose 14*1=2. If P,* is normal then, by Lemma 3.12, w(P;*[l])=s(q*[l])-3a, 

and hence w(P;*) 5 s(P;*) - 4&, making 

W(d,)2d;f4&-4& = d,>3&. 

Therefore we consider the case where P,* = (a, b) is abnormal. 

Let a E Pj. Then Pj is before 4 since a could fit in 4. If Pj contains more than 

3 items, thenpizp,>2r+3. Henced;>(r-_)a,-l?(r-1)(2+3/r)-1>4c, which 

implies that 

w(d;) 2 dj + 2E - 4E L 2&, 

we are done. Hence we assume IPj 153. Since Pj is abnormal, from the table we 

know that a satisfies w(. ) <s(. ) - (E + d), and hence ~(4”) SS(~*) - (2~ + 6). 
Considering that ai> 2r + 1 and djz (r - l)a, - 12 (2r + l)(r - 1) - 1 L 4~ - 6, we then 

have 

w(d;)rd;+(2~+8)-44~22~. 

Case 2: Ie* n X, 1 2 2, 8 is normal. 
Case 2.1: )fl*/ 23. Since aj>2(2r- l)+ 1 we have d,z(r- l)cx;- 1 s(r- 1)x 

(4r - 1) - 1 > 5~. Hence 

W(d;)ld,-4&>&, 

allowing us to set Zc= (i} and 4 * 9 U I. 

Case 2.2: 19*1 = 2. Suppose Z$*= (x1,x2), where x1 E&, ~2~5 (1 <ii, i251), 
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and P$ = (a,, b,), Pj: = (Q, &). If w(d,) 2 0, or w(d;) + w(d,,) + w(di,) 2 0, then we 

can set I= {i, ii, iz} and let #at (# - {ii } - { iz}) U I. So suppose to the contrary that 

w(d,) < 0, and w(d,) + w(d,,) + w(d,,) < 0. 

Then (Y; < cr” since otherwise dj 2 (r- l)cr; - 12 4&, causing w(d,) 2 dj - 4~ 2 0. 

Let 0’~ {a,, az} be of larger size. Then a’~ 4 where 4 is a I-, 2- or 3-bin before the 

first normal regular 4-bin (otherwise the union of the 4-bin, Z+,, flL would domi- 

nate piTU&;Uq*). If w(a’)is(a’)-(afd), since d,rmax{4-a;, (r- l)cr;- I}? 

4-5/r, we would have 

w(d;)+w(d;,)+w(d;,)2d;+6-4&2 4-5 +&4&=0, 
( > r 

a contradiction. Hence ~(a’) >~(a’) - (E + a), which implies that PJ is not a fallback 

bin since any item in these bins satisfies w( . ) 5 S( * ) - (E + 6). Since ~(a’) 5 1 + 2& < 

r2 - +=+(2r*- l), the only possibility for P, is to be a normal regular 3-bin and 

Olj~(Y‘. By Lemma 3.9 we then have 

s(a’) > i(/3,- 1). 

(Note: if 4 is the last such bin then a’=e[l] and hence the inequality also holds 

by Lemma 3.3.) Since oljra’ we then obtain 

1+2A 2 .~(a’) > *(pj- 1) 1 f(ra’- 1) = +(r(2r- 1 +pu,+2rA)- l), 

which implies that 

A> 
2r2-r+rjfO-4 

A e-2,.2 = ” 

contradicting our Lemma 4.2. 

Case 3: lc*fIX, 1 = 1, c is normal. If P,* is abnormal then crj>2r+ (2r- l), 

hence d,r (r- 1)(4r- 1) - 1>6~. We have 

w(d;) 2 d; - 4~ > 2~. 

If IP,*l 23 then w(P,*)rs(e*)-2~ and hence 

In either case we are allowed to set I* {i} and 9~ 9 U I. 

Suppose then that &* is normal and Iq*l = 2. Let 7;~fl* (1 I j< I), and 

a’~ {Pj*[l], P,*[2], P;*[2]} be of maximum size. It can be readily seen, by Lemma 

3.2, that a’ was packed in a normal l-bin or 2-bin before 8. 

