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Abstract 

Butler groups are torsion-free abelian groups which in the infinite rank case can be 
defined in two different ways. One definition requires that all the balanced extensions of torsion 
groups by them are splitting, while the other stipulates that they admit continuous transfinite 

chains (with finite rank factors) of so-called decent subgroups. 
This paper is devoted to the three major questions for Butler groups of infinite rank: Are the 

two definitions equivalent? Are balanced subgroups of completely decomposable torsion-free 
groups always Butler groups’? Which pure subgroups of Butler groups are again Butler groups? 
In attacking these problems, a new approach is used by utilizing X0-prebalanced chains and 
relative balanced-projective resolutions introduced by Bican and Fuchs [S]. 

A noteworthy feature is that no additional set-theoretical hypotheses are needed. 

0. Introduction 

All groups in this paper are abelian groups, written additively. For unexplained 

terminology and notation, we refer to Fuchs [ 121. 

A torsion-free group B of finite rank is said to be a Butler group if it is a pure 

subgroup of a completely decomposable group (of finite rank); or, equivalently, it is an 

epimorphic image of a completely decomposable group of finite rank [7]. The 

equivalence of these properties to the condition that Bext’(B, T) = 0 for all torsion 

groups T (where Bext’(B, T) denotes the group of all balanced extensions of T by B) 

led Bican and Salce [6] to initiate the theory of Butler groups of infinite rank. They 

call a torsion-free group B of infinite rank a 

(1) B1-group (or Butler group) if Bext’(B, T) = 0 holds for all torsion groups T; 

(2) Bz-group if, for some ordinal 5, there is a continuous well-ordered ascending 

chain of pure subgroups, 

O=B,<B,< ... <B,< ... <B,=B=(_jB, (1) 

with finite rank factors such that, for each CY < 5, B,, I = B, + G, holds for some finite 

rank Butler group G,; i.e. B, is ciec.ent in B, + 1 in the sense of Albrecht and Hill [l]. It is 

easy to see that the chain (1) may be assumed to have rank 1 factors. 
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It is readily checked that all B,-groups are B,-groups [S]. 

Butler groups, whether of finite or of infinite rank, have been considered by several 

writers within recent years and are currently in the center of interest in abelian group 

theory. The infinite rank case is especially challenging in view of the fact that for 

groups of cardinality > h’, several results can be proved (or are true) only in certain 

models of set theory. 

In the infinite rank case, three major questions are of paramount interest: 

1. Are B,-groups necessarily &groups? 

2. Does Bext’(G, T) = 0 hold for all torsion-free groups G and torsion groups T? 

I.e., are balanced subgroups of completely decomposable groups always Bi- 

groups? 

3. Which pure subgroups of B,-groups are again B,-groups? 

In the countable case, Bican and Salce [6] gave complete answers to these ques- 

tions. However, for uncountable groups only fragmentary results are known. 

The answer to Questions 1 and 2 is “yes” in the following cases: for groups of 

cardinality Ki [ 1,9]; for groups of cardinality I N,,,, provided CH is assumed 

[S]; and for all groups without any cardinality restriction in the constructible universe 

L [13]. In contrast, Dugas and Theme [l l] proved that the negation of CH leads 

to a negative answer to Question 2 already for groups of cardinality X1. It is still 

an open problem whether or not Question 1 can have a negative answer in any model 

of ZFC. 

As far as Question 3 is concerned; for groups of cardinality N, sufficient condition 

for a pure subgroup of a &-group to be again a B,-group is its “separativeness’(or, in 

the terminology of Albrecht and Hill [l], “separability in Hill’s sense”). For groups of 

cardinality I K,,, CH implies that the balancedness of the subgroup suffices (see [S]), 

while in case I/ = L a sufficient condition is the balancedness, or even the prebalan- 

cedness, of the subgroup (see [13] and [S], respectively). If CH is assumed, &pre- 

balancedness turns out to be a necessary condition (cf. [S]). 

In this paper, we use the newly developed machinery of Bican and Fuchs [S] in the 

search for answers to the posed questions. Though we have been unable to answer 

Questions 1 and 2 in general by simply saying “yes” or “no”, nevertheless we shall 

obtain a better insight into these problems by slightly modifying the questions posed 

above: when is a Bi-group a B,-group? and when does a torsion-free group G satisfy 

Bext’(G, T) = 0 for all torsion groups T? We are in a position to offer satisfactory 

answers to these questions and to Question 3 even in ZFC. 

Two important concepts introduced by Bican and Fuchs [S] will play a leading role 

in our study. 

One is “k--prebalancedness”, in particular, K,-prebalancedness (the latter replaces 

P. Hill’s notion of “separativeness” as a main tool). It opens the door to a different and 

more natural approach to the theory of Butler groups of infinite rank. 

The other basic concept is the balanced-projective resolution of a group relative to 

a pure subgroup. It was implicit in [4] and in [ 131, and became an indispensable tool 

in [S]; as we shall see, it is a most fitting device in the study of Butler groups. 
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Special emphasis is placed on results which can be dealt with without assuming CH; 
this is a drastic change to earlier publications about Butler groups of cardinality > K1 
in which CH was ubiquitous (and indispensable). Some of our results will confirm the 
undisputable significance of set theory in dealing with Butler groups; actually, its role 
is more vital than previously expected. 

We stress the need of being mindful of the fine distinction between Bi-groups and 
B,-groups. Most of our results involve B,-groups, but their validity for B,-groups has 
not been confirmed. For a reader familiar with infinite rank Butler groups it should 
not be surprising that &-groups are more tractable than B,-groups. 

The main results in this paper can be summarized as follows (for the relevant 
definitions we refer to Sections 1 and 2). 

The central theme is the problem as to when a torsion-free group G admits an 
No-prebalanced chain. We prove in Corollary 2.4 that it does if and only if in 
a balanced-projective resolution 0 --t B + C + G + 0 of G (i.e. a balanced-exact se- 
quence with completely decomposable C) the subgroup B is a B,-group. Using this 
criterion, we are able to show that a B,-group G is a B,-group if and only if it admits 
an K,-prebalanced chain (see Theorem 4.1). If CH holds, then these conditions are 
equivalent to the vanishing of Bext’(G, T) for all torsion groups T. 

In Theorem 4.5 we shall prove that, in any model of ZFC, Bext’(G, T) = 0 holds for 
all torsion-free groups G and all torsion groups T if and only if every torsion-free 
group admits an N,-prebalanced chain. 

