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a b s t r a c t

This work aims at developing an efficient method to compute the compliance due to a crack modeled as a
flat ellipsoid of any shape in an infinite elastic matrix of arbitrary anisotropy (Eshelby problem) when no
closed-form solution seems currently available. Whereas the solution of this problem usually requires the
calculation of the so-called fourth-order Hill polarization tensor if the ellipsoid is not singular, it is shown
that the crack compliance can be derived from the first-order term in the Taylor expansion of the Hill ten-
sor with respect to the smallest aspect ratio of the ellipsoidal inclusion. For a 3D ellipsoidal crack model,
this first-order term is expressed as a simple integral thanks to the Cauchy residue theorem. A similar
method allows to express the same term in the case of a cylindrical crack model without any integral.
A numerical example is finally treated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of cracks at any scale of a continuous medium can
considerably affect the physical properties of the latter, for in-
stance the permeability, the thermal or electrical conductivities
or the mechanical properties on which this paper focuses more
particularly. The determination of the macroscopic behavior of a
cracked medium has been a topic of great interest in the last dec-
ades. In order to satisfy the basic assumptions of scale separation
allowing to implement an homogenization method, two types of
fracture networks are often considered: the case of a dense net-
work of large joints cross-cutting the r.v.e. (representative volume
element) (Maghous et al., 2008) or the case of micro-cracks much
smaller than the size of the r.v.e. The present paper deals with the
calculation of the mechanical effect of this second type of cracks.
An abundant literature is devoted to the modeling of a medium
with pervasive micro-cracks considering various characteristics
of the latter, whether they are open or closed non-frictional
(Kachanov, 1992, 1993; Leblond, 2000; Pensée et al., 2002; Dormi-
eux et al., 2006), frictional (Leguillon and Sanchez-Palencia, 1982;
Kachanov, 1982; Andrieux et al., 1986), dilatant (Barthélémy et al.,
2003; Marmier et al., 2007), propagating (Kachanov, 1982; Gam-
barotta and Lagomarsino, 1993; Barthélémy, 2005; Zhu et al.,
2007), dry or fluid filled (Deudé et al., 2002; Pensée et al., 2002)
or combining several characteristics in the cited papers and many
others.

It has been shown that, in the elastic framework, the contribu-
tion to the overall behavior of any crack family in an elastic solid
ll rights reserved.
phase simply arises as an additional compliance (Kachanov,
1993; Schoenberg and Sayers, 1995). This is also the case for fric-
tional cracks in an incremental formulation (Barthélémy et al.,
2003; Marmier et al., 2007). The determination of this additional
compliance can be obtained by homogenization methods allowing
to estimate the relative displacement of the crack lips when the
r.v.e. is loaded. Many of them are based on the solution of the aux-
iliary problem of a single open crack embedded in an infinite ma-
trix with boundary conditions defined either on the crack lips or by
a remote strain or stress state. Closed-form solutions of this prob-
lem can be obtained by the theory of fracture mechanics under the
assumption of isotropy of the matrix (Bui, 1978; Nemat-Nasser and
Hori, 1999; Leblond, 2003). Alternatively, the Eshelby problem
Eshelby (1957) considering a flat ellipsoidal inclusion as a crack
representation in an infinite elastic matrix also provides the strain
state, i.e. the displacement jump across the crack lips (Budiansky
and O’Connell, 1976; Mura, 1987; Nemat-Nasser and Hori, 1999).

In the Eshelby problem, the strain state is uniform within the
ellipsoidal inclusion whatever its aspect ratios. The concentration
tensor which relates the inclusion strain tensor to the remote
boundary condition (stress or strain tensor) writes by means of
the fourth-order Hill polarization tensor (Hill, 1965; Zaoui, 2002).
The latter only depends on the shape of the inclusion and on the
stiffness of the surrounding matrix and writes as a double integral
(Faivre, 1971; Mura, 1987). Only some special cases of matrix
anisotropy and inclusion shape allow to derive closed-form expres-
sions of this tensor (Mura, 1987; Pouya, 2000; Suvorov and Dvorak,
2002; Pouya and Zaoui, 2006). For a fully anisotropic matrix and
any ellipsoidal shape of the inclusion, it is necessary to resort to
a numerical evaluation of the double integral (Ghahremani,
1977; Gavazzi and Lagoudas, 1990; Chen, 1993; Chen and Lin,
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Fig. 1. Ellipsoidal crack.
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1993). After recalling several cubature methods already used by
other authors, Masson (2008) presents a new complete procedure
to speed up the calculation thanks to the Cauchy theory of residues
allowing to reduce the double integral to a single one. This theorem
has also been recently applied in Fritsch et al. (2006) for a prolate
inclusion and in Gruescu et al. (2005) for a 2D crack in an orthotro-
pic matrix.