We are to show that w(d;) + w(d,) z& so that we can set I= {i,j} and 

9* (9 - { j}) U I. Suppose to the contrary that w(d,) + W(dj) < E. 
Then ~(a’) >.~(a’) - (E + 6) otherwise w(d,) 2 d; + (E + 6) - 46 1 E (noting that 

d,rmax{4-a;,(r-l)a;-1)24-5/r). But we have 
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w(d,) 1 d;+&-4& 2 E-8. 

Hence we obtain 

(i) w(dj) < 6; and (ii) d; < 4~. 

Noting that dj<oj-s(q)sal-s(T) =2+21-s(q) and that W(dj)k2E_Jj, we, 

from (i), obtain 

s(T) < 2(1 +A)+6-2E. (4.1) 

If Q’E Pk then, because of the fact that ~(a’) >~(a’) - (E + 6) and the fact that Pk 
is a l- or 2-bin, Pk is a normal regular 2-bin with lP,*fl X,1 = 1 and that a’=e*[2] 

since each item in Pj* is in size 5 1 + 2A < r2 - + I +(/Ik - 1). But ~(a’) > 3(Pk - 1) by 

Lemma 3.9. Considering (4.1) and d, 2 4 - s(P;*) 2 4 - (s(q) + s(a)), we then, from 

(ii), get 

=2-2E--21-6>@++5-f. 

Hence ~(a’) rs(a’) - (E + @>, implying that 

w(d;) Ld;+&+$jS-4&~&-~~. 

Hence we obtain 

(i’) w(d,)<+$; and (ii’) d,<4~-&5. 

Exactly the same argument as above allows us to conclude that 

s(a’)<4-(4e-$a)-(2+2A++&-2~) 

= 2-2e-2/rl+{6,(+@+3) -5- - l 
r-l 2’ 

which implies that ~(a’) 5 ~(a’) - (E + a), a contradiction. 

4.8. fl is a k-bin (k>3) and jfiI>4 

Case 1: 14 1 = k,~ 7. Since w(c) = s(c) - k;~, it is enough, by Lemma 4.3, to 

show that dj>(2kj-4)&. Suppose to the contrary that d;<(2ki-4)c. Since diZ 
max{ki-cxi,(r.-l)ai-l}?(ki+l)(l-l/r)-1 we then have 

or 
1-4rtz 4r2-6r+ 1 

ki 5 5 
(r- 1)-2rc 2r2-2r- 

< 
1 

7, 

a contradiction, 
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Case2: Iql=6. We have w(-P;)=s(fl)-66~, d,?max{6-a,,@-l)a,-l}r 

6-7/r>8~--a>>.~. 

Case 2.1: (c*/>3. If 1P,*nX,151 then, since w(P,*)ss(P;*)-2~, we have 

w(di) L d; + 2~ - 6~ > 3~. 

Set I={i} and 9=9U/. If le*nX,lr2 then let T,,,ql, EE.* (lQ,,j,</). Since 

we can set I={i,jl,j2) and #=(S-{j13-{j2))UI. 

Case 2.2: ifi*l =2. If q* is normal then .s(P,*)s~s(T,)zs~~,s~~,=~(~+~A). 
Hence d, = s(e) - s(e*) 2 6 - (4 + 41) > 10~. If fi is abnormal then s(q) > 2r+ 5 and 

henced,>max{2r+5-a,,(r-l)~,-1}~(r-l)(2+6/r)-1~10&. Ineithercasewe 

have 

w(d;) 2 d, - 6~ 2 4~ 

and hence are allowed to set I= {i}, 9~9 U I. 

If ai? (l/(r- l))(l + 8~) then d,> (r - l)a, - 12 8~ and hence we are done by 

Lemma 4.3. 

In the following we then suppose that fl is normal but fl* not, and a,< 
(l/(r- l))(l +8&). 

