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SUMMARY

Cell competition is a mechanism that eliminates
slow dividing cells from a growing population. It is
believed that the genes wasp, psr, and draper are
active in the cells that win the competition (‘‘winner
cells’’) and that they are essential in the winner cells
for the induction of apoptosis and for the elimination
of the ‘‘loser cells.’’ Here, we show that lack of those
genes in winner cells appears to be dispensable
for cell-competition-induced apoptosis and during
dmyc-induced supercompetition. Moreover, winner
clones do not need those genes in order to preserve
their growth advantage. Finally, we find that most of
the clearance of the apoptotic debris is not per-
formed by winners but by recruited hemocytes,
which are required for the removal of the apoptotic
corpses at the very end. Therefore, engulfment is a
consequence—not a cause—of loser cells’ death.
INTRODUCTION

Multicellular animals possess genes and mechanisms that

recognize and eliminate less-adapted or weaker cells of devel-

opmental primordia, ensuring that viable but suboptimal cells

do not accumulate during development or aging.

How groups of cells compare their relative fitness levels and

decide which cells will remain in the tissue (‘‘winner cells’’) and

which cells will die (‘‘loser cells’’) is becoming increasingly clear.

Recent work in the Drosophila wing imaginal discs has shown

that it proceeds through a multistep process.

First, an insult, for example, a mutation, increases or

decreases the fitness of a particular cell within the imaginal

disc epithelium. Because many insults can negatively affect

‘‘cellular fitness,’’ mutations connected to cell competition

usually modify the normal physiology, proliferation, or metabolic

rate of cells. Best understood among the mutations that

decrease cell fitness are those that reduce protein synthesis

rates, such as heterozygous mutations in ribosomal protein

genes called Minutes (Morata and Ripoll, 1975; Moreno et al.,

2002a), mutations in genes that affect cell growth and prolifera-
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tion, such as Drosophila myc (dmyc) (de la Cova et al., 2004;

Moreno and Basler, 2004), but also mutations that affect cell

signaling pathways required for growth and survival, such as

the Dpp/BMP/TGFb pathway (Moreno et al., 2002a).

All those mutations share the characteristic that they are

required for optimal functioning of the cells, but a reduction-

of-function does not directly trigger autonomous cell death

(Moreno et al., 2002a). The mutant cells are still functional and

are only culled by programmed cell death (Moreno et al.,

2002a) if ‘‘fitter’’ cells are present that can replace them (Morata

and Ripoll, 1975; Moreno et al., 2002a; Simpson, 1979).

In a second step after the initial insult, expression of different

isoforms of the cell membrane protein Flower (Fwe) label cells

as winners or losers (Rhiner et al., 2010). Interestingly, this

gene has been recently implicated in the susceptibility to skin

papilloma in mice (Petrova et al., 2012), supporting the connec-

tion between supercompetition and cancer development. In

addition, loser cells also upregulate the secreted protein

dSPARC (Portela et al., 2010), which acts as a self-protecting

signal and has also been implicated in cancer (Arnold and

Brekken, 2009; Brekken et al., 2003; Clark and Sage, 2008;

Framson and Sage, 2004; Petrova et al., 2011; Sangaletti

et al., 2003).

All the changes described above occur in the loser cells. The

only genes that have been shown to function in winner cells

and are believed to be absolutely required for cell competition

are the genes draper, wasp, and psr (Baker and Li, 2008; Li

and Baker, 2007). The gene draper encodes for a homolog of

the CED-1 phagocytic receptor in C. elegans (Freeman et al.,

2003; Zhou et al., 2001), which has been implicated in the phago-

cytosis of apoptotic cells by cultured Drosophila hemocytes

(Manaka et al., 2004), in axon remodelling and engulfment by

glial cells (Awasaki et al., 2006; MacDonald et al., 2006). wasp

is an actin regulator that has been shown to act in the phagocy-

tosis of Staphylococcus aureus in Drosophila (Pearson et al.,

2003). Finally, the phosphatidylserine receptor gene named psr

(Fadok et al., 2000), despite the fact that it has been proposed

in some studies to have a role in engulfment in mammals (Fadok

et al., 1992; Martin et al., 1995; van den Eijnde et al., 1998; Ver-

hoven et al., 1995), encodes for a nuclear protein in Drosophila

without a specific role in engulfment (Cikala et al., 2004; Cui

et al., 2004; Krieser et al., 2007; Mitchell et al., 2006). A cell

competition study with these genes proposed that +/+ winner
s
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cells eat their way through mosaic compartments, consuming

M/+ loser cells along the way (Li and Baker, 2007). Also,

dMyc-overexpressing cells were thought to eliminate wt loser

cells by active engulfment during supercompetition (Li and

Baker, 2007).

Similar conclusions were drawn in a second study examining

cells mutant for tumor suppressor genes, such as scrib or dlg.

Such cells lose their epithelial integrity and are eliminated by

surrounding wild-type tissue, which seemed to activate the

ELMO/Mbc-mediated pathway, thereby culling mutant cells by

engulfment (Ohsawa et al., 2011). This interpretation was based

on experiments where RNAi, against elmo or mbc, suppressed

elimination of scrib mutant clones (Ohsawa et al., 2011).

However, whether the elimination of scrib mutant clones is

related genetically to cell competition is still unclear. For

example, eiger, the Drosophila homolog of the Tumor Necrosis

Factor (Igaki et al., 2002; Moreno et al., 2002a, 2002b) is required

for the elimination and apparent engulfment of scribmutant cells,

whereas it seems dispensable for the elimination of M/+ losers

by +/+ cells (Ohsawa et al., 2011).