The case of an open flat inclusion is slightly different because
the combination of a geometrical singularity (flat domain) with a
physical singularity (infinite compliance) induces large strain in
the vicinity of the crack. Consequently, the problem should be con-
sidered in an incremental form. Besides, the additional macro-
scopic compliance due to the cracks can be explicitely obtained
for simple cases of material symmetries (Laws, 1977; Laws,
1985; Nemat-Nasser and Hori, 1999) but not for the general aniso-
tropic case. This paper presents a method allowing to numerically
compute this additional compliance in the full anisotropic case.
The computation requires a Taylor expansion of the Hill tensor
up to the first order with respect to the aspect ratio. A procedure
similar to that of Masson (2008) is implemented to compute the
first order of this expansion also appearing as a double integral
(Huang and Liu, 1998). The solution of Gruescu et al. (2005) in
2D is retrieved and extended to the full anisotropic 3D case. A
r.v.e. containing two crack families is finally considered and
numerical computations are presented.

2. Macroscopic crack compliance

2.1. Definition of the macroscopic crack compliance in a r.v.e.

Consider a r.v.e. X made up with a matrix phase occupying the
domain Xs and N families of cracks. The ith family (domain Xi) con-
tains a large number of cracks which are similar up to a translation.
This means that a family gathers cracks having the same shape and
orientation. As regards the shape, cracks constitute degenerate
geometrical objects since one dimension is very small compared
to the others. They can therefore be modeled either as surfaces
allowing displacement discontinuities or as three-dimensional ob-
jects. This last point of view allows to treat cracks as any volume
inclusion and thus to define their volume fraction fi, which can
be considered as infinitesimal. More precisely it writes as the prod-
uct of a finite density and the infinitesimal ratio between the aper-
ture (smallest dimension) and the characteristic length of the crack
surface.

Whatever the conditions applied on the r.v.e. boundary, either
uniform stress or strain rate condition (Zaoui, 2002), the consis-
tency rules imply the following relationships between the macro-
scopic and microscopic stress and strain rates:

_R ¼ h _riX ¼ 1�
XN

i¼1

fi

 !
h _riXs þ

XN

i¼1

fih _riXi ð1Þ

D ¼ hd iX ¼ 1�
XN

i¼1

fi

 !
hdiXs þ

XN

i¼1

fihdiXi ð2Þ

where h�iXa denotes the volume average over the domain Xa. Since
the stress rate is zero within the crack domain (or at least bounded
if the crack is not open) and the volume fractions fi are infinitesimal,
the macroscopic stress rate (1) becomes

_R ¼ h _riXs ð3Þ

The macroscopic strain rate (2) is composed of the solid phase con-
tributions and the crack ones. The latter cannot be neglected be-
cause, despite the infinitesimal character of the volume fractions,
some components of hdiXi are expected to tend towards infinity,
so that the product fihdiXi tends towards finite values. Moreover,
the linearity of all equations at stake in the elasticity problem im-
plies that this product can be linearly related to the macroscopic
stress rate

fihdiXi ¼ si : _R ð4Þ

The tensor si appearing in (4) is called the crack compliance but
there should not be any confusion with the compliance that could
be conferred to the material occupying the crack domain. For in-
stance, in the case of an open empty crack, the compliance within
the crack is infinite whereas si is finite and depends on the sur-
rounding material. Finally, the combination of (2)–(4) and the con-
stitutive law of the matrix of compliance ss allows to get the
additive decomposition of the macroscopic compliance (Kachanov,
1993; Schoenberg and Sayers, 1995):

D ¼ Shom : _R with Shom ¼ ss þ
XN

i¼1

si ð5Þ

The aim of any homogenization scheme will then consist in provid-
ing estimates or even bounds for the tensors si (Zaoui, 2002). As the
following developments will concern each crack family separately,
the reference to the index i will be omitted.