Let c*=(a, 6). Then b is normal else ai>2. 2r>(l/(r- l))(l +8~). If at least one 

one of a and b satisfies w(. ) s.s(. ) - (E + 6) then 

w(d;)r d,+(2~+6)-6&> (8&-a)-(4&-d) = 4&, 

we are done. Therefore we suppose to the contrary that both a and b satisfy 

w(.)>s(.)-(&+d). Let aEP,. Then Pj is before P, and Pj[l]=a. 
(i) b@X,. Since e is abnormal, 4 is then a k-bin (kr4) and 14 j 25. Since 

s(b)>s(P,[2]) (otherwise Pj would dominate P;*), b was packed before Pj. Let 

bee,. Then ajpz2r since w(b)>s(b)-(&+S) and b$X,. Since that s(a)>P], 
would imply that p, 2 p, 2 s(a) + 4 2 2r2 + 4, or ai 2 2r + 4/r, contradicting our 

assumption that ai< (l/(r - l))(l + 8e), we then have s(a)sPj,, which implies that 

4, is also abnormal and s(P,,[l]) zs(a). This fact violates Lemma 3.2 since PJ, 

dominates P,*. 

(ii) b E X1. Let b = 7;, (I I i’s 1) and e* = (a’, 6’). We assert that at least one of 

a, a’ and 6’ satisfies w(. )IS(. ) + (E + a), so that 

w(d,,) + w(d;) 2 d; + (E + 6) - 6.5 2 3&, 

and we then can set It {i, i’} and 9= (# - {i’>) U I. Suppose our assertion were 

false. 

Since 4 is a k-bin (kr4) we have s(a’)>s(e[3]) otherwise P;,U 4 would dominate 

P;?U Pi*. Hence at least one of a’ and b’, say a’, was packed before 4. Let a’E 5, 
(j’cj). Then the same argument as in case (i) above suggests that Pjs is an abnor- 
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ma1 k-bin (k’z4) and ~j,[l] < a, which implies that all regular items of Pj, are 

abnormal, causing that Pj, dominates P;*, a contradiction. 

Case3: 151=5. We have w(fi)=s(P;,)-SE, and d;zmax{5-q,(r-l)q-l}? 

5-6/r>6&-_65&. 

Case 3.1: IS*lz3. If I1:*nXx,I~l then, since w(e*)<s(P;*)-2a, we have 

w(d;) L d;+2e-5e 5 2~. 

Set I={i} and 9=&UI. 

If lfi*nX, I L 2 then let ?;,, Tj, ES* (1 <j,,j,< I). Since 

w(d,) L d, - SE 2 0, 

we can set Z={i,j,,j,} and S*(S-{jl}-{j2})UI. 
Case 3.2: IP,*l =2. Then the same argument as at the beginning of Case 2.2 

allows us to suppose P; is normal, P;* is abnormal and a;< (l/(r - l))( 1 + 6~). Let 

fl* = (a, 6). Then a is abnormal, b is normal and w(b) I s(b) - E (b E X, would imply 

oi> 2r + (2r - 1) > (1 /(r - l))( 1 + 6~). The same analysis as in Case 2.2(i) shows that 

at least one of a and b satisfies w(. ) i s(. ) - (E + 6). Hence 

w(d;) r d, + (2~ + 6) - 5.x 13&, 

allowing us to set I* {i} and 9 = 9 U I. 

Now we are ready to prove our main result. 

Theorem 4.4. There cannot be any r-counterexample. 

Proof. If the theorem fails then we have a minimal r-counterexample. Let 9 be our 

partition of ( 1, . . . , m} as was given in this section. We classify 9 into classes #, 

and 9,: 

where w’ stands for the new weight after compensation. 

As we have seen, after at most 

of weight compensation, we have 9 = 9, U &; namely, 

,,C, 
I 
i:I w’(d;) +Jgq jFJ W’(dj) =,E, W’(d;) 5 ;t, w(d;) +p. 

. 2 
(4.2) 
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Since 

we have 

(4.3) 

(4.4) 

Since the last item has weight 1 -E, we have 

171 
(1 -E) + c W(p;) = f I@;), 

i=l j=l 

or 

;i, W(d;) = -(I -E). 

Combining (4.2), (4.3) and (4.4), we then obtain 

or 

P-(1-E)> -&, 

(d-(Fl)2+&)+(d-(2E+6+&))+26Z1-2E. (4.5) 

After simple calculation we know that (4.5) is impossible. Therefore we have a con- 

tradiction, which proves our theorem. q 

5. Supplement: proofs of two lemmas 

In this section we provide the proof sketch of two lemmas stated in the last sec- 

tion. Since the proofs run parallel to those in the last section, we are often referred 

back correspondingly. All notations remain the same unless otherwise specified. 