Here, we find that lack of psr, wasp, and draper in winner cells

appears to be dispensable for cell competition-induced

apoptosis and does not impair the growth of winner cells. In

addition, we show that hemocytes are the cells required to re-

move the apoptotic corpses and the cellular debris after

apoptosis has been fully executed.

In summary, (1) our results show that corpse engulfment is not

a decision-making step in cell competition-induced apoptosis

but rather one that follows death of cells, and (2) our results agree

with previous reports (Franc et al., 1999a) showing that most of

corpse engulfment is performed by the professional phagocytes,

rather than by epithelial cells.

RESULTS

draper, wasp, and psr Are Not Essential for the
Elimination of Loser Cells during Supercompetition
The genes draper (drpr), wasp, and psr have been shown to play

a role in winner cells to kill and engulf loser cells in different cell

competition scenarios (Li and Baker, 2007).

We have tested the relevance of these genes in a dmyc-super-

competitor assay because this is a well-established competition

scenario in which cells expressing higher levels of dMyc under

the tubulin promoter (tub > dmyc) can outcompete surrounding

wild-type cells, which in this case, act as loser cells (de la

Cova et al., 2004;Moreno andBasler, 2004). dMyc-overexpress-

ing cells that are able to outcompete and eliminate wild-type

cells have been called supercompetitors (Moreno and Basler,

2004). FRT-FLP technique was used to generate wt loser cells

next to dMyc-overexpressing supercompetitor cells (Figure 1A),

both in a wild-type (wt) background (Figures 1E–1G) and in

a drpr�/� background (Figures 1H–1J; drpr�/� background

was verified by RT-PCR, Figure S1A; antibody staining, Figures

S1E–S1G; and active Caspase-3 staining, Figures S1J and

S1K) in wing imaginal discs of Drosophila melanogaster. A

time-course experiment was performed to determine whether

drpr was essential for the elimination of loser cells. Statistical

analysis showed that wt loser cells disappeared with similar
Cel
kinetics from the tissue, both in wt and drpr�/� backgrounds,

without any significant difference (Figure 1B). We then conduct-

ed a second experiment of supercompetition, generating

tub > dmyc clones in a wt background. To knockdown the

expression of drpr in imaginal disc cells, a specific UAS-drpr

RNAi was activated in the posterior compartment under the

engrailed > Gal4 (GFP) driver. tub > dmyc clones in the anterior

(with Drpr) and posterior (reduced Drpr) compartment were

compared, and no differences regarding the induction of

apoptosis (considering both apical Caspase and basal apoptotic

debris) or the expansion of the dMyc-overexpressing clones by

cell competition were found (Figures S1C, S1D, S1H and, S1I).

Apoptotic Corpses Accumulate basally in the Absence
of Functional draper
The final outcome of cell competition is the apoptosis of the loser

cells (Moreno et al., 2002a; Rhiner et al., 2010). Thus, Caspase-3

activation, a marker of apoptosis, can be used to detect the

death of loser cells in cell competition (Moreno and Basler,

2004). The remaining cell corpses tend to be extruded basally

and are finally cleared from the tissue (Moreno and Basler,

2004). We observed that loser cells in the drpr�/� background

activated Caspase-3 normally but such apoptotic cells accumu-

lated basally in drpr�/� wing imaginal discs at 48 hr after clone

induction (ACI) (Figures 1K–1M), compared to wt discs at the

same time point where corpse removal is functional (Figures

1N–1P), suggesting that engulfment is only required for the

clearance of already dead cells (cellular debris full of active

Caspase-3 called apoptotic corpses, located basally, and there-

fore outside the normal plane of the epithelium). TUNEL staining

was performed as another way to confirm the elimination of loser

cells, showing comparable results (Figures 1C and 1D).

To differentiate between developmental and cell competition-

induced apoptosis, apoptotic corpses were quantified in wt

(drpr+) discs and in drpr�/� wing discs in the presence or

absence of cell competition (Figures 1Q–1S). As expected, there

was an increase of Caspase-3-positive cells in drpr�/� discs

compared with drpr+ discs and a further increase (by 20%) in

drpr�/� discs under cell competition.

These results suggested that drpr is necessary to remove the

apoptotic debris produced by cell competition but not for the

extrusion of the dead cells outside the plane of the epithelium.

wasp and psr Homozygous Mutant Larvae Show
a Developmental Delay
The experiments with drpr described above were straightfor-

wardly interpreted because we found that the drpr mutation

does not induce any detectable growth defect during larval

development. In particular, we perceived no delays in the devel-

opment of wt larvae compared to drprmutants (Figure S1B) and

no differences in wing imaginal disc size at comparable stages

throughout development (Figures S1J and S1K). However,

when the same experiment was done with wasp and psr null

mutants, a defect in growth was observed for these two mutants

(Figure S1B), which made time-course comparisons compli-

cated. Nevertheless, active Caspase-3 staining showed that

loser clones were dying in both mutant backgrounds, similar to

the wt situation (Figures 1T–1V).
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Figure 1. draper Is Not Essential for the

Elimination of Loser Cells during Super-

competition

(A) Flip-out technique used to generate GFP-

marked wild-type (wt) cells in a dMyc-over-

expressing background by combining three

transgenes (hs-Flp; tub > dmyc > Gal4/Cyo; UAS-

GFP flies). Heat shock (hs) promotes the expres-

sion of the Flipase (Flp) enzyme in a random subset

of cells leading to excision of a dmyc cassette

flanked by FRT sites in the tub > dmyc > Gal4

transgene. Upon removal of the dmyc cassette

(including the stop codon), the Gal4 gene is

placed under the control of the tubulin promoter

and subsequently activates UAS-GFP expression.

