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a b s t r a c t

When a damaged ship floods, flows of water and air move from one compartment to another, or to and from
the outside. There are two main difficulties in simulation of such flooding. One is the effect of air, and the
other is the calculation of pressure in a complex system of openings involving a large number of compart-
ments. The air plays a crucial role in the flooding of some compartments, and the presence of air slows the
rate of flooding in vented compartments. However, taking into account the effect of air results in ‘ripples’ of
pressure fluctuation. Some other unusual difficulties arise, when many compartments are flooded.

In this paper, new models for vented compartments and an accumulator model were proposed, which
can adjust the inner pressure automatically, even for systems with many compartments and openings,
especially for fully flooded compartments. The dynamic-orifice equation was investigated for use in the case
of large openings, so that the ripples in the air pressure that had been caused by the square-root singularity of
the existing orifice equation could be eliminated. Application to a recent real accident showed the usefulness
of the proposed models.

& 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

While the number of flooding and sinking accidents is rela-
tively small, they often lead to the tragic loss of personnel.
Therefore, better knowledge about the processes that occur during
flooding and sinking is required, and optimal response measures
should be prepared according to the results of the study. For this
purpose, a great deal of research about flooding has been con-
ducted for specific real accidents, and safety assessments have
been conducted during ship design, in anticipation of possible
damage in the field.

The flooding simulation of a damaged ship seems to have been
started by Spouge (1986), when he investigated the sinking of the
Ro-Ro Ferry ‘EUROPEAN GATEWAY’. He used a hydraulic-flow
model to calculate the flood rate, and used an empirical formula
to determine the center-of-gravity of the floodwater and its
movement in transient asymmetric flooding stage. Sen and Kon-
stantinidis (1987) developed his method further, and they
obtained the position of the center-of-gravity by assuming the free
surface always remains horizontal. Later, to take into account the
dynamic effect of the floodwater, Papanikolaou et al. (2000)
developed the method of lumped mass. A flow equation for
shallow water and the movement of point mass followed (Chang
and Blume, 1998; Chang, 1999). Computational fluid dynamics
Ltd. This is an open access article
followed (van’t Veer and de Kat, 2000; Woodburn et al., 2002; Cho
et al., 2005); then the depth-averaged Euler equation was intro-
duced (Lee, 2010). In relating the air flow and its compressibility,
Palazzi and de Kat (2004) compared the results of model experi-
ments and simulations of a damaged ship in which the entrapped
air and its flow-out through vents were considered. Ruponen et al
(2013) conducted a series of full-scale experiments for flooding of
a tank with restricted ventilation level and compared these results
with corresponding time-domain flooding simulations.

Until now, the hydraulic orifice equation has been used to obtain
the flow between compartments. For the application of this equation,
the following assumptions are required: incompressible fluid, inviscid
fluid, steady conditions, and small openings (area). Among these, the
assumptions of incompressible and inviscid fluid seem reasonable for
seawater but for air, the incompressibility assumption may cause
problems. However, the most troublesome assumption is that steady
state: the flow velocity can change instantly as the pressure changes.
Furthermore, in the case of small pressure differences, the application
of this equation results in numerical instability because of the nature
of square root function. This will be shown in detail later. Lee (2014)
newly derived the dynamic-orifice equation from the basic equations
of fluid mechanics. In this study, the property of this dynamic-orifice
equation was investigated, and the sample calculations with analysis
were given. This new version of the equation can be applied to
unsteady states, and can eliminate the above-mentioned problems.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Another problem that occurs in the simulation of ship flooding,
involves the calculation of the pressure in each compartment,
when many compartments are connected to each other in com-
plicated ways. This problem has been addressed previously (van't
Veer et al., 2002, 2004; Ikeda et al., 2004; Vassalos et al., 2005).
The most important thing is the determining a reference pressure
for use in each compartment. Ruponen (2006) proposed a
pressure-correction method that satisfied the mass-conservation
law in order to determine the pressures of water and air in each
compartment. He made a comprehensive study of this problem
and validated his method using model tests (Ruponen, 2007).
However, because his method determines the pressure by itera-
tion, there was a convergence problem such as the number of
iterations and the under-relaxation, and the iterations may not
converge in some cases. He pointed out that the number of
iterations goes larger for the inclusion of air flow, and pointed out
that the final equilibrium condition may cause convergence pro-
blemwith a long time step because of the small time derivatives of
the water and air pressures. Dankowski (2013) simplified Rupo-
nen's method especially for a fully flooded compartment, he used
the non-linear equation drawn from the mass conservation law
and solved it by iteration. And he investigated various real acci-
dents. In our study, new models for vented compartments and an
accumulator model were proposed, which can adjust the reference
pressure automatically, even for systems with many compart-
ments and openings, especially for fully flooded compartments.
2. Re-analysis of the orifice equation

In many studies, the following ‘orifice equation’ has been used
in calculating the flow through an opening.

q¼ ρCDAv¼ ρCDA

ffiffiffiffiffiffiffiffiffiffi
2Δp
ρ

s
ð1Þ

where, q and ρ are the mass flux and density of the flow
through the opening, v is the velocity at the opening, A the area of
the opening, Δp the pressure difference, and CD the discharge
coefficient. The above orifice equation was derived from the steady
Bernoulli's equation.

In this section, the problem related to the above equation will be
investigated, and we investigate a new equation that includes the
dynamic effect. Then we verify its effectiveness and applicability.

2.1. Hydraulic orifice equation

Bernoulli's equation can be applied to the flow of an incom-
pressible, inviscid fluid in steady state along a stream line. Ber-
noulli's equation and the continuity equation used for Fig. 1 are
Eqs. (2) and (3), respectively.

p0
ρ
þ1
2
V2
0þgz0 ¼

p1
ρ
þ1
2
V2
1þgz1 ð2Þ

A0V0 ¼ A1V1 ð3Þ
Fig. 1. Orifice and stream lines.
where, g is the gravitational acceleration, z the height of the
position, the subscripts ‘0’ and ‘1’ indicate the orientation (posi-
tion), the fluid flows from side ‘0’ to side ‘1’. The total speed of the
flow is the square root of the component velocity squared,
V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2

p
. If the area of side ‘0’ is large, and the height

difference vanishes, the flow velocity through the orifice can be
expressed as in Eq. (4) from Eqs. (2) and (3),

V1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
ρ
Δp

s
ð4Þ

The flux can then be obtained by multiplying the area of orifice,
fluid density, and the discharge coefficient.

q¼ CDρA

ffiffiffiffiffiffiffiffiffiffiffi
2Δp
ρ

s
ð5Þ

The discharge coefficient CD is related to the inlet/outlet shape,
and the Reynolds number. Usually for an orifice with right-angled
edges, a discharge coefficient of 0.6–0.7 is used.

Eq. (5) has a singular behavior of the square root function for
small pressure differences. The rate of change with respect to the
pressure difference, goes to infinity as the pressure difference goes
to zero. Because of this, an unrealistic oscillation takes place when
the pressure difference is small (as for an opening between two
compartments with no other openings), while there is no problem
when the pressure difference is large. This phenomenon of square
root instability is explained in detail in Appendix B. Thus, the
hydraulic orifice Eq. (5) is for a large pressure difference, subject to
the assumptions stated previously (incompressible flow, and
steady state condition).

2.2. Dynamic orifice equation

There are two problems with the hydraulic orifice equation.
One is that it applies to steady state conditions. The second is that
it applied orifices of small cross-section (area). In order to conduct
a time-domain flooding simulation, it is required to include the
dynamic effect, and to expand the applicability to include orifices
of large area. Let us shortly introduce the work of Lee (2014),
derivation of a new dynamic orifice equation. The momentum
conservation law can be represented by the Euler equation for an
incompressible, inviscid fluid (Eqs. (6) and (6′)).

∂ v!
∂t

þ v
-
U∇

� �
v
-¼ F

-
�1
ρ
∇p ð6Þ

∂ v!
∂t

þ1
2
∇ðv-U v

-Þ ¼ F
-
�1
ρ
∇p ð6′Þ

where, v! is a velocity vector, p the pressure, ρ the density of

fluid, and F
!

is the body force, including gravity. The above two
equations are the same for incompressible and inviscid fluid. In
this study, the integral version of the Euler equation will be used,
so the momentum conservation law can be represented as in Eqs.
(7) and (7′) for a specific control volume.Z
Ω

∂
∂t

ρv
-

� �
dVþ

Z
∂Ω
ρv
-

v
-
U n
-

� �
dS¼

Z
Ω
ρF
-
dV�

Z
∂Ω

pn
-
dS ð7Þ

Z
Ω

∂
∂t

ρv
-

� �
dVþ1

2

Z
∂Ω
ρ v

-
U v
-

� �
n
-
dS¼

Z
Ω
ρF
-
dV�

Z
∂Ω

pn
-
dS ð7′Þ

where, Ω is the control volume of concern, and ∂Ω is the
boundary of the control volume. The orientation of the normal
vector is outward normal.