Some of our results (see Theorems 5.2 and 7.3) deal with the situation when 
instead of CH we only suppose that 2X“‘1 = N, for some integer n 2 1. In this 
case, Bext”+ ‘(G, T) = 0 holds for all torsion-free groups G and torsion groups 
T. Furthermore, a torsion-free group B turns out to be a B,-group if and only if 
it satisfies Bext’(B, T) = Bext’(B, T) = ... = Bext”+ ‘(B, T) = 0 for all tor- 
sion groups T. (This extends a significant result recently proved by Rangaswamy 

C211.) 
In Theorem 8.1 we give a satisfactory answer to Question 3 posed above: a pure 

subgroup A of a B,-group G is again a Bz-group if and only if there is an N,-pre- 
balanced chain from A to G if and only if there is a continuous well-ordered ascending 
chain of B,-subgroups from A to G with rank 1 (or, equivalently, with countable) 
factors. (This result is analogous to Hill’s criterion for an isotype subgroup of a totally 
projective p-group to be again totally projective [ 171.) 

1. Preliminaries 

Let B be any torsion-free group and A a pure subgroup of corank 1 in B. Consider 
the types t(J) of those pure rank 1 subgroups J of B which are not contained in A. In 
the lattice of all types, we form the ideal 4 BIA generated by all these types t(J). Let K be 
a cardinal such that K0 I K I 2’1~. A is said to be K-prebalanced in B, if .P,,. is at most 
K-generated (i.e., it has a generating set of cardinality 5 K). More explicitly, this means 
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that we can write 

B=A+CJ, 
zel 

where f is an index set of cardinality I K and the groups 1, are rank 1 pure subgroups 
of B not in A such that every rank 1 pure subgroup J of B not in A satisfies 
t(J) I t(J,,) u ... u t(JJ for some integer m, Xj E I. (The case K = K L can be 
interpreted as prebalancedness, that is to say, B = A + J1 + ... + J, for some integer 
m; cf. [14].) 

Let us point out rightaway that, moreover, we may assume that the J, are selected 
such that for every rank 1 pure subgroup J of B not in A, there are a finite number of 
J, satisfying J I Jzl + ... + J,, . If we write C = BzE, C, where C, z J,, then the 
map C + B induced by the chosen isomorphisms between C, and J,, along with the 
inclusion map of A in B, gives rise to a balanced-exact sequence 

O+H+A@Cz+B-+O (2) 

where the kernel H is isomorphic to a corank 1 pure subgroup of C; see [S]. It is 
readily seen that such a balanced-exact sequence (which may be called a lx/lanced- 

projective resolution of B relative to A) can be constructed even if A has arbitrary 
corank in B, though then nothing similar can be said of H. 

One of the motivations stems from the following result which was proved by Fuchs 
et al. [IS] and which will be needed later on. 

Lemma 1.1. A corank 1 pure subgroup G ofA = @ il<T A, that does not contuin any A, 

is u Bz-group ifand only ifthe lattice ideal .a generated by the types t(A,) is countably 

generuted. (In the presence of CH, the same criterion applies to G being (I B,-group.) 

In dealing with the most important special case of K-prebalancedness, namely, when 
rc = No, it is useful to have the following lemma. 

Lemma 1.2 (Bican and Fuchs [SJ). Let A be a pure subgroup of’cortrnk 1 in (I tor- 

sion-free group B. A is N,-prebalanced in B exactly lf there is a Prc’hrrlNn~ed-e.uact 

sequence (2) where both C und H are countable B,-groups, and tpj A is the inclusion map. 

Our next lemma is about pure-exact sequences. Recall that if i is an infinite 
cardinal, then by a G(i)-fhmily of subgroups in the group A is meant a collection 9 of 
subgroups of A such that (i) 0, A E 59 (ii) 9 is closed under unions of chains; (iii) if B E 93 
and X is any subset of A of cardinality I 2, then there is a B’ ~9 that contains both 
B and X, and satisfies 1 E/B1 _< i. (See [ 181.) 

Lemma 1.3 (Dugas et al. [S]). Let 

O-+A+C-+‘G+O (3) 
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he a pure-exact sequence where C is a completely decomposable group of cardinality 
i. > 2”0. Then there are G(2”1’)-families .FZ = (A,}, % = (C,), 99 = {G,} ofsubgroups in 

A, C and G, respectively, such that 

(i) the subgroups C, E %? are summands qf C; 
(ii) the subgroups in s4 = {A, = A n C,I C, E 59) are balanced in A; 

(iii) the subgroups in 9 = {G, = y C,I C, E ‘6’3 are pure in G; 
(iv) 0 -+ AnC, + C, -+ yC, + 0 is exact ,for each C, E ‘6. 

We shall require a weakened version of Lemma 1.3 which works also for un- 
countable cardinals below the power of the continuum - if such cardinals exist in our 
model. 

Lemma 1.4 (Dugas et al. [S]). Let (3) be balanced-exact where C is a completely 

decomposable group of cardinality K, K an uncountable regular curdinal. Then there are 

continuous well-ordered ascending chains of subgroups. 

O=A,<A,< ... <A,< . . . . O=C,<C,< ... <C,< . . . . 

O=G,<G,< ... < G, < ... (z < ti) 

with unions A, C, and G, respectively, such that,,for each x < K, 

(i) the subgroups C, are summands of C and have cardinality < ti; 

(ii) the subgroups A, = AnC, are balanced in A (and hence in C); 

(iii) the subgroups G, = yC, are pure in G; 

(iv) 0 + A, -+ C, + G, -+ 0 is exact. 

2. x-prebalanced chains 

It turns out that there is an intimate relation between B,-groups and X,,-pre- 
balanced chains. This relationship provides us with a powerful tool in the study of 
Butler groups. 

We start with a general definition. Let A be a pure subgroup of the torsion-free 
group G. By a tc-prebalanced chain from A to G we mean a continuous well-ordered 
ascending chain 

A=G,<G,< ... <G,< ... <G,=G (forsomeordinals) 

of K-prebalanced subgroups of G, where all the factors G, + , /G, are of rank 1. We say 
that G admits a tc-prebalanced chain if there is a fc-prebalanced chain from 0 to G. As 
countable extensions of rc-prebalanced subgroups are again k-prebalanced, it suffices 
to require that the factors G,+ i/G, b e countable (or of cardinality I Xi). 

Our first goal is to find criteria for torsion-free groups to admit ri-prebalanced 
chains. The starting point is an elementary lemma. 



Lemma 2.1. Let G he (1 completely decomposable yroup, whose typeset has cur&- 

nulity K’ ,for (III irlfrnife ctrrdinal K. Every pure suhyroup of’ G admits a k--prehalanced 

chain. 