This supercompetitor assay is depicted on the

left at the cellular level. Clones of GFP marked

wt cells (green) are generated in a tub > dmyc

background (black).

(B) Quantification of remaining loser clones in the

supercompetitor assay at different time points

after clone induction (ACI). Between 24 and 43

wing discs were measured for each genotype.

Error bars represent SEM. There are no statistical

differences (p > 0.01) according to a Student’s

t test (n.s., not significant).

(C) TUNEL staining (red) of a wing imaginal disc

under cell competition in a drpr�/� background.

(D) Quantification of the number of apoptotic cells

(considering both apical Caspase and basally

accumulated apoptotic debris) in a tub > dmyc

drpr�/� background comparing active Caspase-3

and TUNEL stainings. Error bars represent SEM.

There are no statistical differences (p > 0.01)

according to aStudent’s t test (n.s., not significant).

(E–J) Loser wt clones (GFP, green) are eliminated

by cell competition in a tub > dmyc background

(E–G) as in a tub > dmyc drpr�/� background

(H–J). DAPI is shown in blue.

(K–P) Transversal cut of a wing imaginal disc

showing loser wt clones (GFP, green) basally

extruded in a tub > dmyc drpr�/� background at

48 hr ACI (K–M) compared with the tub > dmyc

background at the same time point (N–P). Active

Caspase-3 is shown in red. The apical marker Par3

is shown in magenta and DAPI in blue.

(Q) Wing imaginal disc showing Caspase-3-

positive cells (image shows a maximal projection

of the wing imaginal disc, thus including apical

Caspase and basally accumulated apoptotic

debris) in a drpr�/� background under cell

competition.

(R) Compared with the same mutant background

as (Q) but without competition.

(S) The number of Caspase-3-positive cells in (Q)

appeared to be statistically higher than in (R)

(p value = 0.0168) and higher than in a control

situation (WT bar p value = 0.0001), according to

a Student’s t test. Error bars represent SEM.

(T–V) Caspase-3 staining of loser clones (GFP,

green) dying in a tub > dmyc background as in

a tub > dmyc psr�/� and tub > dmyc wasp�/�
backgrounds at 48 hr ACI. Active Caspase-3 is

shown in red.

See also Figure S1.
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We therefore decided to analyze those genes in a cell compe-

tition scenario using theMinute (M) technique (Morata and Ripoll,

1975; Simpson, 1979), where the larval background is only

heterozygous for the mutations (see below).

M/+ Loser Cells Are Still Outcompeted by +/+ Cells
in the Absence of drpr, wasp, or psr
Next, we used the Minute (M) technique (Morata and Ripoll,

1975; Simpson, 1979) to confront M/+ loser cells (heterozy-

gouslymutant for a ribosomal protein gene) with winner +/+ cells,

either homozygously mutant for drpr, wasp, or psr (Figure 2A) or

classical winner +/+ cells (Figures 2B–2K and 3A–3L).

We measured the number of active Caspase-3-positive cells

among all M/+ loser cells and specifically among the population

of M/+ loser cells next to the clone of +/+ winner cells (M/+ cells

in contact with +/+ cells and up to 2–3 cells diameters away from

the winner cells, Figures 2B, 2C, S2A, and S2B). It is important to

note that wing discs heterozygously mutant for drpr (drpr-/+)

showed increased number of apoptotic cells accumulated

basally (due to a defect in the engulfing capacity of hemocytes,

see below), but because those cells are outside the normal plane

of the epithelium, they are not computed in this experiment.

Statistical analysis showed that the average number of cells

positive for activated Caspase-3 at the border where winner cells

contact M/+ cells was comparable regardless of whether or not

winner cells were mutant for drpr,wasp, psr (Figures 2B, 2C, 2F–

2K, and 3D–3L).

In addition, we studied the area of competition between +/+

winner cells and M/+ loser cells in the different situations by

measuring the perimeter of +/+ winner clones when they were

either wt or mutant for drpr, wasp, and psr. In the case of drpr

mutant clones, no differences were found (Figure 2D). Moreover,

the average of +/+winner clone size did not show any difference

when winner clones were either wt or mutant for drpr (data

not shown) as it has been previously reported (Martı́n et al.,

2009). +/+winner clonesmutant forwasp showed shorter perim-

eter, that is, a reduced surface of competition, compared to

wt ones (Figure 2E). Accordingly, wasp mutant clones were

bigger than control clones, both in competitive (therefore

showing reduced area of competition because they occupied

more space in the wing pouch) and noncompetitive back-

grounds, suggesting that it does not have a specific role in

winner cells throughout cell competition (Figures 3B and 3C).

Finally, +/+ winner clones mutant for psr did not show any

difference neither in the perimeter length (Figure 2E) nor in the
Figure 2. M/+ Loser Cells Are Still Eliminated by +/+ Cells in the Absen

(A) FRT-FLP technique to generate M+ cells mutant for drpr, wasp, or psr in a M

generated.

(B and C) Average of Caspase-3-positive cells in the periphery of the loser territory

total Caspase-3 in the loser territory in both situations: whenwinners arewt ormut

discs were measured for each genotype. Error bars represent SEM. There are

significant.