Fig. 2 shows the orifice and the overall shape of the control
volume, where R is the distance from the center of orifice and is
chosen to be large so that the flow velocity at that distance will be



Fig. 2. Orifice, control volumes and related parameters.

Fig. 3. Orifice velocity behavior when the pressure difference is a step function.
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small enough. On the boundary, AR, the pressure is constant as p0,
and the flow velocity is parallel to the normal vector. Let us
represent the velocity vector as v-, the velocity normal to orifice
as u, and the total velocity as V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þw2

p
, here and after. At

the right side of the orifice, the velocity and pressure are assumed
to be constantly distributed. The area of the orifice is A¼ A1, the
area of the wall in which the orifice exists is A0. The control
volumes on the left and right are C0 and C1, respectively. The
velocity components, excluding u, are asymmetric about the cen-
terline of the orifice.

Applying the mass and momentum conservation law to the
control volume C0 and C1, we can obtain the resulting Eq. (8)
which relates the velocity at the orifice and the pressure differ-
ence. (Lee (2014) finally got Eq. (8) for the dynamic-orifice equa-
tion. The details of the derivation are attached in Appendix A.)ffiffiffi
A

p

2
∂u
∂t

þ7
8
uð Þ2 ¼ ðp0�p1Þ

ρ
ð8Þ

where, u is the average normal velocity at the orifice. The final
velocity for a steady state of the above equation is:

uf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
7
ðp0�p1Þ

ρ

s
ð9Þ

This final steady state value is less than that provided by Eq. (4).
As briefly explained previously, the velocity from Eq. (4) is the
total velocity, and that of Eq. (9) is the normal velocity at the
orifice. It is reasonable to use the normal velocity for the calcula-
tion of flux through an orifice. Comparing Eqs. (4) and (9), it can be
seen that the theoretical value of the contraction coefficient of a
circular orifice with right-angle edge, is

ffiffiffiffiffiffiffiffi
4=7

p
ffi0:756 for an

inviscid fluid. We can obtain the initial rate of velocity (i.e., initial
acceleration) from rest using Eq. (8).

∂u
∂t
jt ¼ 0 ¼

1ffiffiffi
A

p 2ðp0�p1Þ
ρ

ð10Þ

The time to reach final velocity using the initial rate of change
would be:

T ¼ uf

du=dtjt ¼ 0
¼ 2

ffiffiffi
A
7

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2ðp0�p1Þ

r
ð11Þ

Fig. 3 shows the velocity rise with respect to time from Eq. (8),
when the pressure difference is a step-function.

The velocity reaches 0.765 of the final velocity at t ¼ T , 0.965 at
t ¼ 2T , and 0.99 at t ¼ 3T . One can obtain the velocity by inte-
grating Eq. (8) for small size of time step compared with T. From
Fig. 3, the numerical time integration using Eqs. (8) or (10) seems
not to be desirable if the size of time step of the simulation is
larger than T . For that case, one can use Eq. (9) rather than 8. Here,
T (from Eq. 11) becomes larger as the pressure difference becomes
smaller. This means that the dynamic model works for the case of
small pressure differences, even if we use a fixed size of time step.
For the discharge coefficient, the use of CD=
ffiffiffiffiffiffiffiffi
4=7

p
is desirable

because of the difference between the normal velocity and total
velocity in Eqs. (9) and (4). The density in Eq. (8) should be
determined according to the sign of the velocity, not the sign of
the pressure difference. Eq. (8) stands for positive velocity only,
and we can modify the equation a little bit for both directions.ffiffiffi
A

p

2
∂u
∂t

þ7
8
u uj j ¼ p0�p1

� �
ρ

if uZ0;ρ¼ ρ0

if uo0;ρ¼ ρ1 ð12Þ

2.3. Large opening

The pressure difference can vary across the orifice when it is
large. If the pressure difference is constant over the orifice area,
Eqs. (4) and (12) can give the flow velocity. If it varies, it is possible
to obtain the flow by solving the Euler equation or the Navier–
Stokes equation. However, this is impractical for a system with
many compartments and orifices. A more practical way is to
integrate the expression over the orifice area in order to obtain the
flux through the orifice. The hydraulic orifice Eqs. (4) and (5) do
not include the concept of average velocity, but for practical cal-
culation, one can use the average concept of velocity by integrating
them over the orifice area. Meanwhile, the dynamic orifice Eq. (12)
uses the average velocity, so it creates no logical problem to
integrate the pressure difference in order to get the forces acting
on the surrounding fluid. Therefore, the average velocities could be
obtained using the following equations, and multiplying the orifice
area gives the flux.

V ¼ 1
A

Z
A

ffiffiffiffiffiffiffiffiffiffiffi
2
ρ
Δp

s
dA¼ 1

A

ffiffiffiffiffi
2
ρ

s Z
A

ffiffiffiffiffiffiffi
Δp

p
dA ð13Þ

ffiffiffi
A

p

2
∂u
∂t

þ7
8
u uj j ¼ 1

ρA

Z
A
ΔpdA ð14Þ

where,Δp¼ p0�p1 is the pressure difference across the orifice.
The mass flux can be obtained by the following equations. (The
subscripts ‘h’ and ‘d’ mean the flux from the hydraulic orifice
equation and dynamic orifice equation, respectively.)

qh ¼ ρCDAV ð15Þ

qd ¼ ρC′
DAu ð16Þ

where the value of CD is from the hydraulic experiment, so use
C′
D as CD=

ffiffiffiffiffiffiffiffi
4=7

p
.

Another big problem with larger openings is the fact that the free
surface may lie upon cross section of the orifice. Following are a
number of cases (Fig. 4) that could occur, depending on the height of
the free surface, and the substances on both sides of the orifice.



Fig. 4. Orifice and adjacent substances (‘a’ is air, ‘w’ is water).
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As shown in Fig. 4, these cases can be classified into four
boundary types (within the orifice) according to the substances in
contact: air–air, air–water, water–air, and water–water. The inte-
gration of Eqs. (13) and (14) can be obtained by dividing the orifice
area into sub-regions so that each sub-region has one type of
material boundary, then integrating the Eqs. (13) and (14) over
each sub-region, and adding the results.

Regarding the shape of the openings, many have long, narrow
shapes (e.g., doors and gaps). In these cases, one-dimensional
(1-D) integration may be helpful, but for other cases the integra-
tion should be done in 2-D.

In order to calculate the flow through an opening, there is a
need for several definitions. First, the identification of the com-
partment of interest is needed because the opening connects two
compartments; thus, we have Compartment 0 and Compartment
1. This identification may be provided by adding the subscript ‘0’
or ‘1’. The velocity is defined as positive when the flow is from
Compartment 0 to Compartment 1; whereas, negative velocity
means flow in the opposite direction. Compartment 0 is called the
‘donor’; Compartment 1 is the ‘acceptor’. The subscripts ‘w’ and ‘a’
refer to the substances water and air, respectively.

The two substances can flow through the opening simulta-
neously, so the flux may be identified by adding subscript as follows,

qha: mass flux of air using hydraulic orifice equation
qhw: mass flux of water using hydraulic orifice equation
qda: mass flux of air using dynamic orifice equation
qdw: mass flux of water using dynamic orifice equation

First, let us divide the opening area into sub-regions with one of
the four types of boundary (i.e., ‘air–air’, ‘air–water’, ‘water–air’, and
‘water–water’). If the sign of the pressure difference changes in any
sub-region, this sub-region is divided into two sub-regions so that
each sub-region has a distinct sign of pressure difference, and one
boundary type. For each sub-region, calculate the following integrals,

Ii ¼
Z
Ai

sgnðΔpÞ
ffiffiffiffiffiffiffiffiffiffi
Δp
�� ��q

dA ð17Þ

Ji ¼
Z
Ai

ΔpdA ð18Þ

Ai ¼
Z
Ai

dA ð19Þ
where, sgnðΔpÞ is the sign ofΔp. Because the integrand has one
sign, the sign of the integral is the same as the sign of the pressure
difference.