Proof. A completely decomposable group G with K+ types can be written as a direct 

sum @ H, with I’ < K A where the summands H,. are homogeneous completely decom- 

posable groups. Hence G can be thought of as the union of a continuous well-ordered 

ascending chain 0 = Go < G, < ... < G,. < ... < G of pure subgroups G, (P < tit) 

each of which has at most I; types; e.g. we can choose G, + 1 = G,. @ H,. This chain can 

be refined to a chain of summands of G with rank I factors. The typeset of every 

member of this chain is of cnrdinality at most 1~. 

If A is a pure subgroup of G, then intersecting A with the above constructed chain of 

G and dropping repetitions we obtain a ti-prebalanced chain for A. 0 

It is worth while noting a simple consequence of Lemma 2.1: CH implies that pure 

subgroups of completely decomposable groups admit X0-prebalanced chains. 

We proceed to verify the following more substantial result. 

Theorem 2.2. !f’tlwr.c is (I J;’ -prehalanced chainjknn u pure subgroup A oj’a torsion-free 
group G to the qrc~p G ifself, then in tl rdative hdanced-projective resolution 

0 --t B + A @ C --f G + 0 (C is completely decompo.sahle) the group B admits a K- 

prebalanced chrrill. 

Proof. Suppose G admits a K+-prebalanced chain from A to G, say, A = 
Go < ... < G, < G, _ , < ... is such a chain. We build a relative balanced-projective 

resolution of G \vith the aid of this chain as follows: from a relative balanced- 

projective resolution 0 + B, + A 0 C, + G, j 0 of G, we form a relative balanced- 

projective resolution 0 + B,, , + A @ C,, , 4 G,+ 1 --) 0 of G,+, by choosing 

c - C, @ C’ for ;I suitable completely decomposable group C’ and mapping C’ *+I - 
into G,+ 1 such that in a fixed direct decomposition of C’, no rank 1 summand maps 

into G,; and ~ of course we take unions at limit ordinals (note that the direct limit is 

again balanced-exact). 

In this way. WC: obtain the following commutative diagram with exact rows and 

exact columns: 

O----B 
I 

-A@C,-G-O 01 

1 I I 
O-B .I--‘A@C,@C’~G z -0 a+1 

I 
O-B,.‘; B 

i 1 
T- C’ - G, + , /G,-0 



Evidently, if G, is a K+-prebalanced subgroup in G,+ 1, then the ideal .f generated by 

the types of summands in C’ has a set of K+ generators. In the bottom row of the 

diagram, the subgroup B,, 1 /Bl is a corank 1 pure subgroup of the completely 

decomposable group C’ where the rank 1 summands in the chosen decomposition 

of C’ map non-trivially upon G,, , /GZ. Since .f is X+-generated, Lemma 2. I 

implies that B,, ,/B, admits a k--prebalanced chain. Consequently, B is the union of 

a continuous well-ordered ascending chain 0 = B0 < ... < B, < B,, , < ... of bal- 

anced subgroups where each of the factors B,, 1 / 8, admits a K-prebalanced chain. It 

follows at once that these chains lift to B creating a K-prebalanced chain for B. as 

desired. 0 

For reasons that will become apparent in the sequel, our primary concern is the 

case K = No. It is significant that in this case a much stronger version of Theorem 2.2 

holds true. 

Recall that by an A.uiorn-3 @n/y of subgroups in G is meant a collection % of 

subgroups of G such that (it 0, G E %; (ii) %;’ is closed under taking arbitrary unions of 

its members; (iii) if A E % and X is any countable subset of G, then there is an A’ E ‘t 

that contains both A and X such that A’/ A is countable (see [ 183). A TEP-suhyroup of 

G (torsion extension property, see [9]) is a (necessarily) pure subgroup A of G such 

that every homomorphism of A into a torsion group T extends to a homomorphism 

from G into T. 

Theorem 2.3. There exists an K,-prebalunced chain ,fiom u pure subgroup A of 

LI tor.sion:free group G to G itself if and only $ in (I relative balanced-projectice 

resolution 0 -+ B + A 0 C --f G ---) 0 (where C is completely decomposuhle), B is u B,- 

group. 

Proof. The proof of Theorem 2.2 shows that if there is an K,-prebalanced chain from 

A to G, then the group B is the union of a well-ordered continuous ascending chain 

0 = B0 < ... < B, < B,+l < ... of its balanced subgroups where the factors B,, , / B, 

are pure subgroups of countable completely decomposable groups. These factors are 

therefore B2-groups, and then B is likewise a B,-group. 

To verify sufficiency, let 0 -+ B + A 0 C 4 G + 0 be a balanced-projective resolu- 

tion of G relative to A where C is completely decomposable and B is a B,-group. As 

a B,-group, B admits an Axiom-3 family $8 of decent, TEP subgroups (see [l, 131). 

C is a completely decomposable group, so it has an Axiom-3 family % of summands; 

furthermore, the torsion-free group G/A has an Axiom-3 family !6Z of pure subgroups 

[18]. Dropping to suitable subfamilies by the usual back-and-forth argument, filtra- 

tions of B, C and G/A can be found with members in the respective families such that 

the exact sequences 0 -+ B, -+ A @ C, + G, + 0 are all prebalanced-exact and the 

factor groups C,, ,/C, are all countable. We can write C,, , = C, 0 C’, and form 

a prebalanced exact sequence 0 + H + G, 0 C’ -, G, + i + 0 with the obvious maps 
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(H is defined as the kernel). This leads to a commutative diagram with prebalanced- 
exact rows 

a 4 

i I 
O-B,+,- A@C,@C ‘- G,, I_ 0 

i 
O-H MC, @ C’- G,+ ,- 0 

where the first column is exact in view of the 3 x 3-lemma. B, being a TEP-subgroup of 
the B,-group B,+ 1, it follows that H z B,+ ,/B, is a B,-group [S]. 

Let G’ be a pure subgroup of G,, 1 that contains G, as a corank one subgroup. The 
bottom row induces a prebalanced-exact sequence 0 -+ H + G, 0 D + G’ + 0 where 
D is a pure subgroup of the countable completely decomposable group C’. Therefore, 
D is a countable B,-group. Lemma 1.2 implies that G, is EC,-prebalanced in G’. We 
conclude that G, is Kc,-prebalanced in G,+ i, and the proof is complete. 0 

Note that in the last theorem the condition that B be a B,-group is independent of 
the choice of the relative balanced-projective resolution. Indeed, suppose that 
O-+B+A@C* G+OandO+B’+A@C’~G+Oaretwobalanced-projec- 
tive resolutions of G relative to A where C and C’ are completely decomposable, and 
I#I[ A, $[A are the inclusion maps. The top row in the following pullback diagram 
splits, since by the complete decomposability of C there is a map p: A @ C + A @ C’ 

such that $p = 4: 

O-B'- M-ABC-0 

- 0. 