(D and E) Perimeter of winner clones either wt or mutant for drpr (D) or wt or mut

(F–K) LoserM/+ cells (GFP, green) are killed by winner cells (black), either wt (F–H

DAPI in blue. Arrowheads show apoptotic loser cells at the border of competitio

Error bars represent SEM. There are no statistical differences (p > 0.01) for drpr and

for wasp have statistically shorter perimeter than control ones (p value = 0.0047)
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behavior and size in both competitive and noncompetitive

backgrounds (Figures 3A and 3C).

This data underlines that wt winner cells do not need drpr,

wasp, or psr to induce the apoptotic pathway in M/+ loser cells

during Minute-induced competition.

drpr Deficiency Leads to Basal Accumulation
of Apoptotic Corpses in lgl-, scrib-, and dlg-Deficient
Clones
It is believed that cells mutant for some tumor suppressor genes

undergo apoptosis and are engulfed by surrounding wild-type

tissue (Ohsawa et al., 2011). However, it remains unclear

whether this elimination is genetically related to cell competition.

To address this question, we generated clones homozygously

mutant for the tumor suppressor gene lethal giant larvae (lgl) (Fig-

ure 4A), both in a wt background (Figures 4B–4D) and in

a drpr�/� background (Figures 4H–4J). Staining against acti-

vated Caspase-3 revealed an increased number of dead cells

in lgl�/� clones in drpr�/� background compared to the wt

background (Figures 4I and 4C, respectively; images show

maximal projections, thus including apical Caspase and basally

accumulated apoptotic debris). Furthermore, we observed that

in the absence of drprmost of the apoptotic corpses were again

accumulated basally compared to the wt background (Figures

4K–4M and 4E–4G, respectively). A similar phenotype was

observed for the case of two other tumor suppressor genes:

scrib and dlg. Clones expressing RNAi against these genes

activated Caspase-3 and accumulated basally in the epithelium

in the absence of drpr (Figure S3).

These experiments show that lgl, scrib, and dlg-deficient cells

accumulate as apoptotic corpses and are extruded from the

epithelium in the absence of drpr.

Hemocytes Remove Apoptotic Corpses after
Minute-Induced Competition
Because we detected an accumulation of basally extruded cells

with activated Caspase-3 in wing discs when drpr, wasp, or psr

was impaired and this effect was bigger when drpr, wasp, or psr

were inactivated throughout the animal than when they were

specifically inactivated in winner cells, we asked whether

another cell type may be helping to clean up the cellular debris

after cells have been killed and extruded from the epithelium.

Drosophila hemocytes have diverse roles during development

and immunity. Among other important functions, they seek

out the tissue and remove apoptotic cells and debris (Abrams
ce of draper

/+ background. Note that twin M�/� cells (marked by double GFP) die once

(2–3 cells diameter, that is, only apical Caspase-3-positive cells) relative to the

ant for drpr (B) or when they arewt ormutant forwasp or psr (C). Around 15wing

no statistical differences (p > 0.01) according to a Student’s t test. n.s., not

ant for wasp and psr (E).

) or mutant for draper (I–K) at 72 hr ACI. Active Caspase-3 is shown in red and

n marking apical Caspase-3-positive cells only.

psr, according to a Student’s t test (n.s., not significant). Winner mutant clones

, according to a Student’s t test. See also Figure S2A.
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Figure 3. M/+ Loser Cells Are Still Eliminated and Replaced by +/+ Cells in the Absence of psr and wasp

(A and B) Average of clone area of psr (A) orwasp (B) mutant clones compared to their twin in noncompetitive backgrounds. Fifteen wing discs weremeasured for

each genotype. Error bars represent SEM. There are no statistical differences (p > 0.01) according to a Student’s t test for psr (n.s., not significant). Mutant clones

for wasp are statistically bigger than twin controls (p value = 0.0037), according to a Student’s t test.

(C) Average of winner clone area, either wt or mutant for psr or wasp in Minute competition. Fifteen wing discs were measured for each genotype. Error bars

represent SEM. There are no statistical differences (p > 0.01) according to a Student’s t test for psr (n.s., not significant). Winner mutant clones for wasp are

statistically bigger than wt ones (p value is less than 0.0001), according to a Student’s t test.

LoserM/+ cells (GFP, green) are killed by winner cells (black), either wt (D–F) or mutant for wasp (G–I) or psr (J–L) at 72 hr ACI. Active Caspase-3 is shown in red

and DAPI in blue.

See also Figure S2B.
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Figure 4. Preventing draper Function Induces Basal Apoptotic Corpses Accumulation of lgl Mutant Cells

(A) FRT-FLP technique used to generate lgl�/� cells in a wt background.

(B–J) Clones of lgl (black) are killed in awt background (GFP, green) (B–D) as in a drpr�/� background (H–J). Active Caspase-3 is shown in red and DAPI in blue.

Images show maximal projections of wing imaginal discs, thus including apical Caspase and basally accumulated apoptotic debris.

(K–M) Transversal cut of a wing imaginal disc. Arrowheads mark apoptotic corpses of lgl�/� cells accumulated basally in drpr�/� background compared to wt

background (E–G).

See also Figure S3.
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Figure 5. Hemocytes Remove Apoptotic Corpses

(A–D) Srp and Nimrod (hemocyte-specific markers, red) show the specificity of the Hemese driver in hemocytes (HeGal4 UAS-GFP).