The mass flux can be calculated using the above integrals, if we
use the hydraulic orifice Eqs. (20) and (21).

qha ¼
X
i

ρa0CD
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ρa0

p
Ii f or IiZ0; and donor is air

ρa1CD
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ρa1

p
Ii f or Iio0; and acceptor is air

(
ð20Þ

qhw ¼
X
i

ρw0CD
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ρw0

p
Ii f or IiZ0; and donor is water

ρw1CD
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ρw1

p
Ii f or Iio0; and acceptor is water

(

ð21Þ
To use the dynamic orifice Eq. (14), the calculation should be

done according to the sign of the velocity not the sign of the
pressure difference. Because the velocity is the unknown, two
cases (positive and negative) should be prepared. Thus,

For air� air; JPa ¼
P
i
Ji;APa ¼

P
i
Ai

JMa ¼
X
i

Ji;AMa ¼
X
i

Ai

For water�water; JPw ¼
X
i

Ji;APw ¼
X
i

Ai

JMw ¼
X
i

Ji;AMw ¼
X
i

Ai

For air�water; JPa ¼
X
i

Ji;APa ¼
X
i

Ai; if JiZ0

JMw ¼
X
i

Ji;AMw ¼
X
i

Ai; if Jio0

For water� air; JPw ¼
X
i

Ji;APw ¼
X
i

Ai; if JiZ0

JMa ¼
X
i

Ji;AMa ¼
X
i

Ai; if Jio0

According to the sign of the velocity, the following equations
give the averaged water and air velocities.ffiffiffiffiffiffiffiffi
AXa

p
2

∂ uð Þa
∂t

þ7
8
u uj ja ¼

1
ρAXa

JXa ð22Þ

ffiffiffiffiffiffiffiffiffi
AXw

p
2

∂ uð Þw
∂t

þ7
8
u uj jw ¼ 1

ρAXw
JXw ð22′Þ

Eq. (22) is for the air flow, and (22′) is for the water flow. In the
above equation ‘X’ is ‘P’ if the velocity is positive; while ‘M’ is
negative. The mass flux can be obtained by the following equa-
tions.

qda ¼ ρaC
′
DAa uð Þa ð23Þ

qdw ¼ ρwC
′
DAw uð Þw ð23′Þ

In some cases, the force acting on a door is required to deter-
mine when the door will collapse; the force can be obtained by
simply adding all Ji.

2.3.1. 1-D opening
Sometimes, it is convenient to neglect the variation of the

pressure difference along width and to integrate it along the
height, for a door or its gap, as shown in Fig. 5.

The integration of Eqs. (17)–(19) can be carried out analytically
by assuming the linear variation of pressure difference in each
sub-region. For the i-th sub-region,ðhirhohiþ1Þ the pressure
difference can be represented as,

Δp¼ ai h�hið Þþbi
bi ¼Δpi ; ai ¼ ðΔpiþ1�ΔpiÞ=ðhiþ1�hiÞ



Fig. 5. Shape of 1-D opening and sub-regions of orifice.
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Then, substitute the above into Eqs. (17) and (18), and integrate
them analytically. The results of the integrations for ai ¼ 0 are:

Ii ¼ sgn Δpi
� �

w0

Z hiþ 1

hi
jΔpj� �1=2dh¼ sgn Δpi

� �
w0 Δp

�� ��� �1
2ðhiþ1�hiÞ

ð24Þ

Ji ¼w0

Z hiþ 1

hi
Δpdh¼w0Δpðhiþ1�hiÞ ð25Þ

Ai ¼w0

Z hiþ 1

hi
dh¼w0ðhiþ1�hiÞ ð26Þ

and for aia0,

Ii ¼ sgn Δpi
� �

w0

Z hiþ 1

hi
Δp
�� ��� �1

2dh¼ sgn Δpi
� �

w0
2
3ai

Δp Δp
�� ��� �1

2

h iiþ1

i

ð27Þ

Ji ¼w0

Z hiþ 1

hi
Δpdh¼w0

1
2ai

Δp
� �2h iiþ1

i
ð28Þ

Ai ¼w0

Z hiþ 1

hi
dh¼w0ðhiþ1�hiÞ ð29Þ

where, ½ �iþ1
i means the subtraction of i indexed value from iþ1

indexed value. The above expression was drawn to be independent
of the sign of the pressure difference. The resulting equations
(from Eqs. ((24)–29)) can be used for any inclination angle if one
use the local coordinate fixed in the opening.

2.3.2. 2-D opening
For the general shape of an opening, the integration would be

carried out in 2-D. Let us divide the opening area into sub-regions
as explained previously, which can be represented as a closed
polynomial. Next, integrate them over each sub-region using the
Stokes theorem. Let us fit the pressure difference by bi-linear
interpolation as in Eq. (30).

Δp¼ axþbyþc ð30Þ
Three constants a; b, and c can be found from three conditions

at three vertices of that polynomial.

Δp0 ¼ ax0þby0þc
Δp1 ¼ ax1þby1þc
Δp2 ¼ ax2þby2þc ð31Þ

Let us change the area integral to the contour integral, along
the contour Ci using Stokes theorem.

Ii ¼ sgnðΔpÞ∬
Ri

ffiffiffiffiffiffiffiffiffiffi
Δp
�� ��q

dxdy¼ 2
3a

I
Ci

Δp
�� ��2=3dy ð32Þ

Ji ¼∬
Ri

Δpdxdy¼ 1
2a

I
Ci

Δp
� �2dy ð33Þ

Ai ¼∬
Ri

dxdy¼
I
Ci

xdy ð34Þ
On the j-th line segment of the i-th sub-region, the following
geometric relation exists.

x¼ bxjyþcxj; bxj ¼
xjþ1�xj
yjþ1�yj

; cxj ¼ xj�
xjþ1�xj
yjþ1�yj

yj

Therefore, the pressure difference (30) can be expressed as
follows on the j-th line segment.

Δp¼ axþbyþc¼ b′jyþc′j

b′j ¼ bþabxj; c′j ¼ cþacxj

If we integrate Eq. (32), the results are (for aa0),

Ii ¼ sgn Δp
� � 2

3a

X
j

2
5b′j

Δp
� �2 Δp

�� ��� �1=2h ijþ1

j
f or b′ja0

Δp
� �

Δp
�� ��� �1=2 yjþ1�yj

� �
f or b′j ¼ 0

8>><
>>: ð35Þ

and for a¼ 0, (b′j ¼ b; c′j ¼ c)

Ii ¼ sgn Δp
� �X

j

2
15b2

ð5bx�2bxjΔpÞðΔpÞ Δp
�� ��� �1=2h ijþ1

j
f or ba0

1
2 Δp
�� ��� �1=2 ðxjþ1þxjÞ yjþ1�yj

� �
f or b¼ 0

8>><
>>:

ð36Þ
The results of Eq. (33) are (for aa0),

Ji ¼
1
2a

X
j

1
3b′j

Δp
� �3h ijþ1

j
f or b′ja0

Δp
� �2 yjþ1�yj

� �
f or b′j ¼ 0

8>><
>>: ð37Þ

and for a¼ 0, (b′j ¼ b; c′j ¼ c)

Ji ¼
X
j

1
6b2

ð3bx�bxΔpÞ Δp
� �2h ijþ1

j
f orba0

1
2ðΔpÞðxjþ1þxjÞ yjþ1�yj

� �
f orb¼ 0

8>><
>>: ð38Þ

The area, from Eq. (34), can be rewritten as follows.

Ai ¼
X
j

1
2
ðxjþ1þxjÞðyjþ1�yjÞ ð39Þ

As in 1-D opening, the resulting equations (from Eqs. (35)–(39))
can be used for any inclination angle if one use the local coordi-
nate fixed in the opening.

2.4. Sample application

Let us consider the case in which two compartments are
adjacent, and an opening is located in the wall between them. The
size of the compartment is 5 m (L)�5 m (W)�5 m (H), and there
is no vent. The sample calculations were carried out for a point and
a 1-D opening, the compressibility of air was included, and an iso-
thermal process was assumed. The time integration scheme was
Euler explicit method with the time interval of 0.01 s . And the
result from the dynamic orifice equation was compared with that
from the hydraulic orifice equation.

2.4.1. Comparison of point opening and 1-D opening
If the pressure difference is large across an opening, the flow

characteristics are similar for a point opening and 1-D opening.
However, for small pressure difference, there may be different flow
characteristics. Let us set up model as in Fig. 6 in order to view this.
For a point opening, the area of the opening is 1 m2 and the location
of the orifice 1 m from the bottom. A 1-D calculation was also made
for the comparison, with the same area while the top of opening is
apart 1 m from the bottom. The calculation cases are shown in Fig. 6.

The results are shown in Fig. 7 in comparison with 1-D
calculation.
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The filling ratio of Compartment 0 decreases with time, and the
filling ratio of Compartment 1 increases. However, the results for
the point-opening vary slowly, except in the initial stage, and the
pressure in Compartment 0 oscillates. The flows of water and air
are shown in Fig. 8.

In the initial stage, the pressure on the left side of opening is
much higher than on the right side, so the water flows toward
Compartment 1. As the water level in Compartment 0 goes down,
the pressure goes down in Compartment 0 and goes up in Com-
partment 1. Around 2 s in time, the pressure difference (pressure
in Compartment 0 minus pressure in Compartment 1 at the top of
opening) goes small, and the flows rates show quite different
behaviors. The flow of air exhibits many rapid small oscillations
with the hydraulic orifice equation, while it exhibits intermittent
large oscillations with the dynamic orifice equation. This affects
the pressure fluctuation in Fig. 7. For 1-D openings, the water and
air can flow simultaneously in opposite directions, the flow is
smoother, and the filling ratio reaches the value we anticipated. In
order to view the reason of the fluctuation of flows, the enlarged
view with the pressure difference is helpful as in Fig. 9.

For a point opening using hydraulic orifice equation (top graph of
Fig. 9), a positive pressure difference induces the water flow. At the
moment inwhich the pressure difference is negative, the water-flow is
blocked and the air-flow from Compartment 1 Compartment 0 takes
place. At the very next time, the pressure difference becomes positive
and the air-flow is blocked and water-flow from Compartment 0 to
Compartment 1 takes place. After that, the pressure difference goes
down as the water level in Compartment 0 goes down, and the
Fig. 7. Filling ratio (left) and the air pressure (right) in compartments with a point-opening.