Lemma 3.13. Let (fi+ 1)/2 = r,crs 1.4. Then in any minimal r-counterexample, 

s(7;) < 2. 

Proof. We suppose there exists a minimal r-counterexample, in which s(T,)?2. 

Then, by the argument before Lemma 3.11, all items of type X, satisfy s(. )r2. 

We are to deduce a contradiction. Let E = 3r, - 4. Without loss of generality we 

may assume r = r, since the changes in the proof are only those of some = ‘s to I’S 

(e.g., l/(r- 1) = 2r to l/(r- 1) 5 2r). The weight function w is now given by Table 2. 

We are to show that, for almost all 1 I is m, we have w(P),) 2 w(P;*). Our desired 

contradiction can then be deduced. 
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Table 2 

Item type cz;<2r qs2r 

XI s 

YI,FI S-4 S--E, S-2& 

X2” 
S-2& if P, normal, n,<3 
S--E, otherwise 

Y23F2 S-2& 

others S--E 

a If a is the second item of the last normal regular 2-bin, then w(a) =s - 2~. 

5.1. Pi is a regular l-bin 

Since w(P;*) us - 2~ by Lemma 3.11 and 

tS,~~,~min{cr,-s(7;),1-(r-l)a,~ 

5min{cr,-2,1-(r-l)a,}52-2=2c, 
r 

we have 

W(dj) ~ 2E - pi ~ 0. 

5.2. c. is a fullback l-bin 

Case 1: oi<2r. Then w(r);*)~s(fi*) - 2~ by Lemma 3.11 and w(c) =s(e) - 8~. 

Since, by Lemma 3.8, d,> 1 - (3 - 2r)r = 2 -r> 6&, we have 

W(di) 1 d;+2~-88~ > 0. 

Case 2: a,z2r. 
Case 2.1: Ifii =kz3. Then w(E)=s(P;)-(2k- 1)~. Since s(fl)>(k- l)++pi, 

we have 

djz max{(k- l)-(1 -+r)a;, (r- l)ai- l} 

r-l 
>2k-- 1 > (2k - 1)~. 

r 

Case 2.2: \P;l=2. Then w(e)=s(P;;)-3s. Suppose to the contrary that w(d;)<O. 
Then we have d;<3&. Further we have 

(i) Ie*nX,1~~1 otherwise ai>2.2=4>(l/(r-1))(1+3&), which implies dir 

(r- l)a,- 12 3a, contradicting di< 3~. 
(ii) a,<(l/(r- l))(l +2e) and di<2c. Otherwise diL2E. Since (i) implies that 

w(P;*) 5 s(P;*) - E, we then have W(di) 2 d; + E - 3~ 2 di - 2~ L 0. 

(iii) Pi is normal. Otherwise di~max(2r+l-oi,(r-l)~;-1}~2r-l-2/r= 

3 - 2r = 2re > 2.5, contradicting (ii). 
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If \P;*\ 2 3 then by (ii), q*nX, =0. Hence w(q*)ls(q*) - 3&, causing w(&)L 

dj+ 3.5 - 3~ 2 0, a contradiction. Therefore, lfl* 1 = 2. Let q* = (a, 6) and 8 = (u, IJ). 

Suppose first that s(a)ls(u). Then s(b)>s(u). b has to be after C: since other- 

wise the bin it packed to would dominate P,*. Hence b could not fit in P;: 

s(u) + s(b) > pi. 

From (ii) we also have 

S(U) + s(u) < cx, + 2E. 

Combining the two inequalities we get 

s(b)>s(u)-2c+(r-l)oiz I-2&+(r-1)2r=2-2&, 

which implies (~~2 2s(b) > 2(2 - 2c), contradicting (ii). 

Suppose now s(a)>s(u). Let a ~4. Since, by (iii), 4 is normal, Pj is a l-bin and 

a is regular, that is, a is of type Xi or Y,. 

If a~ Y, then q* r\X, =0, hence w(Pj*)rs(Pj*) - 2~. We may assume cr22r. 