(E–H) Drpr staining in hemocytes (marked by HeGal4 UAS-GFP). A UAS-drpr RNAi specifically expressed in hemocytes show Drpr antibody specificity (G–H).

(I–K and M–O) Hemolymph-hemocyte preparation from wt larvae (I–K) and from HeGal4 RFP UAS-Hid larvae (M–O). Sytox green is used to mark dead cells.

(L and P) Killing hemocytes (by HeGal4 UAS-Hid) increases Caspase-3-positive cells in aM/+ disc (green, P) compared to a wt situation (L). Active Caspase-3 is

shown in red. Images show maximal projections of wing imaginal discs, thus including apical Caspase and basally accumulated apoptotic debris.

See also Figure S4.
et al., 1993; Franc et al., 1996, 1999a, 1999b; Tepass et al.,

1994). Ninety-five percent of circulating hemocytes consist of

phagocytic plasmatocytes, which are responsible for cell inges-

tion (Evans et al., 2003). Because in the wing pouch, as well as in

other epithelia (Rosenblatt et al., 2001), apoptotic bodies are en-

gulfed to preserve tissue integrity, we sought to evaluate the role

of hemocytes in the elimination of outcompeted Minute cells.

To this end, we abolished hemocytes by overexpression of the

proapoptotic gene hid under the control of the hemocyte-

specific driver Hemese (Kurucz et al., 2003). Hemocyte-specific

expression by Hemese was verified in combination with immu-

nostaining for hemocyte-specific markers, such as the GATA
Cel
transcription factor, Serpent (Srp) (Lebestky et al., 2000), and

Nimrod (Kurucz et al., 2007) (Figures 5A–5D). We also stained

hemocytes with a Drpr-specific antibody to corroborate that

Drpr is expressed in these cells. The signal detected by anti-

Drpr antibody greatly diminished when a UAS-drpr RNAi was

specifically activated in the hemocytes, which shows the

specificity of the antibody (Figures 5E–5H). Apoptotic Hid-over-

expressing hemocytes, marked by RFP, stained positive for

Sytox Green (used as a marker of apoptosis), in contrast to wt

hemocytes (Figures 5M–5O and 5I–5K, respectively).

Applying this strategy to kill hemocytes, we dissected wing

discs from homogeneous M/+ larvae (therefore without
l Reports 2, 526–539, September 27, 2012 ª2012 The Authors 533



Figure 6. Hemocytes Clean Up the Apoptotic Corpses during Minute Competition

(A–F) Killing hemocytes increases the accumulation of apoptotic corpses (arrowheads) duringMinute competition (D–F) compared to awt situation (A–C). Active

Caspase-3 is shown in red and DAPI in blue. Arrowheads show apoptotic M/+ loser cells at the border of competition.
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competition) either with intact or ablated hemocytes. When

staining against activated Caspase-3, we observed a high

number of apoptotic corpses in discs from larvae lacking phago-

cytic hemocytes compared to wt larvae (Figures 5P and 5L,

respectively, images show maximal projections, thus including

apical Caspase and basally accumulated apoptotic debris). We

also confirmed that these apoptotic corpses were not dead

hemocytes sticking to the epithelium both in competitive and

noncompetitive backgrounds (Figures S4A–S4L) and that we

were able to eliminate almost 80%of the hemocytes by hid over-

expression (Figure S4M).

Next, we generated Minute-induced cell competition,

opposing M/+ cells with wt cells and observed a clear accumu-

lation of apoptotic corpses when hemocytes were killed in

contrast to discs from larvae with intact hemocytes (Figures

6A–6F; images show maximal projections, thus including apical

Caspase and basally accumulated apoptotic debris). This

increase in active Caspase-3-positive cells was statistically

significant, both when total number of apoptotic cells in the

wing pouch were compared (including apical Caspase and

basally accumulated apoptotic debris) and when only the active

Caspase-3-positive loser cells at cell boundaries facing winner

cells were compared (apical Caspase signal found 2–3 cell diam-

eters apart from +/+ cells, Figures 6J and 6K). Furthermore, we

noted that ablation of hemocytes coincided with persistence of

active Caspase-3-positive cellular debris that was extruded

basally but failed to be removed (Figures 6G–6I).

To determine if indeed hemocytes are themain engulfing cells,

we quantified the number of apoptotic corpses in wing discs that

lacked Drpr (drpr �/�) and observed the same increase in

apoptotic bodies compared to discs where hemocytes were

ablated (hemese-gal4; UAS-hid) (Figure S4N, considering both

apical Caspase and basally accumulated apoptotic debris).

This result indicates that the Drpr-mediated ingestion of

apoptotic debris in the wing disc is mainly performed by

hemocytes. To verify this observation, we tried to rescue the

accumulation of dead cells in drpr mutants by restoring

Drpr function only in hemocytes. Wing discs heterozygously

mutant for drpr (drpr�/+) showed an increased number of

apoptotic cells accumulated basally (i.e., outside the normal

plane of the epithelium). This phenotype could be rescued if

drpr expression was provided exclusively in hemocytes using

the hemocyte-specific driver hemese-gal4 (Figures 6L, 6M, 6O,

and S5; Movies S1 and S2).
(G–I) Transversal cut of a wing imaginal disc. Arrowheads mark dying M/+ loser

shown in magenta and DAPI in blue.