Fig. 6. Sample model for point opening (left two) and equivalent 1-D opening
(right two) (In each pair of figures, the left figure shows the initial state, and the
right figure shows the expected final state.).

Fig. 8. Flow rates of water and air for point (left and center) and 1-D openings (right) (Positive value means the flow direction is from Compartment 0 to Compartment 1).

Fig. 9. Enlarged view of the pressure difference at the top of opening and flow rates
(point opening (top and center) and 1-D opening (bottom)).
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process explained above repeats again. For a point opening using
dynamic orifice equation (center graph of Fig. 9), the air-flow takes
place a little bit later after the pressure difference becomes negative,
because of the dynamic effect of water flow. In this time, the amount
of air-flow is large compared with that of hydraulics because of the
large negative pressure difference, therefore the pressure difference
jumps up to positive large value. The pressure and flow fluctuation are
larger and smoother than in hydraulic equation. The above two phe-
nomena of pressure fluctuations happen because a point opening
allow the flow of only one substance at a time.

For a 1-D opening (bottom graph of Fig. 9), from the moment at
which the pressure difference becomes negative, the air-flow occurs
in the direction opposite to water-flow. And after, the water and air
flow simultaneously in opposite directions. The pressure difference at
the top of opening is negative, while it is positive at the bottom of
opening because of the static pressure due to water height. Therefore
the water could flow in some part of opening, and the air could flow
in other part in opposite direction. From these results, we now know
Fig. 10. Sample case: centered 1-D opening (The left figure shows the initial state,
and the right figure shows the expected final state.).

Fig. 11. Time simulation results for the sample case (centered 1-D opening), left – re
that point-openings should not be used when there is only one
opening in a compartment.

2.4.2. Comparison of hydraulic and dynamic orifice equation
In order to view the effectiveness of the dynamic orifice

equation, sample calculation was carried out for the case involving
a 1-D opening in the middle of the wall (Fig. 10). In the expected
final stage, the air in two compartments is connected through the
upper part of the opening.

The results are shown in Fig. 11. The filling ratios and air
pressures are similar, while the results from the dynamic orifice
equation are a little bit faster. However, the air flows after 30 s are
quite different from each other. The result from the hydraulic
orifice equation starts to oscillate highly around 30 s; an enlarged
view of this oscillation was drawn in Fig. 12. This oscillation is due
to the numerical stability of the square root explained in Appendix
A. However, the results from the dynamic orifice equation oscil-
lated smoothly. This might be from an inertia effect.

The results from the sample calculations above show that the
point opening should not be used for the cases with one opening in a
compartment, and that the numerical instability takes place when
the air in both compartments is connected through an opening.
Surely, for the case of many compartments, the numerical instability
due to the square-root function can ruin the flooding simulation. The
dynamic orifice equation can solve this problem as it did in the above
calculations.
sults from the hydraulic orifice equation, right – results from the dynamic one.



Fig. 12. Enlarged view of the flow rates of water and air: left–for hydraulic orifice equation, right – for the dynamic one).
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3. Compartment model

If damage occurs in a ship with many rooms, like a passenger
ship, the flows of floodwater and air through the inside passages is
quite complicated. If we take the air compressibility into account,
all routes for air flow should be modeled. But because the path of
the air flow is so complex especially in the ventilation system,
flooding simulations in many studies have been done without
solving for the air flow. However, the air could block the flow of
water into some compartments, and retard the flooding rate. In
such a case, the air passage should be modeled as best as possible.
It is manageable for the vent system of most compartments except
for the complex ventilation system in the living quarter of a ship,
in which it has no choice but simplification without losing the
purpose of an analysis.

As stated in the introduction (Section 1), the most important
thing is to provide the reference pressure in a compartment. If a
compartment is partially filled with water, the reference pressure
is the one on the free surface, i.e. the air pressure. The pressure
below the free surface can be obtained by adding the pressure due
to water depth, to the reference pressure. In fully water-filled
compartment, there exist no free surface; so no air pressure. In
such cases, selection of the reference pressure is a problem.
Ruponen (2006, 2007) introduced the idea of water height pres-
sure at each compartment to play the role of reference pressure in
fully filled compartments. He drew the non-linear simultaneous
equations for the reference pressures to satisfy the mass con-
servation law for each compartment. It is called the pressure-
correction equation. However, it is complex and one should use
iteration method to solve it. In some cases, the iterations would
not converge, so under-relaxation was used. Dankowski (2013)
ignored the air flow and its effect except for the entrapped air, so
has a problem of the reference pressure only for the fully filled
compartments. He solved the non-linear mass conservation
equation by iteration. Ruponen and Dankowski began with a mass
conservation law in order to indirectly obtain the pressure in a
compartment; Ruponen applied the pressure-correction scheme
and Dankowski directly solved the equation from mass conserva-
tion law. The difference should be noted is that Ruponen applied it
to the entire set of compartments while Dankowski only to the
fully filled compartments.

However, if we have an equation or tool which directly gives the
reference pressure in a compartment, there is no need to worry about
the mass conservation. If we solve the dynamic equation derived
from the conservation law, the conservation will be satisfied intrin-
sically. The compartment that can be fully flooded is usually one with
a vent. For this compartment, the mass conservation law will be
satisfied if we count on the mass flowing through the air vent, that is,
mass conservation for the compartment and vent, not the
compartment only.
In this section, as a direct model to give the reference pressure,
two new models were proposed for the compartment flow model.
One is the method which counts on the mass in the vent and obtains
the reference pressure for a fully filled compartment. The other is a
virtual accumulator model that gives the pressure and can stabilize
the excessive fluctuation of pressure in a compartment.

3.1. Basic compartment model

Consider a compartment in which all the openings, including
vents, are well defined. The mass of water and air can be calcul-
ated as,

_mw ¼ qw
_ma ¼ qa f or maZ0ð Þ ð40Þ

where, mw, ma are the mass of water and air; qw, qa are the
mass flux of each substance into the compartment through all
openings. The volume charged by water Vw is calculated by
mw=ρw, then the remaining volume of the compartment is the
volume charged by air Va. The state equation of ideal gas gives the
pressure of the air.

pVγ ¼ const: - pa ¼ katmρ
γ
a�patm ð41Þ

where, the density of air ρa ¼ma=Va, and the constant coeffi-
cient of the atmospheric condition katm ¼ patm=ρ

γ
atm. The pressure

pa is the gauge pressure, and patm is the atmospheric pressure.
About the ratio of specific heat γ, the value ‘1’ is adequate for the
case that the flooding is proceeded slowly (i.e., the slow com-
pression, iso-thermal), and 7/5 for the case of rapid compression
(iso-entropic).

3.2. Vented compartment model

A vented compartment is one from which the air can flow out,
if the water flows into it, without actually describing the details of
vent duct. If the vent area (cross-section) is large enough, the air is
easily vented if the water flows in, so the air pressure is almost the
same as atmospheric pressure. However, for a small vent area, the
air would become compressed, so that the pressure of the air
inside is greater than atmospheric pressure. The compartments
can then be categorized into partially vented and fully vented
compartments. Suppose a compartment which has a vent opening
(area Av) at the top and a damage opening (area Ad) at the bottom.
The density change can be represented as

ρ̇a ¼
_ma

Va
�ma

V2
a

_Va ¼
ma

V2
a

�CDAv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa=ρa

q
þAB

_h
� 	

ð42Þ

where, AB and h ̇ are the bottom area and rising rate of water
respectively. The density will be reached to its maximum value
when the above rate goes zero. The condition of equilibrium turns



Fig. 13. Previous vented-compartment concept: floating (left) and submerged
(right).

Fig. 14. Alternative vent air–water column concept for vented compartments.
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out to be,

Av

AB
¼ 1
CD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa=ρa

p _h¼ 1
CD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2katmð1�ρatm=ρaÞ

p _h ð43Þ

On the other hand, the rising rate ḣ can be represented using
the water depth H at the damage opening as follows,

_h¼ Ad

ffiffiffiffiffiffiffiffiffi
2gH

p
=AB ð44Þ

Substitute this into Eq. (43),

Av

Ad
¼

ffiffiffiffiffiffiffiffiffi
2gH

p
CD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2katmð1�ρatm=ρaÞ

p ð45Þ

Assume CD as 2/3, and substitute katm into the above equations,

Av

AB
¼ 0:003765ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ρatm=ρa

p _h

Av

Ad
¼ 0:003765ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ρatm=ρa

p ffiffiffiffiffiffiffiffiffi
2gH

p
ð46Þ

If we want the density change is below 1%,

Av

AB
Z0:03784� _h

Av

Ad
Z0:03784�

ffiffiffiffiffiffiffiffiffi
2gH

p
ð47Þ

The above formula can give the criteria for the full ventilation. In
order to suggest a criterion, the water depth of damage is assumed
10 m, and the free surface rising rate is assumed to be 0.3 m/s. And
then we can categorize the compartment as fully vented if the vent
area Av satisfies the one of the following conditions.