Therefore, A4 z B’ @A @ C, and analogously, A4 z B 0 A 0 C’. In the arising 
isomorphism B’ @ A @ C z B @ A 0 C’ we may cancel the A’s on both sides, since 
the map between them is the identity. Thus 8’0 C z B@ C’. Since summands of 
Bz-groups are B2-groups [.5], the last isomorphism shows that if one of B and B’ is 
a Bz-group, then so is the other. 

It would be tempting to conjecture that Theorem 2.3 generalizes straightforwardly 
to higher degrees of prebalancedness. However, it is easy to construct a counter- 
example. In fact, if 2”0 2 K3, then Theorem 6.1 yields a corank one pure subgroup G of 
a completely decomposable group that has no K,-prebalanced chain, but the kernel of 
its balanced-projective resolution admits an K,-prebalanced chain. 

The case A = 0 in the preceding theorem yields at once an important criterion we 
have been looking for: 
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Corollary 2.4. A torsion-pee group G admits an No-prebalanced chain if and only ifin 

a balanced-projective resolution 0 + B + C + G + 0 qf G (where C is completely decom- 

posable) the subgroup B is a B2-group. 

Recall that a pure subgroup A of G is called separative - of separable in the sense of 
Hill [l] - if for each g E G there is a countable subset (a,ln < co} c A such that 
{x(g + a,)ln < W) is cofinal in the partially ordered set {x(g + a)(a E A} of character- 
istics. From the definitions it is evident that separative subgroups are K,-prebalanced. 

Fuchs and Magidor [ 131 have shown that V = L guarantees that every torsion-free 

group admits a separative, and hence an K,,-prebalanced chain. It is not known if 
I/ = L is a necessary condition for the existence of either chain, but CH is certainly 
necessary; cf. Theorem 6.4. Let us point out that necessary conditions for the existence 
of these two kinds of chains might be different; in fact Example 6.5 will show that 
ZFC + 1 CH implies the existence of torsion-free groups with K,-prebalanced chains 
that fail to admit separative chains. 

3. Axiom-3 families of Qprebalanced subgroups 

Fuchs and Magidor [ 133 have shown that if a torsion-free group G admits a single 
separative chain, then it also admits a whole Axiom-3 family of separative subgroups. 
An analogous claim can be established for K,-prebalanced chains, as is shown by our 
next result. The proof is similar, based on an idea of Paul Hill’s [17], but the situation 
here is sufficiently different to warrant details. Actually, we prove a more general 
result. 

We say that a family 9 of subgroups of G is an Axiom-3 family over a subgroup 
A and G if every member F of B contains A and {F/A 1 F E 9) is an Axiom-3 family in 
G/A; cf. [l]. 

Theorem 3.1. A torsion-free group G that has an K,-prebalanced chain from a pure 

subgroup A to G admits an Axiom-3 family over A consisting of No-prebalanced 

subgroups qf G. 

Proof. Let G be a torsion-free’group of rank ;I and assume that G is the union of 
a continuous well-ordered ascending chain of NO-prebalanced subgroups G, (v < i) of 
ranks < 1 with rank 1 quotients G,+ , /G, and Go = A. For each v < 2, and for each 

coset g + G, in G,+,, consider a countable set {g + a,ln < W} with a,, E G, such that 
the types {t(g + a# n < W} generate the ideal generated by the set (t(g + a)la E G,). 

Let B, denote the subgroup of G,+ 1 which is generated by the pure subgroups 
(g + a,), (n < w) for each coset g + G, in G,+ r. Evidently, B, is a countable 
subgroup of G,, 1 such that G,, 1 = G, + B,. 

A subset S of i is said to be closed, if, for each p in S, 

G,nB, I (B,.lv E S, v < u). 



Lemmas 5.5-5.6 in [l] show, respectively, that 

(1) the union of any number of closed subsets of E. is closed, 

(2) for a closed subset S of >b, the subgroup G(S) = (A, B,/v E S) is pure in G, 

(3) every countable subset F of i. is contained in a countable closed subset S 

of I.. 

Define the family 55 of subgroups of G to consist of all subgroups of the form G(S) 

with S closed in i. This $9 will be a desired family provided that G(S) is a KO-pre- 

balanced subgroup in G for S closed in E.. 

Evidently, every g # 0 in G defines an ordinal ~(9) < E. such that Gvcg)+ 1 is the first 

member of the chain G,, (V < 2) that contains y. We use induction on I to find, for 

each g E G\G(S), a countable subset in the set jt(q + x)l.-t E G(S)) which generates the 

same ideal as this set. 

Let v(g) = p where /t is the smallest index such that &S. There is a countable subset 

{t(g + 4Jln < (01 in {t(g + .x)l.x E G,,) which generates the same ideal. Obviously 

G, I G(S), so u, E G(S). We claim that (t(g + u,)ln < wj generates the same ideal as 

(t(.y + .u)l.u E G(S)). Given .Y E G(S), in order to find an integer n < w satisfying 

t(g + X) I Ui<,t(y + ui), we induct on I’(S) = (T. 

If 0 < ,u, we are done by the choice of a,. 

The case 0 = p is ruled out, since this would mean s = u + so + x1 with u E A, 

.x0 E XB, (v < p) and 0 # x1 E C B,. (v > II), thus .x1 = x - u - .x0 E G,. Write 

Y, = y1 + ... + y, with 0; = V(J+JE S and c1 < ... < ok and assume that the yj are 

chosen such that ok is minimal. Then yk = G,, n B,, I (B,.I v E S, v < (TV) leads to 

a contradiction. 

Finally, let ~YJ > I(; then necessarily g E S. Hence there are bj E G, such 

that .Y + h,i E B, and t(g + S) I IJj<m t(g + hj). We obtain t(.c/ + X) I uj<mz t(g + hj). 

Here hj = (x + bj) - .X E G(S), \a(hj) < g, thus, by induction hypothesis, for each 

j <m, t(g - bj) I Ui<,rf(U + lli) holds for some n. We have reached the desired 

conclusion. 

Continuing our induction, we can assume that g is chosen such that I is minimal 

for the elements in the coset g + G(S). Then \l(g)$S, since for the coset g + Grcy, we 

have selected a countable set iy + u,ln < w) and ~(9) ES would imply that a, was 

a representative of the same coset with a smaller I. By induction hypothesis, for 

each n < co, there is a countable subset jt(u, + u,,,)lk < co; of it@, + ?c)l.)c E G(S)) 

which generates the same ideal. We claim that the set (f(Y - NJ/H, k < co) generates 

the same ideal as the set [t(g + .u)lx E G(S)). Again, we use induction on V(X) = (T. 