(J and K) Quantification of total number of Caspase-3-positive cells of wing pouch

and (K) total number of Caspase-3-positive cells in the periphery of the loser territo

represent SEM. The number of Caspase-3-positive cells appeared to be statis

situation (He > LacZ), according to a Student’s t test (p value = 0.0005 of J and

(L and M) Wing imaginal disc showing Caspase-3-positive cells in a drpr

hemocytes overexpressed drpr (M). Images show maximal projections of win

apoptotic debris.

(N) Overexpression of the thermosensitive form of the protein Shibire in hemocytes

0.0182) compared to a control situation (He > LacZ), according to a Student’s t

(O) The number of Caspase-3-positive cells is significantly reduced (to basal leve

compared with drpr+/� background (p value = 0.0034), according to a Student’

Error bars represent SEM. See also Figure S5 and Movies S1 and S2.

Cel
Finally, in an attempt to test whether genes related to endo-

cytic pathways, such as dynamin/shibire (Awasaki and Ito,

2004), were implicated in the elimination of apoptotic debris by

hemocytes, we used a thermosensitive allele and performed

the experiments at the restrictive temperature. We measured

the number of apoptotic cells, considering both apical Caspase

and basally accumulated apoptotic debris, and observed

a significant increase in the number of apoptotic cells, especially

those basally located (Figures 6N and 6O), suggesting that this

gene is involved in the process of eliminating apoptotic corpses

from the wing imaginal disc.

We have shown that lack of hemocytes leads to a piling up of

apoptotic corpses in the wing pouch during development and

cell competition. Interestingly, the association of hemocytes to

mutant cells has been previously described (Cordero et al.,

2010; Pastor-Pareja et al., 2008); therefore, circulating hemo-

cytes must reach the places where competition is taking place

in order to efficiently clear dead cells.

To study the recruitment process, we stained against Serpent

(Lebestky et al., 2000) in different scenarios of cell competition.

Serpent staining revealed the presence of hemocytes close to

wt loser cells in a tub > dmyc background (Figures 7A–7C).

Hemocytes were also associated with M/+ loser cells during

Minute competition (Figures 7D–7F) and lgl�/� clones in mutant

lgl-triggered cell elimination (Figures 7G–7I). In all cases the

number of hemocytes was higher than in a control situation

(Figures 7J and 7K).

Taken together, these results demonstrate that hemocytes

are not required to trigger apoptosis in loser cells during

Minute-competition. However, after apoptotic cell death and

basal extrusion are finished, hemocytes are needed to remove

apoptotic corpses and active Caspase-3-positive cellular debris.

DISCUSSION

Previous work described that the genes drpr and wasp, impli-

cated in the engulfment process, and psr, unrelated to the

engulfment process, appeared to be required in winner cells in

different scenarios of cell competition (Li and Baker, 2007).

Here, we have decided to reassess the significance of these

genes in a supercompetitor assay where dMyc-overexpressing

supercompetitors (tub > dmyc) outcompete surrounding wild-

type cells (tub > gal4). A time-course experiment revealed that

drpr, the gene that showed the strongest phenotype in the
cells (GFP, green) that remained basally extruded. The apical marker Par3 is

(J, including both apical Caspase and basally accumulated apoptotic debris),

ry. Between 15 and 20wing discs weremeasured for each genotype. Error bars

tically higher when hemocytes were eliminated (He > Hid) compared to a wt

p value = 0.0003 of K).

-/+ background (L), compared with the same mutant background when

g imaginal discs, thus including apical Caspase and basally accumulated

significantly increased the number of Caspase-3-positive cells (p value equals

test. Between 15 and 20 wing discs were measured for each genotype.

ls, He > LacZ) when hemocytes overexpressed drpr in a drpr+/� background

s t test.
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Figure 7. Hemocytes Are Recruited during Cell Competition
Hemocytes marked by Serpent expression (magenta) migrate and appear in large numbers in different scenarios of cell competition surrounding cells to be

eliminated compared with a control situation (without cell competition, J and K): in a supercompetitor assay (A–C), arrowhead indicates a loser cell inside of

a hemocyte, in Minute competition (D–F) and in lgl cell elimination (G–I).
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previous report (Li and Baker, 2007), was dispensable for the

elimination of wt loser cells.

Based on these findings, the role of Draper was re-evaluated in

a classic Minute-induced competition, where M/+ cells (hetero-

zygously mutant for a ribosomal protein gene) are opposed to

winner +/+ cells, either wt or mutant for drpr. Quantification of

the cell competition process and the resulting apoptotic corpses

showed that drpr was neither necessary for the induction of

apoptosis in loser cells nor necessary for the basal extrusion of

the ensuing apoptotic debris. Regarding the average size

of +/+ winner clones mutant for drpr, we also did not detect

any significant difference when winner clones were either wt or

mutant for draper (Martı́n et al., 2009).

The same experiments were repeated with mutants for wasp

and psr, and these genes were also dispensable for cell compe-

tition-induced cell death and did not impair clonal growth.

Similar results were achieved when lgl-, scrib-, or dlg-deficient

clones coexisted with wt tissue: wt cells still induced death of

deficient cells in the absence of draper function.

Altogether, these experiments show that winner cells do

not need the genes draper, wasp, or psr to kill the loser cells,

neither during dmyc-induced supercompetition nor during

Minute-induced competition. This is further supported by the

observation that fweLose-A-overexpressing cells also die in the

absence of draper (Rhiner et al., 2010).