AvZ0:01 � top areað Þffi0:01� Vmaxð Þ2=3
AvZ0:5 � ðsum of all the area of water flow inÞ ð48Þ

The criterion for a fully vented compartment could be suggested
as a vent area greater than 1/100 of the top area. As a matter of fact,
the assumed free surface rising rate and water depth using in
drawing the criteria are not the absolute values, these may be altered
by other situation and the researcher's choice.

When a compartment is not fully filled with water, the com-
partment flow model could be drawn from Eqs. (40) and (41).

For a fully vented compartment,

_mw ¼ qw
Vw ¼mw=ρw

pa ¼ 0 ð49Þ
For a partially vented compartment,

_mw ¼ qw
_ma ¼ qaþqav

qav ¼
�CDρaAv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa=ρa

p
f or paZ0

CDρatmAv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2pa=ρatm

p
f or pao0

(

Vw ¼mw=ρw

Va ¼ Vmax�Vw

ρa ¼ma=Va

pa ¼ katmρ
γ
a�patm ð50Þ

where, qav is the air mass flux through vent.
There is no problem in calculating the flows of water and air,

and the pressure, if air remains in the compartment, as in Fig. 13
(left). If, however, all the air flows out (Fig. 13, right) there is no
means to calculate the pressure in it without comparing the sur-
rounding pressure (i.e., there is no reference pressure). Even in this
case, water can enter the compartment; the mass conservation law
seems to be violated without considering the flow through the
vent. If the same amount of water is understood to flow out
through the vent, the mass conservation law is satisfied. We found
a way to designate a reference pressure, considering the pressure
at the position of the vent. For this purpose, we propose the fol-
lowing ‘vent water column’ concept for vented compartment
model (Fig. 14).

For the real vent duct (or ducts) substitute a simple vertical
(virtual) vent (i.e., introduce a vertical air–water column at the top
of the compartment). For the case of partial filling, there is no
problem, and the reference pressure is the air pressure. Even for
the case of full filling, the water can flow into the compartment;
the surplus water flows up through the vertical vent. The surplus
water fills the vertical vent and the top surface goes up to the free
surface, and the reference pressure will be set to the pressure
corresponding to the height of the water column in the vertical
vent. If more water flows into it, the height of water column will
be higher than the free surface, and the reference pressure will be
higher than the surrounding compartment. If so, the water in that
compartment could flow out to another compartment, and the
height of water column could be lowered (that is, the reference
pressure will be set to the correct value automatically). The above
explanations reflect real situations well, and the conservation of
mass is satisfied.

Let us introduce ‘vent water column’ concept in order to obtain
the reference pressure for a fully filled compartment. For Vw=Vmax

Z1 (i.e. fully water-filled), the water height and reference pressure
can be obtained from Eq. (51).

Vw ¼ Vmax

_Vv ¼ qw=ρw

hv ¼ Vv=Av

pa ¼ ρwghvþpvent ð51Þ
where, hv, Vv are the height and volume of the water column in

the vertical vent, respectively. And pvent is the pressure loss due to
the flow through the vent. It can be represented by the equation
pvent ¼ 1=2 ρ v2, in which the velocity and density is assumed to be
those of the air flowing through the vent. At the moment when
the compartment is just fully filled, the pressure of air (i.e., the
reference pressure) has a jump to pvent . If we use the density and
velocity of the water, this gives very large value at that moment,
whereas it will soon be balanced with the adjacent compartment.
So it is recommended to use the density and velocity of the air
through the vent, and add some damping to it. If the vent area is
large as in fully vented, the water height of vent water column is
slowly changed compared with the small vent area case. This is
because of the capacity of the water column. So the pressure
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fluctuation is expected to be larger for the small vent area case
than for a large vent area. Verifying example will be appeared in
Section 3.4.

3.3. Accumulator model

If a compartment is not vented, usually all the air does not flow
out. Of course, all the air could flow out if there were any openings
at the top of the compartment. If air remains in the compartment,
the air pressure can be calculated using the state equation of air
(Eq. (41)). On the other hand, if the amount of air is very small, the
air pressure is so largely affected by the amount of water inflow,
that it is difficult to calculate the air pressure. Furthermore, if all
the air flows through an opening, there is no means to calculate
the air density, thus a problem arises in calculating the reference
pressure. In fact, a compartment in a ship might have machinery,
freight, and many other things in it, so that there might be many
small spaces that could contain air. This means that all the air in a
compartment seldom flows out. Let us introduce a virtual accu-
mulator that could solve this problem.

Fig. 15 shows the concept of a virtual accumulator for several
cases: a case with remaining air, a case with a very small amount
of remaining air, and a case without air. Air fills the accumulator,
and its maximum volume is represented as Vacmmax, the operating
volume is Vacm, and the air mass in the accumulator is macm.

A simple way to apply the accumulator is by adding the extra
air volume without pre-charged pressure to the compartment
volume, which cannot flow out. This is a passive accumulator.

m ̇w ¼ qw
mȧ ¼ qa f or maZ0ð Þ
Vw ¼mw=ρw

VaþVacm ¼ VmaxþVacmmax�Vw

ρa ¼
maþmacm

VaþVacm

pa ¼ katmρ
γ
a�patm

Va ¼ma=ρa

Vacm ¼macm=ρa ð52Þ
The virtual accumulator has the effect of enlargement of the

volume. Even when there is no air the accumulator can provide a
reference pressure and stabilize pressure fluctuation. If a passive
accumulator is used, the mass conservation law is violated a little.
However, if we want to conserve mass strictly, the active accumulator
ensures it. An active accumulator makes the accumulator volume
constant by controlling the amount of air. If the water flows in, the air
in the accumulator is compressed so that the reference pressure rises
and blocks the inflow of water. In this way, the active accumulator can
give the reference pressure and ensures the mass conservation law in
that compartment. A sudden inflow violates the mass conservation
law, but in a short time, the appropriate amount of water flows out, so
that the inner mass of compartment remains constant in reference to
the concept of time average. The active accumulator model simply
adds a feedback control law to regulate the volume of the
Fig. 15. Virtual Accumulator Model.
accumulator. This allows the accumulator to maintain a nearly con-
stant volume, and this feedback control changes the mass of the
accumulator as in Eq. (53).

Vin ¼ Vacmmax�Vacm

_macm ¼ kPVinþkD _Vin ð53Þ
where, kP , kD are the proportional and differential gains

respectively, Vin means the change of the accumulator volume
from its initial one (i.e., the volume that enters the accumulator).

For the maximum accumulator volume, we choose it in order
that the enlargement of volume is less than 1% of the compart-
ment volume, under the condition that the top position of a
compartment is 2.5 m below the free surface. The resulting value
is 5% of the compartment volume. Using this volume, the accu-
mulator volume will be shrunk by an amount of 2.5% of the
compartment total volume if the top of the compartment is 10 m
below the free surface. This value of the accumulator volume
always gave satisfactory results for the almost all the cases with a
passive accumulator. About the gains of active accumulator, the
proportional gain kP is chosen so that the time constant (in the
sense of the control theory) of the active control system is 1 sec-
ond, and differential gain kD is chosen to give a damping to this
active accumulator system. The chosen values of the gains are
kP ¼ 1 and kDr5�10 with Δt ¼ 0:01 s. The author does not know
this is the best choice, but it works well to fit the purpose of it.

3.4. Sample application

To view the effectiveness of the proposed compartment mod-
els, the sample calculations were carried out for the model geo-
metry shown in Fig. 16.

The model in Fig. 16 has 4 compartments, and 5 openings. The
Compartment 0 is fully vented, and others are non-vented com-
partments. The openings CID 0, 2, 3 are the ones connecting to
outside, CID 1, 4 are for inside connection. The numbers appeared
in Fig. 20 are dimensions in meter. The direction of arrows at the
openings reveals the orientation of flow. The dimensions of
openings CID 0, 2, 3 are (1 m�1 m), (1 m�1 m), (1 m�0.5 m).
CID 1 is a manhole which can show the down flooding, and it
dimension is (0.5 m�1 m). CID 4 is also a small manhole whose
dimension is (0.5 m�0.5 m). Compartment 1 has one opening in
the ceiling: if flooding starts the compressed air blocks flooding,
the water and air exchange can take place through the bubble
forming. Compartment 2 has two openings up and down: the
flooding process is easy and it will be fully-flooded at a short time.
Compartment 3 has one side opening: the compressed air blocks
the flooding after the inner water level reaches the top of opening.
The Euler explicit method was chosen as a time integration
scheme with a time step 0.02 s. And the model was fixed in space,
in order to view the time behavior of flow well.
Fig. 16. Geometry for sample calculation of the compartment model.
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The calculation was done under the condition of all non-vented
compartment except Compartment 0.