If fl < /&Ix then we have t(g + X) I Ui<nt(cg + (li) for some n < o; 

hence t(g + S) I Ui<,t(ai - x). Since for i < n we have t(Ui - X) I Uj<k t(Ui + Uij), 

and hence t(ai + X) I Uj<k t(x + tcij) holds for some k, we infer that t(g + X) I 

IJ<n Uj<kf(.X + uij), and consequently, t(g + X) I iJ<,, Uj<k t(g - m,j). The proof in 

the last but one paragraph applies to show that c = ~-c(y) cannot occur. The case 

(T > ,u(c/) can be settled as above to convince ourselves that the set 

(f(c) + a,,,)(n, k -c co) generates the same lattice ideal as the set 

;t(.c, + s)l.u E G(S)]. 0 
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4. B, -groups with K,,-prebalanced chains 

In general, it is a hard problem to decide whether or not a given B1-group is 

a B,-group - unless additional set-theoretical hypotheses guarantee that all B,- 

groups of that cardinality are &-groups or the typeset of the group is restricted 

[16]. From the very definition of B,-groups it is evident that B2-groups admit 

(prebalanced, and hence) &prebalanced chains. Our next purpose is to show that 
_ in every model of ZFC - this property alone characterizes B,-groups within the class 

of B, -groups. 

Theorem 4.1. A B1-group is u B2-group if’ and only if it admits an K,-prebalanced 

chain. 

Proof. It remains to prove sufficiency. Let B be a Bi-group of cardinality 2, and 

O=B,< ... <B,<B,+l< ... (x < 2) an &prebalanced chain up to B with rank 

one factors. From [S] we know that all the subgroups B, in the chain are B,-groups. 

The claim is verified by induction on 2. For i I K,, the assertion is true; in fact, in 

view of [S], all Bi-groups of cardinality I x1 are B,-groups. 

First, assume 3, is a regular cardinal. Because of Theorem 7.1 in [S], there is a cub 

E in i. such that B, is a TEP-subgroup of B, for all x E E. It follows from [14] that, for 

all r E E, the subgroups B, are prebalanced in B. Omitting all the B, with r$E, the 

remaining chain contains only subgroups which are prebalanced in B and all the 

factors are B,-groups of cardinality < i. The omitted B, (r$E) map upon K,-pre- 

balanced subgroups of the factors of the new chain [S], so by induction hypothesis, 

these factors are B,-groups. We conclude that B itself is a B2-group. 

Next, suppose that i is a singular cardinal. By Theorem 3.1, B has an Axiom-3 

family d of h*,,-prebalanced subgroups. The proof of Theorem 3.1 shows that those 

subgroups in .a that are contained in B, yield an Axiom-3 family of h’,-prebalanced 

subgroups of B,. Every member of J belongs to an x0-prebalanced chain of B, and 

therefore all the subgroups in .?? are B,-groups. Let .d* consist of all the members of 

.$ whose cardinality is < jV. By induction hypothesis, the subgroups in J* are 

B,-groups. It is straightforward to check that J* is a i,$amily in the sense of [IS], i.e. it 

satisfies the following four conditions: 

(i) OE~“; 

(ii) 1 Al < i for all A E ,&I*; 

(iii) if 1( < i, is a regular cardinal, and if A, (x < p) is an ascending chain of 

subgroups in a* such that 1 A,1 < K for some K < i,, then Uz.+Aa E J *; 

(iv) if A E 8* and X is a subset of B of cardinality < i, then some A’ E .d* contains 

both A and X and satisfies iA’1 I 1.4 1 IX/. 

It only remains to appeal to Corollary 6.3 in [8] to conclude that B itself is 

a B,-group. (There is a gap in the proof of the quoted Corollary which can easily be 

corrected; see a forthcoming paper by Fuchs and Rangaswamy.) 0 
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Let i be an infinite cardinal. A continuous well-ordered ascending chain of sub- 
groups of G, 0 = Go < ... < G, < G,, , < ... with union G, will be called a i- 
,jltration of G if the cardinalities of the quotients G,, , /G, do not exceed 2. 

Corollary 4.2. A B,-group that admits an K,$ltration with (pre)balanced subgroups is 

a B2-group. 

Proof. An Ni-filtration with (pre)balanced subgroups can be refined by putting, 
between consecutive terms, chains of type < w, consisting of pure subgroups with 
rank one factors. The arising chain will be an N,-prebalanced chain, since countable 
extensions of K,,-prebalanced subgroups are likewise K,-prebalanced [S]. A simple 
reference to Theorem 4.1 completes the proof. fJ 

From Corollary 4.2 and the remark made after Lemma 2.1 we derive a result of 
Fuchs and Rangaswamy [ 161. 

Lemma 4.3. (CH) A pure subgroup of a completely decomposable group is a B,-group if 

and only if it is a B,-group. 

Consequently, from Theorem 2.3 we obtain at once the following corollary. 

Corollary 4.4. (CH) A torsion-free group G admits an &prebalanced chain exactly if 

Bext’(G, T) = 0,for all torsion groups T. 

We are in a position to characterize (even without assuming CH) those models of 
ZFC in which the groups Bext2(G, T) vanish for all torsion-free groups G and torsion 
groups T. 

Theorem 4.5. In a model of ZFC, 

Bext’(G, T) = 0 

holds for all torsion-free groups G and torsion groups T if and only if every torsion-free 

group admits an No-prebalanced chain. 

Proof. Sufficiency is an immediate consequence of Theorem 2.3. In order to verify 
necessity, assume that Bext2(G, T) = 0 for all torsion-free groups G and torsion 
groups T. In view of [l l] (see also Theorem 6.1) this implies that CH must hold. From 
Corollary 4.4 we infer that G admits an N,-prebalanced chain. 0 

Under CH, the next corollary is essentially due to Rangaswamy [21]. 

Corollary 4.6. Suppose that 0 + H + C + G + 0 is a balanced-exact sequence where C is 
a B2-group and H, G are B,-groups. If one of H and G is a B,-group, then so is the other. 
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Proof. First, suppose C is completely decomposable. If G is a B,-group, then Theorem 
4.1 and Corollary 2.4 imply that H is likewise a B2-group. If H is a &group, then by 
Corollary 2.4 G admits an K,,-prebalanced chain, so by Theorem 4.1 G is a B,-group. 