However, upon removal of those genes in the whole organism,

we observed an accumulation of basally located cellular debris

and apoptotic corpses. Interestingly, this effect was less promi-

nent when the same genes were inactivated specifically in the

winner cells. This raised the possibility that another cell type

may be helping in the removal of most of the cellular debris after

cells have been killed and the resulting apoptotic corpses

extruded from the epithelium.

Our experiments provide evidence that clearance of most of

the apoptotic corpses is executed by circulating hemocytes.

Ablation of hemocytes by overexpression of the proapoptotic

gene hid under a specific hemocyte driver, leads to the accu-

mulation of apoptotic corpses and Caspase-3-positive cellular

debris. However, those remnants of cellular competition rest

outside the plane of the epithelium, where they have been

effectively extruded.

These findings seem to contradict previous studies regarding

the role of psr, wasp, and draper in the induction of apoptosis

in loser cells, corpse removal, and clone size of the winner cells

(Li and Baker, 2007).

One possibility is that basally extruded apoptotic corpses and

Caspase-3-positive cellular debris may have been erroneously

scored as living loser cells. In addition, the basal extrusion of

apoptotic corpses from the epithelium may not have been taken

into account. To avoid this, we have distinguished between

apical Caspase activation, a marker of apoptotic induction,

from basal Caspase accumulation, a consequence of deficient

engulfment by hemocytes. This distinction between early

apoptotic induction (apical) and extruded apoptotic debris (basal

and outside the plane of the epithelium) helps to follow the time

line of cell competition. Previous reports may have not made this

distinction. In addition, if no hemocyte-specific markers are

used, then this circulating cell type could be mistaken for an
Cel
epithelial cell. This may significantly affect the interpretation of

a result because we show that hemocytes are not only recruited

to epithelia with ongoing cell competition but also are intimately

associated with loser cells. Finally, we also carefully estimate the

area of competition between winners and losers.

Along the same lines, we would like to note that some of the

genes that were tested to assess if engulfment is necessary for

competition, are actually not involved in the process (i.e., psr)

and that some of the markers detected do not necessarily imply

engulfment. Lysotracker, for example, also marks processes,

such as autophagy. This may have caused confusion between

autophagy and engulfment. We think this is possibly the case.

First, other proteins related to autophagy are also expressed

by loser cells, such as Lysosome Associated Membrane Protein

(LAMP) (Rhiner et al., 2010), and second, if engulfment by winner

cells is crucial, lysosomemarkers should be expressed in winner

cells in order to degrade the engulfed material; but, this is not the

case (Ohsawa et al., 2011; Rhiner et al., 2010). Expression of

lysosome markers has been observed in the loser cells (Ohsawa

et al., 2011; Rhiner et al., 2010), further supporting the view that

autophagy within the loser cells is a more likely explanation than

is engulfment by the winner cells.

The results described here strongly support the view that cell

competition is a mechanism that identifies and kills viable cells

from a growing population in the absence of psr, wasp, and

draper. draper is required after the discrimination between

winners and losers is completed and the losers have been killed

and extruded from the epithelium. After dead loser cells are

extruded basally, the cellular debris is cleared by circulating

hemocytes. Our results imply that the relevant molecules that

allow winner cells to recognize and eventually impose cell death

on the loser cells during cell competition still remain to be

elucidated.
EXPERIMENTAL PROCEDURES

wt Clones in tub > dmyc and tub > dmyc drpr�/�, wasp�/�, and

psr�/� Background, Mitotic Recombination Clones, and Hemocyte

Experiments

The fly stocks used were obtained from the Bloomington Stock Center, except

where indicated. To generate wt clones in tub > dmyc background, crosses

were performed as previously described (Moreno and Basler, 2004). In the

case of drpr�/�, wasp�/�, and psr�/� backgrounds, females of genotype

ywhs-FLP; tub > dmyc > gal4/Cyo; drprD5FRT80/TM6B, FRT82B wasp[1]/

TM6B or FRT82B psr[null]/TM6B (a gift of N. Baker) were crossed to ywhs-

FLP; UAS-GFP/Cyo; drprD5FRT80/TM6B, FRT82B wasp(1)/TM6B or FRT82B

psr(null)/TM6B males. The larvae were subjected to a 15 min heat shock at

37�C and harvested 24, 48, and 72 hr ACI.

For wt drpr�/� clones in M/+ discs, females of genotype ywhs-FLP;

drprD5FRT80 were crossed to ywhs-FLP; ubi-GFP Rps17 [4] FRT80B/TM6b

males. As a control, females of genotype ywhsFLP; mwh FRT80B /TM6b

were crossed to ywhsFLP; ubi-GFP Rps17[4] FRT80B /TM6b males. For wt

wasp�/� and psr�/� clones in M/+ discs, females of genotype ywhs-FLP;

FRT82B wasp[1] and ywhs-FLP; FRT82B psr[null] were crossed to ywhs-

FLP; FRT82B Ubi-GFP RpS3[Plac92]/TM6B males. As a control, females of

genotype UAS-flp/Cyo; FRT82B/TM6b were crossed to ywhs-FLP; FRT82B

ubi-GFP RpS3[Plac92)/TM6bmales. Heat shock was performed as previously

described (Li and Baker, 2007). For wt drpr�/� clones in noncompetitive

backgrounds, females of genotype ywhs-FLP; drprD5FRT80 were crossed to

ywhs-FLP; ubi-GFP FRT80B/TM6b males. As a control females of genotype

ywhsFLP; mwh FRT80B /TM6b were crossed to ywhsFLP; ubi-GFP
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FRT80B /TM6bmales. For wt wasp�/� and psr�/� clones in noncompetitive

backgrounds, females of genotype ywhs-FLP; FRT82B wasp[1] and ywhs-

FLP; FRT82B psr[null] were crossed to ywhs-FLP; FRT82B Ubi-GFP/TM6B

males. As a control, females of genotype UAS-flp/Cyo; FRT82B/TM6b were

crossed to ywhs-FLP; FRT82B ubi-GFP/TM6b males. Heat shock was per-

formed as previously described (Li and Baker, 2007).