Fig. 17 shows the filling ratios and air pressure in each com-
partment, and water flow through openings. The left figure shows
the results with passive accumulator, and the right active accu-
mulator. The main difference is the behavior of air pressure when
the compartment becomes fully flooded. The model with active
accumulator shows larger pressure fluctuation than with passive
accumulator, while the active accumulator forces the filling ratio
remains as 1 for fully flooded condition. For the flooding process of
Compartment 1, the water flows freely from Compartment 0 in the
early stage and the water level in Compartment 0 rises con-
tinuously. At about 7 s, the water in Compartment 0 blocks the
opening CID 1, the water flows to Compartment 1 only if the
pressure of water height is greater than the air pressure in Com-
partment 1. The air pressure rises up to the one of water height of
Compartment 1, then the flow stops. After that, the water and air
exchange takes place through bubble forming process, so the flow
rate is low and the filling ratio rises slowly up to 1 as shown after
38 s in Fig. 17. For the flooding process of Compartment 2, in the
early stage the water flows in through both openings CID 2 and 4.
After about 7 s, the upper opening becomes blocked with the
water so the air is compressed and flows out to Compartment 0.
Around 16 s, the filling ratio reaches to 1, that is the air completely
Fig. 17. Time simulation results for the model in Fig. 16 (Compartment 0-fully vented, C
flows out, the pressure jumps up to high value. After that the
water flows in through lower opening and the same amount of
water flows out through upper opening until the water level in
Compartment 0 reaches to its final value. In Compartment 3, the
water flows in and air flows out through the opening CID 3 until
the water level reaches to the top of the opening. After that
moment, the compressed air blocks the water flow-in, and the
pressure in Compartment 3 remains about the static pressure at
the top of the opening.

In order to see the properties of vented compartment model,
the calculations were carried out adopting the vented compart-
ment model for Compartments 1 and 3. Fig. 18 shows the results;
left figure shows the results with partially vented compartment
with vent area 0.02 m2, right figure shows the ones with fully
vented compartment model. Using partially vented model, the air
pressure rises as the filling ratio rises, the compressed air slows
down the flooding process. Using fully vented model, the air
pressure remains zero before the compartment is fully flooded,
and the pressure jumps up to high value in order to balance the
flows. The pressure fluctuation at the moment of fully flooding is
larger in partially vented model than in fully vented model. This is
because that the area of water column in vent duct is small in
partially vented model, so that flow through openings can make
the up and down movement easily. Addition to this, the change of
ompartment 1,2,3-non-vented), left–passive accumulator, right–active accumulator.



Fig. 18. Time simulation results for the model in Fig. 16 (Compartment 0-fully vented, Compartment 2-non-vented), Compartment 1,3: left-partially vented with vent area
0.02 m2, right-fully vented.

Fig. 19. Enlarged view of the air pressure fluctuation around the moment of fully filled in Compartment 3. (left-partially vented with vent area 0.02 m2, right-fully vented).
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flow material through the vent from air to water makes the
pressure jump-up, and the small area makes this jump-up large.
The slow pressure change to the final value after 53 s in Com-
partment 1 is due to the water level in Compartment 0 for fully
vented case. Fig. 19 shows the pressure fluctuation. For a partial
vent model, the pressure fluctuates more and the period is shorter
than for a full vent model.

The above sample applications show well the properties of
down flooding, trapped air, vent, and fully flooded compartment,
and give the verification of the compartment model proposed in
this section.
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4. Application

This section is added to show how the previous models had
been used, and what example they applied to.
4.1. Flooding simulation program

In order to simulate the flooding and sinking of a real ship, a
number of modeling and calculation techniques other than pre-
viously stated models are required. Let us list them up based on
KRISO's own simulation program SMTP.

4.1.1. Compartment geometry model
What needed with the inner compartment for flooding simu-

lation are the center of gravity, and the water height from its
lowest point for any given volume of water in it and for any
inclination angle (roll and pitch). A 3-dimensional model of a
compartment is the best, but the above mentioned quantities are
hard to calculate with general 3-D model. Therefore a cylindrical
shaped geometrical model whose fore and aft sectional shapes are
different to each other and have polygonal shapes should be pre-
pared. At least, the compartment geometry should be a cylindrical
shaped geometry with one polygonal section. And it is needed to
calculate the pressures at the openings or at the corner points of
opening for any angle of inclination.

4.1.2. Compartment flow model
A tool should be provided to calculate the mass flow through

openings. The pressures at both sides of opening are provided by
the compartment geometry model. The model of Section 2 would
be used for this purpose.

4.1.3. Pipe and duct model
Almost all the compartments are connected to adjacent ones by

at least one general opening (door, hatch) but some compartments
are also connected to others by pipes or ducts. Moreover, a few
compartments have pipes whose outlets connect with the outside
(bilge pipe). And for air vents, the vent inlet is located over the
main deck. These examples have the property that the opening
inlet is apart from the corresponding compartment. There need a
tool to calculate the flow through pipe or duct provided with the
pressures at both ends. And it should count on the pressure drop
due to the length of pipe and the effect of various fittings.
Fig. 20. Shape and the internal
4.1.4. Down flooding model
In compartments with an opening at the bottom, the water

flows down freely if the compressibility of air is neglected. If the
compressibility of air is taken into account, and there is no other
opening at the top, the negative pressure blocks the downward
flow of water. For another case, a compartment with an opening
on top covered by water, the compressed air blocks the inflow of
water. However, for a large opening, the exchange of water and air
takes place with the process of bubble forming. Even though its
flow rate is small, it is required for the compartment located at the
bottom of a ship.

4.1.5. Floodwater dynamics model
The floodwater in a compartment moves due to the motion of a

ship. And the movement of floodwater affects the ship motion. The
main parameter of this effect is the center of gravity of floodwater.
It is required to calculate the movement of the center of gravity of
floodwater due to the ship motion considering the dynamics of
floodwater, while it has simple dynamics.

4.1.6. 6-DOF ship motion program
The above all models should be imported into a ship motion

program. Floodwater has effect to ship motion by changing the
total mass of the ship and its center of gravity. The ship motion
program had better to have 6-DOF(degree of freedom). At least 3-
DOF (heave, pitch, roll) should be solved in order to simulate the
flooding and sinking of a ship. The buoyancy force and moment
should be calculated without assumption of linearity, for all range
of roll angle (from negative 180° to 180°), and even under the
condition of deck submergence. The other forces acting on the ship
may be used as in a conventional ship motion program, including
radiation forces (in the form of impulse response functions) and
wave exciting forces in order to analyze the capsize rate and time
for a damaged ship in irregular waves.

4.2. Application example

Recently, there was a sinking accident with the loss of many
people in Korea. The ship, MV Sewol, was a Ro-Ro ferry of 132 m
length, 22 m breath, and 9610 ton displacement. It has two car decks
and a freight deck in it. After this accident, there were many
hypotheses about the cause of it, some scientific and some ground-
less. It was required to prepare the scientific explanation of this
accident. The simulation team in KRISO was launched in order to
make data to reasonably explain the cause and effect of the accident
compartment of MV Sewol.
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(KRISO, 2014). The data prepared were GA (general arrangement),
design drawings and booklets, loading table and drafts at departure,
track record of the ship, and the inclination angles with time stamp
after the coast guard arrived(these angles was drawn by the expert
from pictures taken by the coast guard, and accepted as official data
by the cooperative investigation headquarter). The data during acci-
dent were not enough. The simulation team consisted of two sub-
teams. One was for the analysis of the maneuvering behavior and the
other one was for flooding and sinking. The main reason of the
accident turned out to be the lack of restoring and the movement of
freight during its turn.

Let us briefly introduce the work of flooding simulation team.
They used KRISO's own simulation program which can simulate the
ship motion of 6-DOF in time domain including flooding process
mentioned in previous sections, in which the time integration
scheme was Euler explicit method with time step 0.02 s. The ship
was modeled with 27 internal compartments and 81 openings for
flooding simulation. The all compartments below the main deck
which can be flooded were modeled except the fuel, fresh water, and
ballast tanks. Two car decks were modeled, which were so simple to
model. The living quarters (passenger decks, A, B) had too many
rooms to model it, so the each passenger deck was simplified and
modeled with 4–5 compartments. Fig. 20 shows the shape of the ship
and compartments in it. The flooding simulation team had tried to
tune up the parameters (especially related with openings, the gap of
doors and ramps) so in order that the simulation results resemble the
official data from the cooperative investigation headquarter for MV
Sewol. Then, the team provided explanations about the process of the
flooding and sinking.

It was presumed that the ship tumbled down due to an
excessive steering and the resulting movement of freight in it. It
Fig. 21. Simulated inclination angle(roll) compared with the official data during
the flooding and sinking process. (The official data were drawn by the expert from
pictures taken by the coast guard, and accepted by the cooperative investigation
headquarter).

Fig. 22. Simulated pitch(left) and heave(right)
was reported the initial angle of heel was 30° port after its tumble
and there was no collision accident, and the wave height was very
low. The flooding simulation started from the condition in which
the roll angle was negative 30° (i.e., the left side of the ship went
down). Fig. 21 shows the roll angle (inclination) compared with
the official data provided by the cooperative investigation head-
quarter for MV Sewol. Figs. 22 and 23 show the pitch and heave
motion during flooding and sinking.