If C is an arbitrary &-group, then using a balanced-projective resolution 
0 -+ X + A + C + 0 of C in the middle column (with A completely decomposable) 
and defining K as the kernel of the composite map A + C + G, we can form the 
followings commutative diagram with balanced-exact rows and columns: 

x=x 

I I 
O-K-A-G-O 

I I II 
O-H-C-G-O 

Observe that Corollary 2.4 and Theorem 4.1 imply that X is a &-group, since C is 
a B,-group. 

If H is a B,-group, then K is also a &-group as a balanced extension of a B,-group 
by a B,-group. Again by Corollary 2.4, G has then an K,-prebalanced chain, so 
Theorem 4.1 guarantees that the B,-group G is a &-group. 

On the other hand, if G is a &-group, then by Corollary 2.4 K is a &-group. What 
has been proved in the preceding paragraph implies that H too is a B,-group. 0 

The next corollary which follows from Corollary 4.6 at once shows that, fortun- 
ately, the terminologies for Br- and B,-groups have been chosen in the correct way. 

Corollary 4.7 (Rangaswamy [21], CH). A torsion+ee group B is a B2-group ifand only 

ifboth Bext’(B, T) = 0 and Bext’(B, T) = 0 holdfor all torsion groups T. 

The sufficiency part of the last corollary can be generalized as we shall see in 
Theorem 5.2. 

By a long balanced-projective resolution of the torsion-free group G we mean a long 
exact sequence 

O+K,-+C,-+ ... -+C,+C,+G--+O 

in which the groups Ci are completely decomposable and in each Ci the image of the 
preceding map is a balanced subgroup; in other words, the long sequence is bal- 
anced-exact. From Theorem 2.2 it is easy to conclude by induction that if G admits an 
K,-prebalanced chain for some integer n 2 0, then the kernel K, is a B,-group. 

Lemma 4.8. If a torsion-free group B has an Nk-prebalanced chain, and if 

Bext’( B, T ) = 0 for all torsion groups T and ,fbr 1 < i < k + 1. 

then B is a B2-group. 



Proof. Consider a long balanced-projective resolution of B, 0 + Kj -+ Ci + ... + 

C, --+ Co -+ I3 + 0 where the groups Ci are completely decomposable. By virtue of 

Theorem 2.2, hypothesis implies that the kernel K0 has an Sk_ ,-prebalanced chain, 

and a straightforward induction shows that the kernel Kk_, admits an S\‘,-pre- 

balanced chain. As Bext’ (Ki, T) = Bext’+’ (B, T) = 0, it follows that B and all the 

kernels Ki (i = 0,. . . , k - 1) are B,-groups. From Theorem 4.1 we conclude that 

Kk_ 1 is a B,-group. In view of Corollary 4.6, in the balanced-exact sequence 

0 ---* Ki ~ Ci ~ Kim * -+ 0 of !I,-groups (i = k ~ 1, . . , 0) KimI is a Bz-group if so is 

Ki. Therefore K,,. and hence B itself, is a B,-group, indeed. 0 

Another corollary which is worth while recording for reference is as follows. 

Corollary 4.9. Jf’B is u B2-group, then Bext’(B, T) = O,fbr ull i 2 1 ~nd,fhr all torsion 
groups T. 

5. A homological characterization of Bz-group 

We now take up the problem of characterizing B,-groups in terms of Bext. Our 

main objective is to generalize Rangaswamy’s theorem [Zl] (see Corollary 4.7) by 

getting rid of CH. In case the continuum is X,, for some integer n 2 1, a most 

satisfactory result can be established. 

Theorem 5.1. Suppose that 2sC’ = X,, ,fbr an intqer n 2 1. Then u tor..sion~fiee group 
G hus un No-prehalunced chuin (fund only if 

Bext’(G, T) = ... = Bext”“(G, T) = 0 ,fiv ull torsion groups T. 

Eyuic&nflp, if‘und only {f‘ Bext’(G, T) = Ojbr trll i 2 2 und u/l torsictf~ gjroups T. 

Proof. The equivalence of the two stated conditions will be evident from Theorem 7.3. 

Consider a long balanced-projective resolution of G. 0 + Kj + Cj + ... + 

C, + Co + G + 0, where the groups Ci are completely decomposable. 

First assume G has an X0-prebalanced chain. Then by Corollary 2.4 the kernel K0 is 

a B,-group. But once a kernel Ki is a B1-group, then Corollary 4.6 implies, in view of 

the balanced-exact sequence 0 + K;+ , + C,, , + K, + 0, that all subsequent kernels 

Ki (i > i) are B,-groups. Hence necessity is immediate. 

In order to verify the converse, assume that G satisfies Bext’(G, T) = 0 for 

i = 2, , n + 1. Noting that if K, is the continuum, then every torsion-free group has 

an X\‘,-prebalanced chain, we can argue as in the proof of Lemma 4.8 to show by 

induction that all of Ki (i = n - 1, , 0) are B,-groups. Hence sufficiency follows at 

once from Corollary 2.4. 0 

The next result is a generalization of Rangaswamy’s theorem [21] 
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Theorem 5.2. Let 2’<’ = K, for un integer n 2 1. Then a torsionYfree group B is u Be- 

group if and onl_v if 

Bext’(B, T) = Bext2(B, T) = .-. = Bext”+’ (B, T) = 0 for all torsion groups T. 

Equiuulently, if’ and only if Bext’(B, T) = Of or all i 2 1 and all torsion groups T. 

Proof. This follows at once from Theorem 5.1 by referring to Theorem 4.1 again. 0 

Note that the proof shows that if a torsion-free group G satisfies Bext’(G, T) = 0 for 

all i 2 1 and all torsion groups T, then either G and all the kernels in its long 

balanced-projective resolution are B2-groups, or none of them is a &-group. It is an 

open problem whether or not the second alternative can occur. (Of course, then we 

must have 2’” 2 N:, and none of the kernels is a B,-group.) 

A proof similar to the one above applies to yield the following proposition. 

Proposition 5.3. A torsion:free group B of cardinality K, ror un integer n 2 1) is 

a B2-group ifund only if 

Bext’(li’, T) = Bext’(B, T) = .-+ = Bext”+’ (II, T) = 0 ,for all torsion groups T. 

6. Groups without &prebalanced chains 

We owe the reader examples of groups which fail to admit Ni-prebalanced chains 

for i 2 0. 

Let .Y = (S,l3~ < a} be a set of almost disjoint countable subsets S, of the set of all 

prime numbers; i.e. S,nSP is finite for different M, /3 < 52; here 52 stands for the initial 

ordinal of the power of the continuum. (For the existence of such an ,4p see e.g. Jech 

[20, p. 242, Lemma 23.91.) For each a < R, let t, be the type represented by the 

characteristic (nz, n3, . . . , np, . . . ) where rzP = 1 or 0 according as p E S, or p$S,. It is 

easily seen that t, I t,, u .-. utak holds if and only if Q E {x1, . . . , CQ>. Consequently, in 

the lattice of types, the ideal generated by the t, cannot be countably generated. 