Then from the proof of Corollary 3.14 we can see that S(U) > 2, which is independent 

of Lemma 3.13. 

Hence cx,rs(a)+s(b)>3, which implies that d,r(r- l)a;- 1 r3(r- 1)-c. We 

then have w(d;) 2 dj + 2.5 - 3s L 0, contradiction. Hence a E Xi. Since s(a) > s(u) > 

+/3;, we have cri>+rtri + 1, implying that 

2 r 
cz, > ~ 

2-r 
and s(a) > ~ 

2-r’ 

Then we have 

a,5 min{a,-s(a), 1 -(r- 1)Ctj) 

and 
i 

r 

1 

2 r & 
Imin ai-- ~- 

2-r’ 
l-(r- l)ozj 5 (2_r)r ~ = - 

2-r 2-r’ 

d;L(r-l)cx;-11 &r-1)-1. 

Considering 

&(r-I)-l=-- -=- 1 = (r-1J2 E 

(2-r)r (2-r)r 2-r’ 

we obtain 

W(d;)+ W(dj) 2 d,-cf+33E-3& = d;-dj > 0. 

We are then done. 

5.3. Pi is a regular 2-bin 

(At most E of weight compensation is needed in this class of bins.) 

If Pi is abnormal then, since w(P;) = s(P,) - 2~ and 
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we have 

w(d;) 1 d, - 2~ 10. 

Hence in the following we suppose Pi is normal. 

Case 1: ai< 3. Then PT is normal and ) P:\ = 2. Considering that Pi* n Xl = 0, we 

then have, by Lemma 3.12, w(PF[l]) =s(P;“[l]) - 4~. Hence w(P,*)(s(PT) - 5~ 

and thus 

Case 2: ai> 3. (If Pi is the last normal regular 2-bin then we add E of weight to 

make w(P,)=s(P,)-2&.) If ajr(l/(r- 1))(1+2c) then diZ2&, which implies that 

w(d,)zd,-2&?0. Ifaj<(l/(r-l))(1+2&)thencri<4,implyingthat IPFnXi(51. 

Hence w(P,*) s.s(PT) - E. But di L 3(r - 1) - I= E, we then have w(di) 2 di + E - 2~ L 0. 

5.4. Pi is a fallback 2-bin 

Let jP,j =k+2 (k~l). Then w(P,)=s(P;)-2(k+2)&. Since s(Pi)>k+fBi we 

have 

di2max{k-(l-+r)cr;,(r-])a;-13 

r-l 
L 3(k+l)-- 

r 
-l> 2(k+2)&. 

Hence W(di)Zdi-2(k+2)E>O. 

5.5. Pi is a regular 3-bin 

We may assume that w(d,)<O. Then dj<3& since w(P,)=s(P,)-3~. Then we 

have: 

(i) Both Pi and P,* are normal. Otherwise d, 2 min{ (2r + 2)/r, 2r + l} = 2 +2/r = 

4r-2>3.z. 

(ii) jP~nX,\ll. IPj”nX,J>2 implies that (r,>4 and thus di>4(r-I)-123a. 

(iii) /P,*i=2. If jP,*lr3 then, by (ii) w(P,*)<s(PF)-2~. Noting that dr2 

3(r-1)-l=&, we would have w(d,)>d,+2&-3&zO. 

Let P;*= (x, c). ‘x has to be of type X, since otherwise by Lemma 3.12, w(x) = 

S(X) - 48, implying W(di) 2 d; + 4~ - 3~ > 0. Suppose x E Pj (1 <j 5 I). Let PJ” = (a, b) 

and a’ be of maximum size among a, b and c. If a’ satisfies w(. )ZS( .)-ZE then, 

considering cr, > 3, which implies d, 2 E we are done, since 

W(di) + w(dj) L d; + 2&- 3~ L 0. 

Therefore we suppose ~(a’) =~(a’) -E. 

Let a’E Pk. Then Pk is before the first normal regular 3-bin, which implies that 
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Pk is a l-bin or 2-bin. a’ is a regular item by the fact that w(d) =~(a’) - E. Then Pk 
cannot be a 1 -bin since otherwise a’ is of type Y, and hence either ~(a’) = ~(a’) - 4~ 

if ok< 2r, or ~(a’) > 2 according to the proof of Corollary 3.14, which implies that 

a’= c and ai>4 and thus d, >4(r - 1) - 1> 3~. In either case we have a contra- 

diction. 