2.2. Eshelby problem

Some schemes are based on the solution of the Eshelby problem
(Eshelby, 1957). The latter consists of an ellipsoidal inclusion
embedded in an infinite reference medium of stiffness c submitted
to a stress rate _R1 as a remote boundary condition. The strain and
stress rates are shown to be uniform in the inclusion. Considering
an auxiliary Eshelby problem for each phase composing the actual
r.v.e., those uniform tensors can eventually be used as estimates of
the strain or stress rate averages in the r.v.e. provided that the ref-
erence medium stiffness c be adequately chosen with respect to
the microstructure (Zaoui, 2002). The relationship between _R1

and the stress rate applied on the r.v.e. _R is determined by (3), in
which the average over the solid phase is also estimated by an aux-
iliary problem.

The crack is represented by a flat ellipsoid. Many studies are
based upon the assumption of a circular shape in the crack plane
(flat spheroid in 3D) for mathematical convenience. However, to
take into account anisotropic crack extensions, an ellipse should
be more realistic, as proved by stereological studies (Zhang et al.,
2002), and would still be convenient for the method developed
hereafter. The ellipsoid radii are denoted by a; b; c with a P b� c
and the following aspect ratios are introduced:

x ¼ c
a
� 1; g ¼ b

a
; q ¼ c

b
¼ x

g
ð6Þ

The general crack model requires here that x� 1 but two cases can
be considered depending on the order of magnitude of g. On the one
hand, the model corresponds to a 3D ellipsoidal crack if g remains
of the order of magnitude of 1, which means that x is still the as-
pect ratio governing the crack aperture (see Fig. 1). On the other
hand, it corresponds to a cylindrical crack if g� 1 (see Fig. 2). It
can also be interpreted as a 2D crack model in the plane perpendic-



Fig. 2. Cylindrical crack.
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ular to the axis of the cylinder. The crack aperture is then controlled
by the aspect ratio q. The orientation is characterized by an orthog-
onal frame of R3, including the normal n of the crack plane and the
major l and minor m axes in the plane such that the equation of the
ellipsoid writes

kA�1 � xk 6 1 with

A�1 ¼ 1
a l� lþ 1

g m�mþ 1
x n� n

� �
3D crack

A�1 ! 1
b ðm�mþ 1

q n� nÞ
cylindrical crack

8>>>>><>>>>>:
ð7Þ

The general solution of the strain rate within the ellipsoidal inclu-
sion embedded in an infinite medium of stiffness c writes (Zaoui,
2002)

d ¼ k�1 : _R1 with k ¼ c� c : P : c ð8Þ

where the so-called Hill polarization tensor P only depends on c

and A. This tensor can be expressed using the Green function of
the infinite medium (Zaoui, 2002) or by means of an integral over
the unit sphere at the end of a reasoning involving the Fourier
transform of the Green function. In fact, two such integral expres-
sions can be written, one being deduced from the other by a simple
change of variable (Mura, 1987):

P ¼ det A

4p

Z
knk¼1

CðnÞ
kA � nk3 dSn ¼

1
4p

Z
kfk¼1

CðA�1 � fÞdSf ð9Þ

with the operator

CðnÞ ¼ n�
s

K�1�
s

n with KðnÞ ¼ n � c � n ð10Þ

It is worth noting that the operator C is homogeneous of degree 0,
which means CðknÞ ¼ CðnÞ for all k–0. Furthermore, it comes from
(7) that limx;q!0CðA�1 � fÞ ¼ CðnÞ (x or q applies for respectively
3D and cylindrical crack models) and therefore, using the second
expression of P in (9), that limx;q!0P ¼ CðnÞ. Introducing this limit
in (8), it follows that