With the indicated choice of types, let A be the direct sum of rational groups A, with 

t(A,) = t, for x < $2, and G a corank 1 pure subgroup of A that does not contain any 

A,. This group G is homogeneous of type 7, but by Lemma 1 .l it is not a &-group, so 

it is not free [3]. 

Dugas and Thorn& [ 1 l] proved that there exist two collections of the power of the 

continuum consisting of almost disjoint sets, Y and Y, as above, with the additional 

property that the intersection S,nS’,, is infinite for all S, E 5f, S’, E Y. (A moment’s 

reflection shows that this simply means that, for each 2, {S,n Sb(p < 52) is a collection 

of almost disjoint sets.) 

The following is a simplified version, and at the same time a generalization, of the 

main result of [l 13. 

Theorem 6.1. Assume 2’,’ 2 K, .for some integer n 2 1. Choose an index set 1 of 

cardinality w,, and ,form the completely decomposable group A = Oz < WI, A, where rhe 
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set of types of the rank 1 summands A, is the union of the sets of types deJned by the 

almost disjoint systems .Y und ,Y” of curdinality K,. Then no corank 1 subgroup G of 

A that contains none of the A, udmits an EC,,- 2-prehalanced chain. 

Proof. Let G be as stated. It is obvious that we can find, for each r < o,, an LI, E A, 

such that 4(a,) = m, E N. If /I < x < LU,,, let A,, denote the purification of the sub- 

group (mBa, - mUaD) in A. For v < w,, we set 

A(v) = 0 A, and G(v) = GnA(v). 
1CY 

Evidently, A,, has type t(Ag)nt(A,) in G, and G is generated by all the A,,. 

We interrupt the argument to prove an easy lemma. 

Lemma 6.2. For any v, G(v) is tc-prebalanced in G( v + 1) [fund only {f there is a set I of 

indices pa < v, such thut I has cardinality I K, and the types t(A,.,,,) with p1 E I yenerate 

the ideal generated by all types t(A,,,) with p < V. 

Proof. Since the ideal generated by the types of the rank 1 pure subgroups in 

G(v + l)\G(v) is generated by the types t(A,,,) for ;L < V, the condition is evidently 

necessary and sufficient for G(v) to be k--prebalanced in G(v + 1). 0 

Proof of Theorem 6.1 (conclusion). Resuming the proof of Theorem 6.1, suppose that 

the well-ordering of types is done alternately from the two systems .Y and 9’. 

Consider the chain {G(V)} for v < cu,. 

If v > w,_ i, then G(v) is not tc,_ ,-prebalanced in G, as a matter of fact, not even in 

G(v + 1). This is an immediate consequence of Lemma 6.2. In fact, the lattice ideal 

generated by the types t(A,)nt(A,) (a < v) (K,_ 1 ofthem) is K,_ *-generated. For, if the 

types t,, and the t,‘s are chosen from different systems .Y and .Y’, then 

t,,nt, I (tvnt,,)u ... u(t,,nt,,) can hold only if a E (cc,, . . . , rk), while adjoining inter- 

sections of types from the same system as t,. belongs to does not change the type of the 

union at all. 

Now, if G had an h’,_,-prebalanced chain, then - the cardinal N:, being regular 
- there would be a cub E in w, such that G(v) is K,_ 2-prebalanced in G for all v E E. 

This is absurd, therefore G cannot have an tc,, _ ,-prebalanced chain. 0 

Corollary 6.3. If for a model of ZFC there is an integer n 2 1, such that every 

torsion-free group admits an K,-prehalunced chain, then 2’0 _< N,,+ , in this model. 

Let us formulate another noteworthy consequence of our study. 

Theorem 6.4. In any model of ZFC, the following conditions ure equivulent: 
(i) Bext*(G, T) = 0,for all t orsionfree groups G und torsion groups T. 

(ii) Every torsionfree group admits an &prehalunced chain. 
(iii) CH holds and balanced subgroups of completely decomposable groups are BZ- 

groups. 
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Proof. The equivalence of(i) and (ii) has been proved in Theorem 4.5. By Lemma 6.2, 

(i) implies CH, and Lemma 4.3 shows that, in the presence of CH, a balanced subgroup 

of a completely decomposable group is a Bz-group if and only if it is a B,-group. 

(iii) trivially implies (i), while the converse follows from Theorem 4.5. 0 

It is easy to find examples showing that Qprebalanced subgroups are not neces- 

sarily separative, but it is not so obvious that it is possible for a group to admit an 

K,-prebalanced chain but no separative chains. We show this in models of ZFC in 

which CH fails. 

Example 6.5. ( 1 CH). There is a torsion-free group G of cardinality Xz which admits 

an K,-prebalanced chain but no separative chains. 

As above, choose two collections, :/ and .Y”, both of cardinality Nz, consisting of 

almost disjoint sets such that the intersections S,nS; are infinite for all S, E ,Y’, 

Sb E .Y’. Define the types t, and tj as above. Let A = @.<,.,, A, be a completely 

decomposable group where the rational groups A, with indices v > (0 have different 

types t, corresponding to S, E .Y, while A,. with v 2 (u have different types tD’ corres- 

ponding to Sb E 9’. If G is a corank 1 subgroup of A which is disjoint from all A,., then 

in the notation of Theorem 6.1 we have that G(v) is an X0-prebalanced subgroup. 

However, it is not separative in G(v + l), since the generating types # t(Z) are 

pairwise incomparable, so there is no cofinal subset in the set of characteristics. As in 

Lemma 6.2 we argue that G cannot have a separative chain. 

7. The groups Bext” 

Albrecht and Hill [l] proved that Bext’(G, T) = 0 for all torsion-free groups G of 

cardinality I N, and all torsion groups T, and that CH implies Bext3(G, T) = 0 for 

all torsion-free groups G. We extend these results to groups of higher cardinalities by 

showing that, for all torsion groups T, Bext’+’ (G, T) = 0 for torsion-free groups G of 

cardinality < N, (i 2 l), and Bext”+2 (G, T) = 0 holds for all torsion-free groups 

G whenever K, (for some integer n 2 1) is the continuum. 

We shall require an analogue of Auslander’s well-known lemma that gives an upper 

estimate of the projective dimension of the union of a chain. Since the proof of Lemma 

7.1 runs parallel to the proof of the original lemma [2], it suffices to state it without 

any comment. 