Fig. 23 shows the flow rate through some important openings
from outside. And Fig. 24 shows the filling ratios in compartments
below the main deck. At the start, the flow-in took place only
through the side door located at D deck, which was 3.5 m high
from the sea level when upright condition. As the inclination went
larger, the flow-in through the stern ramps began to grow. There
were only 3 openings through which the sea water flows in before
2700 s. The resulting floodwater was accumulated on D deck and E
deck (these decks is located under the main deck). After 2700 s,
the sea water flowed in through the vent of the left stabilizer
room. And thereafter, many other compartments flooded.

The side door located at D deck and the rear ramps are
assumed to be closed. The simulation team assumed gap of 0.01 m
along the edge of the door and ramps. It could be said that the only
0.01 m of gap size of a side door and rear car ramp are sufficient to
flooding and sinking of Ro-Ro ferry.

Fig. 25 shows the important situations to be noticed: initial
condition of flooding simulation, the ship when coast guard
arrived, when the last rescue action played, finally capsized. The
results reflect the actual situations well, in comparison with the
pictures that have shown in many mass media.
during the flooding and sinking process.

Fig. 23. Flow rate of water through important openings.



Fig. 24. Filling ratios of the lower compartments (below main deck).

Fig. 25. Visualizations of the simulation results and the real situations(1st set: initial state, 2nd set: when the coast guard arrived, 3rd set: right after the last rescue action
ended, 4th set: final state, There is no picture taken from outside at the initial state).
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5. Conclusions

In this study, flow models for simulation of ship flooding were
investigated. The most important matters were the orifice equa-
tions and the compartment models.

For the orifice equation, it was shown that numerical instability
could occur involving the air flow, if the hydraulic orifice equation
is used to calculate the flow through an opening. A newly derived
dynamic orifice equation by Lee (2014) was investigated that could
resolve the numerical instability that comes from the square root
of the pressure difference. For verification, a number of sample
calculations were carried out. From these, our findings are: a point
opening should not be used for the case of only one opening in a
compartment; a dynamic orifice equation has its ability to resolve
the numerical instability especially for small pressure difference.

A new compartment model that can provide pressure balance
automatically was proposed. It reduces the computational burden and
difficulty in applying the pressure-correction method. It includes
vented and non-vented compartment model for a fully-flooded
compartment which has difficulty in determining a reference pres-
sure. It also includes an accumulator model which can damp out the
excessive pressure fluctuation when the compartment is nearly full-
filled, and can give the reference pressure even for a fully-flooded.
From verification calculations, the proposed model turns out to work
well for various situations such as, down flooding, vented and non-
vented compartment, and fully filled condition.

This paper dealt with modeling for flooding simulation, and the
focus was on the modeling itself and verification. The validation
study should be followed by comparing the simulation results with
an appropriate model test data (probably from Ruponen, 2007).

As an application example of these models, the brief of flooding
simulation of a recent actual accident were introduced. The
simulation using the above models gave the reasonable results
about the cause and effect of that accident. And the process of
flooding and sinking could be explained approximately, but rea-
sonably, when the results were compared with official data.
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Appendix A. Derivation of the proposed dynamic orifice
equation

(This part, Appendix A, is a translation of a part of Lee (2014),
which is written in Korean.)

Let us assume that the fluid is incompressible and inviscid. The
definitions of variables and geometry related in this derivation can
be found in the explanation of Eqs. (6), (60), (7) and (70) and Fig. 2
in the Section 2.2.

The integral version of the mass andmomentum conservation law
can be represented by the following, for a specific control volume.

∫∂Ωρ v
→
:n
→

� �
dS¼ 0 ðA� 1Þ

∫Ω
∂
∂t

ρv
→

� �
dVþ∫∂Ωρv

→
v
→
Un
→

� �
dS¼ ∫ΩρF

→
dV�∫∂Ωpn

→
dS ð7Þ
∫Ω
∂
∂t

ρv
→

� �
dVþ1

2
∫∂Ωρ v

→
U v
→

� �
n
→
dS¼ ∫ΩρF

→
dV�∫∂Ωpn

→
dS ð70Þ

The velocity components excluding u are asymmetric about the
centerline of the orifice. Let us apply the Eqs (A-1), (7) and (70) to
the control volumes C0 and C1.

Control volume C1

If we apply the continuity Eq. (A-1) for C1,

u1A1 ¼ ∫A1
u dA¼ Q ðA� 2Þ

where, Q is the volumetric flux through an orifice, the Euler
equation becomes

i
→
∫Ω

∂
∂t

ρu
� �

dV ¼ � i
→
∫∂Ωðp1�pÞ dS ðA� 3Þ

‘ ∫ApdA¼ A1p1þ∫C1

∂
∂t

ρu
� �

dV ðA� 4Þ

Control volume C0

On C0, the continuity equation becomes

vn2πR2þ∫A1u dA¼ 0

vn ¼ � 1

2πR2∫A1u dA¼ � 1

2πR2Q ðA� 5Þ

Let us represent this velocity in vector form as

v
→¼ �n

→ 1

2πR2Q on AR ðA� 6Þ

Apply the momentum conservation Eq. (7) for C0, then

∫C0

∂
∂t

ρu
� �

dVþ∫∂Ωρu v
→
Un
→

� �
dS¼ �∫∂ΩpnxdS ðA� 7Þ

The second integral of the above equation can have a value on A
and AR. However, the integral over AR behaves like R�2, so the
integral vanishes as R gets large enough. The integral on the right
side, the pressure integral, can be represented as

∫∂ΩpnxdS¼ �∫A p0�p
� �

dA�∫A0 �A p0�p
� �

dA ðA� 8Þ
(from ∫AR

pnxdS¼ p0∫AR
nxdA¼ p0∫A0dA¼ ∫A0p0dA)

The last integral of Eq. (A-8) is the one over the wall, and the
pressure on the wall is slightly less than p0. The pressure goes to p0
because the distance from the orifice center is large, and near the
orifice, the pressure is that of the orifice. Therefore, the second
integral on the right side of the equation is positive, and is less
than the first integral in the right side. Let us represent this as δFp.
The momentum conservation law (A-7) becomes

∫C0

∂
∂t

ρu
� �

dVþ∫AρuUudA¼ ∫Aðp0�pÞdAþδFp ðA� 9Þ

Substituting Eq. (A-4) into the right side of the equation above
(A-9), and defining the average normal velocity square as ∫AuUud
A¼ u2A gives

∫C0

∂
∂t

ρu
� �

dVþ∫C1

∂
∂t

ρu
� �

dVþρu2A¼ p0�p1
� �

AþδFp ðA� 10Þ

Where an over bar means the average.
Since the fluid is assumed to be incompressible and inviscid,

the velocity field can be represented by the velocity potential.
Therefore the pressure on the wall can be represented as follows
using the velocity potential and the Bernoulli equation.

δFp ¼ ∫A0 �A p0�p
� �

dA¼ ρ∫A0 �A ϕtþ
1
2
V2

� 	
dA
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¼ ρ∫A0 �AϕtdAþρ
1
2
∫A0 �AV

2dA

Substituting this equation into (A-10) gives

∫C0

∂
∂t

ρu
� �

dVþ∫C1

∂
∂t

ρu
� �

dV

�ρ∫A0 �AϕtdAþρu2A�1
2
ρ∫A0 �AV

2dA¼ p0�p1
� �

A ðA� 11Þ

Now, let us apply the second equation of momentum con-
servation (70) for C0. In line with the similar procedure from (A-7)–
(A-11), we get the following momentum equation.

∫C0

∂
∂t

ρu
� �

dVþ∫C1

∂
∂t

ρu
� �

dV�ρ∫A0 �AϕtdA

þ1
2
ρ∫A0 �AV

2dA¼ p0�p1
� �

A ðA� 12Þ

The Eqs. (A-12) and (A-11) are the same; in fact, the only dif-
ference is in their expression.

Let us introduce the concept of added mass in order to simplify
the equations. The first three terms of Eqs. (A-11) and (A-12)
are related to the added mass. If the fluid is inviscid and there is no
free surface, the total flow varies instantly when the velocity at the
orifice changes. This flow is independent of time, and proportional
to the orifice velocity. Therefore, the following expression can be
used.

∫C0

∂
∂t

ρu
� �

dV ¼mC0

∂uopen

∂t
; ∫C1

∂
∂t

ρu
� �

dV ¼mC1

∂uopen

∂t

mC0 ¼ ρ∫C0

u
uopen

dV ; mC1 ¼ ρ∫C1

u
uopen

dV ;

mϕ ¼ �ρ∫A0 �Aϕt=uopendV ðA� 13Þ

Take the average velocity as the representative velocity, as in
the following equation.

u¼ 1
A
∫AudA ðA� 14Þ

On the wall, A0�A, the velocity square can be represented as

V2 ¼ 1

2πR2
� �2 uð Þ2A2 ¼ A

2πR2

� 	2

uð Þ2 ðA� 15Þ

Then, the integral over A0�A of Eq. (A-11) becomes

I ¼ 1
2
∫A0 �AV

2dS¼ 1
2
∫1
R0

A

2πR2

� 	2

uð Þ22πR dR

¼ 1
2
uð Þ2A

2

2π
∫1
R0

1

R3dR ¼ 1
2
uð Þ2A

2

2π
1

2R2
0

ðA� 16Þ

If we take R0 as the radius of orifice, that is A=ðπR2
0Þ ¼

1→R2
0 ¼ A=π, then Eq. (A-16) is reduced to the simple expression.