For lgl�/� clones inwt or drpr�/� backgrounds, females of genotype ywhs-

FLP; lgl4 FRT40A/Cyo or ywhs-FLP; lgl4 FRT40A/Cyo; drprD5FRT80/TM6B,

respectively, were crossed to ywhs-FLP; UbiGFP FRT40A/Cyo or ywhs-FLP;

UbiGFP FRT40A/Cyo; drprD5FRT80/TM6B males. The larvae were subjected

to a 10 min heat shock at 37�C and harvested 48 ACI.

For hemocyte elimination experiments, the specific driver Hegal4 UAS-

GFP/TM6B (a gift of P. Pareja) was crossed to UAS-Hid or UAS-LacZ in M/+

backgrounds. For wt clones in M/+ discs, females of genotype ywhs-FLP;

arm-LacZ FRT40A/Cyo; Hegal4 UAS-GFP/TM6B were crossed to UAS-Hid;

UbiGFP M FRT40A/; TM6B/+ males to kill hemocytes or UAS-LacZ; UbiGFP

RpL27A[1] FRT40A/+; TM6B/+ males as a control. Larvae were subjected to

10 min heat shock at 37�C and harvested at 72 hr ACI.

To study the relation between hemocytes and draperD5, females of the

genotype ywhs-FLP; Cyo/if; Hegal4 UAS-GFP/TM6B were crossed to

drprD5FRT80/’’ or ywhs-FLP; UAS-DrprI; drprD5FRT80/’’ males. Larvae were

maintained at 25�C until third larval instar appeared. As another way to block

engulfment UAS-shibirets flies were used: females of the genotype ywhs-FLP;

Cyo/if; Hegal4 UAS-GFP/TM6B were crossed to UAS-shibirets/UAS-shibirets

males. Larvae were maintained at 17�C until second larval instard appeared,

then put at 29�C and harvested at 72 hr.

Hemocyte Extraction and Preparation

For hemocyte images larvae of genotype Hegal4 UAS-myr-RFP UAS-Hid or

Hegal4 UAS-myr-RFP UAS-LacZ were dried and opened with forceps. Hemo-

lymph was loaded onto coverslips in a 24-well culture plate with 250 ml of

Schneider medium. After 30 min, to allow hemocytes to sediment, they were

fixed with FA 4% for 20 min, immunostained as usual, and mounted. The

following primary antibodies were used: rabbit anti-draper (1/125) (Marc

Freeman), mouse anti-Serpent (1/125) (Pastor Pareja), mouse anti-Nimrod (1/

125) (István Andó). The following secondary antibodies were also used: Alexa

Fluor donkey anti-rabbit 555 (1:250) (Invitrogen, Carlsbad, CA, USA) and Alexa

Fluor donkey anti-mouse 555 (1:250) (Invitrogen). Sytox Green was used as

a marker for cell death. Images were obtained with a LEICA TCS-SP2-AOBS.

Immunohistochemistry

The following primary antibodies were used: rabbit anti-cleaved Caspase-3

(1/100) (Cell Signaling Technology, Danvers, MA, USA), mouse anti-Serpent

(1/1,000) (Pastor Pareja), rabbit anti-draper (1/500) (Marc Freeman), mouse

anti-Nimrod (1/500) (István Andó), and mouse anti-Par3 (1/10) (Alberto Ferrus).

The following secondary antibodies were used: Alexa Fluor donkey anti-

rabbit 555 (1:250) (Invitrogen), Alexa Fluor donkey anti-mouse 555 (1:250)

(Invitrogen), and Alexa Fluor donkey anti-mouse 647 (1:250) (Invitrogen).

Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine tri-

phosphate (dUTP)-nick end labeling (TUNEL; Roche, Indianapolis, IN, USA)

assay was performed as previously described (Udan et al., 2003), complemen-

tary to cleaved Caspase-3 staining. All images were obtained with a LEICA

TCS-SP2-AOBS.

Quantifications

The number of GFP-positive cloneswas quantified in all the discs using Image-

J A 1.44a software. For the number of active Caspase-3-positive cells, wing

pouch area wasmarked in Photoshop CS3 Extended, and Caspase-3-positive

dots were counted by using the Counter tool. Quantifications of experiments

shown in Figures 2B, 2C, and Figures 6K were made taking into account

only apical active Caspase-3-positive cells. The rest of the quantifications

(Figures 1D, 1S, 6J, and 6O) were made using maximal projections of

wing imaginal discs (therefore, considering both apical and basal active

Caspase-3-positive cells). Averages and SEMwere calculated for the different

time points (24, 48, and 72 hr). All error bars represent SEM. Statistical signif-

icance was calculated with the Student’s t test. All statistical analyses were

performed using GraphPad Prism 5 (GraphPad Software).
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Gay, E. Baehrecke, J. Minden, and the Bloomington and Vienna VDRC stock

centres for material. We also thank M. Freeman, I. Andó, and A. Ferrus for
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