Lemma 7.1. Jf the group G is the union qf’u continuous well-ordered uscending chain 

0 = Go < G, < ... < G, < ... (z < t) qf’ hulanced subgroups G,, ,fbr some ordinal T, 

and $ there is an integer n 2 1 such that Bext"(G,+ , /G,, T) = 0 fbr u/l torsion groups 

T und,for u/l c( < T, then also Bext”(G, T) = 0,for all torsion groups T. 

We are now able to verify the following lemma. 
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Lemma 1.2. For all torsion-free groups G of cardinality I Ki (i 2 1) and for all torsion 

groups T, we huve 

Bextitk(G, T) = 0 for k = 1,2, . . . . 

Proof. We induct on i. Let 0 j B j C --) YG --$ 0 be a balanced-exact sequence where 
C is a completely decomposable group of cardinality Ki. Our claim is equivalent to the 
assertion that Bext’(B, T) = 0 for all T. 

If K = Nl, then the claim is obvious, since balanced subgroups of completely 
decomposable groups of cardinality I K1 are B,-groups [l]. Let G have cardinality 
Ki (i > l), and assume that the claim holds for i - 1. Because of Lemma 1.4, B admits 
an Ki_,-filtration with balanced subgroups, say, 0 = B0 < B1 < ... < B, < ... 

(CI < wi). The factors B,, r/B, have cardinality I Ki- r, so by induction hypothesis, 
Bext’(B,+ ,/B,, T) = 0 for all CI. Hence Lemma 7.1 implies Bext’(B, T) = 0 - this is 
exactly what we wanted to prove. 0 

We can derive the following conclusion. 

Theorem 7.3. Jf 2’0 = K, for an integer n 2 1, then 

Bext n+k+‘(G, T) = 0 (k = 1,2, . . ) 

for all torsiowfree groups G and torsion groups T. 

Proof. Refer to Lemma 7.2 to conclude that Bextntk(G, T) = 0 (k 2 1) for all groups 
G whose cardinality does not exceed the continuum. If IGI = K > K,, then we apply 
Lemma 1.3 to a balancd-projective resolution 0 -P B --) C --) ‘G + 0 of G where C is 
a completely decomposable group. Thus, B has an &-filtration with balanced sub- 
groups 0 = B0 < B1 < ... < B, < ... (a < K). As the factors B,, ,/B, have cardinal- 
ity I K,, Lemma 7.2 guarantees that Bext”+’ (B,, l/B,, T) = 0 for all CY. An appeal to 
Lemma 7.1 completes the proof that Bext”+ ‘(B, T) = 0. 0 

We conjecture that if 2’0 = K, for an integer n 2 1, then Bext”(G, T) # 0 for some 
torsion-free group G and some torsion group T. This is certainly true for n = 1 and n = 2. 

8. Subgroups of Bz-groups 

We now turn our attention to the problem as to when a pure subgroup of a B2- 

group is again a Bz-group. While Hill and Megibben [19] proved that a completely 
decomposable pure subgroup of a torsion-free group ought to be separative, this 
question for B,-groups has been neglected in the literature. Only very recently have 
Bican and Fuchs [S] shown that if CH is assumed, then No-prebalancedness is 
a necessary condition. Here we can do much better by establishing necessary and 
sufficient conditons; we do not even rely on additional set-theoretical hypotheses. 
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Theorem 8.1. For a pure subgroup A of a B2-group G the ,following conditions are 

equivalent: 

(i) A is a B2-group; 
(ii) there is an K,-prebalanced chain from A to G; 

(iii) there is a continuous well-ordered ascending chain of B,-subgroups from A to 
G with rank 1 factors. 

Proof (i) o (ii) Let 0 -+ B -+ A @ Cz+G + 0 be a balanced-projective resolution of 
G relative to A where C is completely decomposable and 4 induces the identity on A. 

This gives rise to the exact sequence 

0 = Bext’(G, T) -+ Bext’(A, T) -+ Bext’(B, T) + Bext2(G, T) = 0 

for every torsion group T where the terms involving G vanish on account of the 
assumption on G; see Corollary 4.9. It follows that B is a B,-group exactly if A is 
a B,-group. 

Now, if A is a B,-group, then so is A 0 C, and Corollary 4.6 implies that B is 
a B,-group. (ii) follows at once from Theorem 2.3. Conversely, if (ii) holds, then B is 
a Bz-group, so A @ C is likewise a Bz-group. Since summands of B2-groups are 
B,-groups [S], we obtain (i). 

(ii) * (iii) * (i) If (ii) holds, then from the equivalence of(i) and (ii) it follows that all 
the members in the KO-prebalanced chain are B,-groups. In order to show that (iii) 
entails (ii), it suffices to ascertain that a corank 1 pure B,-subgroup A of a B,-group 
G is KO-prebalanced. The implication (iii) + (i) is trivial. 0 

Since there is always an K,,-prebalanced chain from an H,-prebalanced subgroup of 
index < K1 to the group itself, we conclude the following. 

Corollary 8.2. In any B2-group, a pure subgroup of index < N, is a B,-group exactly lf 
it is an N,-prebalanced subgroup. 

It is worth while mentioning the following result generalizing Theorem 4.1. 

Corollary 8.3. If the B2-group A is a pure subgroup of a B,-group G such that there is an 
K,,-prebalanced chain from A to G, then G is a B,-group, too. 

Proof. In a balanced-projective resolution 0 -+ B --+ A @ GIG -+ 0 of G relative to 
A, the groups B and A 0 C are now B,-groups, while G is a B,-group. The claim 
follows immediately from Corollary 4.6. 0 

Let us point out that implication (i) * (iii) in Theorem 8.1 can be proved directly as 
follows. Suppose A is a pure B,-subgroup of the B,-group G. They admit G(K,,)-fami- 
lies d, 9 of decent, TEP-subgroups. Using standard back-and-forth arguments, one 



44 L Fuchs lJownul o/‘Purr and Applied Al&m YN 11995) 25-44 

can easily construct continuous well-ordered ascending chains [ AZj in A and {G,} in 

G such that G, E ,d, G,nA = A, E 9 and A + G, is pure in G. Then 

(A + G,)/Gz 2 A/A, is a B,-group, so A + G, is a &-group as an extension of 

a decent B,-subgroup by a B,-group. This yields a chain of pure &-subgroups with 

countable factors. 

Our final corollary is an analogue of Theorem 5 by Dugas and Rangaswamy [lo]. 

Corollary 8.4. A homo,yeneous pure subgroup A of’u B2-group B is completely decom- 

posuhle exuctly if there is an NO-prehalunced chuin ,fiwm A to B. 

Proof. All what we have to note is that a homogeneous B,-group is completely 

decomposable. 0 
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