Hence Pk is a 2-bin. Pk cannot be abnormal else it would dominate PT. Pk also 

cannot be fallback by the restriction ~(a’) = .~(a’) - E. Therefore Pk can only be a 

normal regular 2-bin and ~~13. Hence by Lemma 3.9, 

.~(a’) > +(fik - 1) 1 j(3r - 1). 

(Note: if Pk is the last such bin then a’= P,[l] and hence the above also holds.) 

Therefore we obtain 

a; + ~j ~ s(a) + s(b) + S(C) + S(X) > 2 + 
3r-1 
-+2>4r, 

2 

which implies that 

or 

di+djI(r-l)(ai+Uj)-2>4(r-l)r-2=0, 

W(d,) + w(dj) ~ d; + dj + 3~ - 3~ > 0. 

5.6. \P;\ >3 and P; is a k-bin (k>2) 

Case I: IPi1 =kj25. Since w(P,)=s(P,)-k;e and d;zmax{k;-cr,,(r-l)a;-I}? 

(k,+l)(r-1)/r-l>k;e, we have w(d;)rd,-ki.z>O. 
Case 2: 1Pj\=4. Then w(P,)=s(Pi)-4~. If w(P:‘)Is(PT)-E then w(d;)z 

dj+E-4&>0 since we have d,rmax{4-a;,(r-l)a;-1}14-5/r>3a. If w(P~)= 

s(PF) then (Y, > 4, implying that d; 2 4(r - 1) - 1 > 4~ and that w(d;) 2 d, - 4~ > 0. 

In conclusion we have proved that 

E+ E w(d;)rO. 
i=l 

Since the last item has weight 1 -E and the fact that 

,I, 

;g, w(P,>+U-~) = Li w,*>, 
j=l 

we get 

-(1-e)=;tr w(d;)r--E, 

or 1~2e, which is our desired contradiction. Our lemma is then proved. q 

Lemma 4.2. Let r be the positive root of equation 2r3 + 4r2 - 5r - 6 = 0 and A0 = 
(2r + 1)/(4(r* - 1)) - 1. Then in any minimal r-counterexample, A < 1,. 
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Table 3 

so=(6++)r/(r-1)-+ 

Item type 

XI 

YI,Fl. Y2,F2 

Weight 

s 

S-A 

X2a 

S-_(E+m, ssso> p normal 

s-(&+6), s>s(), ’ 
S-A, otherwise 

others S--E 

a If a is the second item of the last normal regular 2-bin, then w(a) = 

s(a)-A. 

Proof. We prove this lemma in essentially the same way as we did in the last section. 

So suppose we have a minimal r-counterexample, in which A L ho. In the remaining 

of the paper, r is again exclusively used to represent the indicated value. Let 

a=+-r-(r-l)&=&= 0.104975 . . . , 

Our weight function w is now changed to be as in Table 3. Initially we set 9 t 0. 

5. I ‘. P; is a regular 1 -bin 

Since w(PT) <s(PT) - 2.5 by Lemma 3.11 and dj 5 3 - 2r- 2(r - 1)A I 2e, we have 

w(d;) 12E - d; L 0. 

Set Z=(i) and .JZ=&‘UZ. 

5.2’. P, is a fullback l-bin 

Case 1: ai < 2r. By Lemma 3.8 we have w(P,) = s(P,) - 24 and dj > 1 - r(3 - 2r) > 
24. Considering that w(PT) 1s(P7) - 2&, we have w(d;) L d; + 2~ - 24 > 0. 

Set Z=(i) and 9G9lJI. 

Case 2: CXir2r. 
Case 2.1: IPil = kz4. Since W(Pi)=s(P;)- kA, we are done by Lemma 4.3 if 

d, > kA + (k - 4)~. So suppose dj 5 kA + (k - 4)~. Then 

(r-l)n;-l(k(A+&)-4& and 2(k-l)-~;~k(A+E)-4&. 
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From the above inequalities we get 

kr (r-1)(2-4~)+(1-4~) <4 

(r-1)(2-d -&)--(A +&) ’ 

a contradiction. 