I ¼ 1
2
uð Þ2A

2

2π
1

2R2
0

¼ 1
8
uð Þ2A ðA� 17Þ

Applying Eqs. (A-13) and (A-17) for the momentum conserva-
tion law, and using the average velocity, Eqs. (A-11) and (A-12) can
be written as

ma
∂u
∂t

þρu2A�1
8
ρ uð Þ2A¼ p0�p1

� �
A ðA� 18Þ

ma
∂u
∂t

þ1
2
ρV2A¼ p0�p1

� �
A ðA� 19Þ

where, ma ¼ ðmC0 þmC1 þmϕÞ. The average of the velocity
square and the square of the average velocity might be slightly
different, but if we assume that this difference is small enough
that these two are the same, then the Eqs. (A-18) and (A-19)
become

ma
∂u
∂t

þ7
8
ρ uð Þ2A¼ p0�p1

� �
A ðA� 20Þ

ma
∂u
∂t

þ1
2
ρ V
� �2

A¼ p0�p1
� �

A ðA� 21Þ

Since the above two equations are the same, we can obtain the
following relationship.

7
8
uð Þ2 ¼ 1

2
V
� �2

→ uð Þ2 ¼ 4
7

V
� �2 ðA� 22Þ

This shows that the contraction coefficient for a circular orifice
with a right-angle edge is theoretically

ffiffiffiffiffiffiffiffi
4=7

p
ffi0:756. (Of course,

this is for an invicid fluid.)
Added mass ma in the Eqs. (A-20) and (A-21) means the

amount of surrounding fluid that moves proportionally with the
velocity at orifice. We use that of a circular disk as ma in the
equations, ma ¼ 8=3 ρr3(Lamb, 1945), where r is the radius of cir-
cular disk, so take r¼

ffiffiffiffiffiffiffiffiffi
A=π

p
.

ma ¼ 8
3π

ρA
ffiffiffiffiffiffiffiffiffi
A=π

p
¼ 8
3π3=2ρA

ffiffiffi
A

p
ðA� 23Þ

For our problem, the wall might have an effect to block the
flow, so the added mass seems to be slightly larger than this value.
According to this reasoning, the coefficient in the above equation
8=ð3π3=2Þ may be approximated by 1/2.ffiffiffi
A

p

2
∂u
∂t

þ7
8
uð Þ2 ¼ p0�p1

� �
ρ

ðA� 24Þ

ffiffiffi
A

p

2
∂u
∂t

þ1
2

V
� �2 ¼ p0�p1

� �
ρ

ðA� 25Þ

The above two equations are the same, and are applicable for
u40. Of the two equations, it is more convenient to use Eq. (A-24)
because it uses the velocity normal to the orifice, not the total
velocity.
Appendix B. Square root instability

The hydraulic orifice equation was originally for steady state,
let us see what happens if we apply it for an unsteady case. Here,
the point of focus is the fact that the flow velocity is represented
using the square root of the pressure difference. The square root
function presents no problem for a large argument, but for small
arguments, there is an issue. The differential of the square root
function does not exist for zero pressure difference. Thus, it is
impossible to expand with a Taylor series about zero. Consider the
situation in Fig. B-1, in which both sides are filled with air, and
there is an opening between them. The final state is the one in
which the pressures on both sides are the same, so the pressure
difference is zero.

Let us formulate the above situation. The mass flow could be
represented as

q¼ sgn Δp
� �

ρA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Δp
�� ��
ρ

s
¼ sgn Δp

� �
A

ffiffiffiffiffiffi
2ρ

p ffiffiffiffiffiffiffiffiffiffiffiffi
jΔpj

p
ðB� 1Þ

The air masses in both compartments would change according
to

_ma0 ¼ �q

_ma1 ¼ q ðB� 2Þ

The pressure in each compartment can be determined under
the assumption of iso-entropic process of air. (γ is the specific heat,
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7/5 for an iso-entropic process, and 1 for an iso-thermal process)

p0 ¼ kaρ
γ
0�patm ¼ ka

ma0

V0

� 	γ

�patm

p1 ¼ kaρ
γ
1�patm ¼ ka

ma1

V1

� 	γ

�patm ðB� 3Þ

ka ¼ patm=ρ
γ
atm:

Take the time differentiation of the above equations, and sub-
stitute Eq. (B-2) in them,

_p0 ¼ γ
ka
V0

ma0ð Þγ�1 _ma0 ¼ �γ
ka
V0

ma0ð Þγ�1q

_p1 ¼ γ
ka
V1

ma1ð Þγ�1 _ma1 ¼ γ
ka
V1

ma1ð Þγ�1q ðB� 4Þ

Here, we assume the same volume of compartments (i.e.,
V0 ¼ V1). If the pressures are the same initially, then air masses in
both compartments are the same initially. Assume the change of
air masses is small, and the mass could be assumed as constant ma

for the last expression of Eq. (B-4). If the flow through an opening
increases the pressure of one compartment, the pressure of the
other compartment goes down, so that p1 ¼ �p0. The atmospheric
pressure is large enough so that the density is nearly constant, so
Eq. (B-4) can be rewritten as, after substituting Eq. (B-1),

_p0 ¼ �γ
ka
V

mað Þγ�1sgn p0
� �

2A
ffiffiffiffiffiffiffiffiffiffi
ρatm

p ffiffiffiffiffiffiffiffi
p0
�� ��q

¼ �2γ
A

V2�γ
patmffiffiffiffiffiffiffiffiffiffiρatm
p sgn p0

� � ffiffiffiffiffiffiffiffi
p0
�� ��q

ðB� 5Þ

Let us rewrite this into a simpler form.

_p¼ �Ksgn pð Þ
ffiffiffiffiffiffi
p
�� ��q

ðB� 6Þ

where K ¼ 2γ A
V2� γ

patmffiffiffiffiffiffiffi
ρatm

p

The value of K is very large. One solution of the above equation
is p¼ 0, which is what we want. Let us examine the numerical
solution, using the Euler method,

pnþ1 ¼ pn�Ksgn pð Þ
ffiffiffiffiffiffiffiffi
pn
�� ��q

Δt ðB� 7Þ
Fig. B-1. Arrangement of the sample problem.

Fig. B-2. Numerical solution of the air pressure revealing the
We know the pressure would bounce around zero, because of
the large value of K . Let us seek the amplitude of oscillation p� .

�p� ¼ p��K
ffiffiffiffiffi
p�

p
Δt→‘ p� ¼ 0 or p� ¼ KΔt

� �2
4

ðB� 8Þ

The oscillating solution is as follows.

pn ¼ �1ð Þn KΔt
� �2

=4 ðB� 9Þ

No matter what the absolute value of the pressure was initially,
the amplitude of pressure oscillation converges to p*. That is a type
of self-sustained oscillation (or self-excited). Even though we use
the predictor-corrector, or Runge-Kutta method, the pressure will
not go to zero, and does not oscillate as in Fig. B-2.

The above figure shows that even if the initial value is infinite-
simally small (not zero) or larger than p�, the result of the Euler
method oscillates back and forth around zero and the amplitude
grows to p�. However, the results of the predictor-corrector do not
oscillate and go to the value of p�. Even for the Runge–Kutta method,
it goes to about 1/4 p�, not zero. This is numerically unstable. Because
the predictor-corrector and Runge–Kutta methods give non-zero
solutions, they are dangerous compared with the Euler method.
The result of the Euler method gives values whose average is zero.
We expected the solution to go to zero, but it does not, so this
phenomenon can be called numerical instability.

Let us investigate the value of K ,

K ¼ 2γ
A

V2�γ
patmffiffiffiffiffiffiffiffiffiffiρatm
p

Substitute the real values except A and Vðρatm ¼ 1:26; patmffi
100;000Þ

K ¼ 178;174� γ
A

V2�γ ¼ 356;348� A

V0:6 ðB� 10Þ

In order to maintain p� as less than 100 Pa (i.e., 1/1000 of
atmospheric pressure; this would be accepted as a negligible
amount in the engineering sense) the time interval of simulation
should be the following value.

Δt� ¼ 20=K ¼ 5:6� 10�6V
0:6

A

For example, a passenger ship has many rooms in which the
dimensions are about 4 m(depth), 3 m(width), and 2.5 m(height),
for which the area of door is 2 m2, and for that roomΔt¼0.00022.
This is not practical. For a larger compartment of 10 m�
10 m�5 m, with a 2 m2 door, the time interval should be
Δt¼0.001. Therefore, this is impractical because of the numerical
instability of the square root.
square root instability. (K¼20,000, Δt¼0.001, p*¼100).
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