Case 2.2: lP,i = 3. Since s(P,) > 2r+ 2 by Corollary 3.14, we have d,r 

max{2r+2-cr,,(r-l)cw;-1}?2r-3/r>34 --E. Considering that w(P,)=s(P;)-3d, 

we are done by Lemma 4.3. 

Case 2.3: lP,i = 2. Since s(P;) > 2r-t 1 by Corollary 3.14, we have d, 2 

max{2r+ 1 -cr;,(r- l)a, - l> ?2r- 1-2/r>24 -2~. Considering that W(Pi) = 

s(P,) - 24, we are done. 

5.3’. Pi is a regular 2-bin 

(At most d of weight is donated to this class for compensation.) 

Let P, = (u,, u,) and 

e(x) = (I 1, x>o, 

0, x10; 
so = (a+))+; 

8, = B(s(u,) -so) (I = 1,2). 

Case 1: Pi is not the last normal regular 2-bin. Then 

and 

Since 

we have 

Hence 

s(P;) = s(P;) - (2E + 6 + +qe, + B,)), 

r-l 
djrmax{s(u,)+~(~~)-~,,(r-l)~i-l}~(~(~l)+~(~~)+1)-- 1 

r 

2 

2 ,Fr (s(u1) -so) 
r-l 
r+ (2so+l)-7- 

( 

r-l 
1 
> 

= i (s(Ur)-so)++26. 
/=I 

s(u,)> +(/3-l) 2 r2-+ > (+s+f)ti-+, 

- 3s < (s(q) - so) 
r-l 
-10 iff e,=o (t=1,2). 

r 

di 2 6 + +s(e, + e2). 

We are done by Lemma 4.3. 

Case 2: Pi is the last normal regular 2-bin. Then by adding A weight to its 

second item we have W(Pi) =s(P;) - (E + +a(1 + Or)). Since 
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=fW+8,)- S-1 >+s(l+e,)-E, 
( ) 

we are done by Lemma 4.3. 

5.4’. Pi is a fallback 2-bin 

Let 1 P;J = 2 + k (kr 1). The fact that s(P,) 2 k + 3Pk implies that 

r-l 
2 3(k+l)-- 

r 
1> (k+2)4 +(k-2)&, 

which, together with the fact that w(P;)=s(P;)-(k+2)4 and Lemma 4.3, allows 

us to be done. 

5.5’. P, is a regular 3-bin 

Case 1: lP,*123. IfP,*nX,#0thenaj>2r+1, whichimpliesd,z(2r+l)(r-l)- 

1 > 3~ and hence w(d,) L d, - 3~ > 0. If Pi* n X1 = 0 then w(P;“) rs(P,*) - 3&, which 

implies w(d;) L di + 3~ - 3c> 0. In either case we are allowed to set I + {i} and 

9‘=9UI. 
Case 2: IPi*\= 2. If w(d;) 2~ then we can set Z t {i} and 9 = 4 U I. So we 

assume w(d,)<c. Then(i) P, is normal else dirmax(2r+2-a;,@--l)a;-1)22r- 

3/r> E, which implies that W(di) 2 di - 3~ 2 E. And (ii) Pi* fl X1 #0 since otherwise, 

if Pi’ is abnormal, ai > 2r + 1, which implies that dj > (2r + l)(r - 1) - 1 > 2.5 and thus 

w(di)rd;+2&-33E>E;orbyLemma3.12,ifPi*isnormal, w(P~[l])=s(P~[l])--d, 

which implies that w(dj)>dj+(d+e)-3e?d,+d-2E>max{3-ai,(r-l)ai}+ 

(A -2&)2(3-4/r)+d -~E=E. 
Case 2.1: IPFnX,i =2. Since ai>2(2r-1) we have d,z2(2r-l)(r-l)-1>2c. 

Hence we are done by Lemma 4.3. 

Case 2.2: IPTnX,1 = 1. We may assume P:=(T,,c) (lljrl). We show that 

w(d,)?O or W(d;)+W(dj)>O SO as to set I- {i,j} and SC (9-{j})UZ. Let Pj*= 

(a, b) and a’ be of maximum size among a, b and c. Then a’ was packed before the 

first normal regular 3-bin. Let a’ E Pk, where Pk is a 1- or 2-bin. If w(a’) = s(a’) -A 

then 

W(di)+W(d,)rdi+d-3&2 3-4 +d-3~=0, 
( > 

we are done. So we suppose w(a’)>s(a’) -A. Then Pk is a normal regular 2-bin. 

By Lemma 3.9 we then have s(a’)>$(&-1)zr2-). Hence 
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cx;+orj 22+(r*-+)+(2r-l+2rAo) = r2+ (2r+lJr++, 
2(r*-1) 

which implies that 

dj+dj 2 (r-l) 
( 

r2+ 
(2r+ 1)r 

2(r* - 1) 
+) -220, 

> 

and hence, considering that {a, 6, c} fl Xi = 0, we have 

W(d;) + W(dj) ~ d; + dj + 3E - 3E ~ 0. 

5.6’. Pi is a fallback 3-bin 

Let lP,I=3+k (kll). Since s(P,)>k+j/$ by Lemma 3.9, we have d;L 

k+($r-l)aizk+2r(+r-1)>(2k-I)&. Considering that w(P,)=s(P,)-(k+3)~, 

we are done by Lemma 4.3. 

5.7: Pi is a regular 4-bin 

If Pi is abnormal then c/,>max{2r+3-q,(r-l)q-l)z2r+1-4/r>6&, im- 

plying w(d,)rd,-4~22~. If IPFlr3 then either, if IP,*flX,I<l, w(P,*)s 
s(PF) - 2&, which implies w(d;) 2 di + 2~ - 4~ > (4 - 5/r) - 2&> E; or, if jP:fl Xt 1 L 2, 

CT; > 2(2r - 1) + 1, which implies that dj > (r - 1)(4r - 1) - 1 > 5~ and hence w(dj) 2 

d,-4&>&. In all above cases we can set I& (i} and 

1 + 2rAo) - 1 = 4&, we are then done by Lemma 4.3. If Pi* f7 X, = 0 then either, 

if Pj* is abnormal, uj >2r + 1, which implies that d; > (r- 1)(2r+ 1) - 1>4& and 

thus w(d,)zd; +2c -4~22~; or by Lemma 3.12, if PT is normal, w(PF[l]) = 

s(P;* [ 11) -A, which implies that w(d,) 2 d, + (A + E) - 4~ > (4 - 5/r) - E > 2~. In 
either case we are allowed to set Z t {i} and 9 = 9 U I. 

Therefore we further suppose JPTrlX,1 = 1. Then we may assume PT= (7;,c) 
(1 <j< I). Let PT = (a, 6) and a’ be of maximum size among a, b and c. Let a’E Pk. 
Then Pk is a l- or 2-bin before P,. We are to show that w(d,)+ W(dj)Ze so that we 

can set It {i,j} and 9= (9-{j})UZ. 

Suppose to the contrary that W(di) + w(dj) < E. Then w(a’) >s(a’) -(E + S) since 

otherwise w(d;) + W(dj) 2 d, + (E + 6) - 4~ > (4 - 5/r) + 6 - 3~ = E. Hence Pk is a nor- 

mal regular 2-bin. Considering that 

w(dj)~d,+c-4c~(r-5/r)-3E~c-~, 

we then obtain 

(i) w(dj) < 6; and (ii) d; < 4~. 

Noting that A < 3/(2r) - 1 by Corollary 3.15, we then, from the analysis of the same 

case in the last section, conclude that 
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S(U’) > 464&-S(Tj) 2 4-4E-(2+2A+6-2E) 

=2-2&-2A-6>2-2&--- 
3-2r 6 

r 

>.sa 

contradiction. 

d,zmax{k,-a,,@-l)ai-1}2(kj+l)(r-l)/r-l>(2k;-4)e 

and w(P;) = s(P,) - kj E, we are done by Lemma 4.3. 

Now our desired contradiction to the assertion that Lemma 4.2 were false is easy 

to find. The same argument as in the proof of Theorem 4.4 allows us to conclude 

d-(1-&)>-&, 

which is obviously impossible. Hence our Lemma 4.2 is proved. 0 
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