lim
x;q!0

k ¼ ko ¼ c� c : CðnÞ : c

¼ c� ðc � nÞ � ðn � c � nÞ�1 � ðn � cÞ ð11Þ

The operator ko in (11) is obviously singular and its kernel is given
by

ker ko ¼ spanðn�
s

l;n�
s

m;n� nÞ ð12Þ

The singularity of ko implies that some components of d in (8) tend
towards infinite values. Nevertheless, as already stated in particular
cases by some authors (Laws, 1977; Nemat-Nasser and Hori, 1999;
Dormieux et al., 2006), the relevant quantity that could be used to
build the estimate (4) (up to a density factor) is not d but the prod-
uct xd (qd for a cylindrical crack) and thus the following limit:

lim
x!0

xd ¼ H : _R1 where H ¼ lim
x!0

xk�1 ¼ lim
x!0

xðc� c : P : cÞ�1

ð13Þ
where x is replaced by q for a cylindrical crack. Another point of
view could be to observe that xd (resp. qd) can be related to the
average velocity jump between the crack lips if the crack is repre-
sented by a discontinuity surface S (resp. line L in a plane perpen-
dicular to a cylindrical crack). Indeed, thanks to the theory of
distributions, the consistency between the volume and the discon-
tinuity surface models allows to write locally the contribution of the
strain rate of the crack as

d ¼ sut�
s

ndS ð3DÞ; d ¼ sut�
s

ndL ð2DÞ ð14Þ

where dS (resp. dL) denotes the surface (resp. line) Dirac distribu-
tion over S (resp. L) and sut the velocity jump. Recalling that, in
the Eshelby problem, the strain rate is uniform within the ellipsoid,
the integration of (14) finally gives

xd ¼ 3
4ag

R
S

sutdS
pa2 �

s
n ð3DÞ; qd ¼ 2

pb

R
L

sutdl
2b

�
s

n ð2DÞ ð15Þ

The tensor H in (13) can be given the status of crack compliance in
the Eshelby problem.

2.3. Computation of the crack compliance in the Eshelby problem

This paragraph aims at presenting a method allowing the effec-
tive computation of the tensor H (13) in the anisotropic case, i.e.
when closed-form expressions cannot be easily obtained. The fol-
lowing developments will be done in the context of a 3D crack
but they can apply to a 2D crack by replacing x by q. The proce-
dure starts from the Taylor expansion of P (9) with respect to
the aspect ratio:

P ¼ CðnÞ �xPþ o xð Þ ð16Þ

The determination of the tensor P will be the object of the next sec-
tion. The present paragraph focuses on its role in the calculation of
H. Inserting (16) in (13) allows to write

H ¼ lim
x!0

xðko þxk1Þ�1 with k1 ¼ c : P : c ð17Þ

The limit (17) can now be calculated by a block matrix reasoning.
First, it is recalled that the vector space of symmetric second-order
tensors is spanned by the basis composed of the six tensors:

B ¼ ðl� l;m�m;
ffiffiffi
2
p

l�
s

m;
ffiffiffi
2
p

n�
s

l;
ffiffiffi
2
p

n�
s

m;n� nÞ ð18Þ

Consequently, any fourth-order tensor having the minor symme-
tries and thus seen as an operator acting on symmetric second-or-
der tensors can be represented by a square matrix of R6 in this
basis. Furthermore, this matrix can be decomposed in four square
block matrices of R3 according to the order in which the six tensors
have been enumerated in (18). Adopting this convention, (12)
shows that only the top left block of ko has non-zero terms and
the following decomposition in block matrices of R3 is adopted:

Matðko;BÞ ¼
X 0
0 0

� �
; Matðk1;BÞ ¼

Y11 Y12

Yt
12 Y22

� �
ð19Þ

where X and Y22 are invertible matrices of R3. The limit (17) finally
comes from the following result:

lim
x!0

x
X 0
0 0

� �
þx

Y11 Y12

Yt
12 Y22

� �� ��1

¼
0 0
0 Y�1

22

� �
ð20Þ

This result, proved in Section A, can easily be numerically imple-
mented. If k1 is seen as a quadratic form applying on symmetric
second-order tensors, (20) shows that only the restriction of k1 to
the subspace spanned by n�

s
l; n�

s
m and n� n plays a role in the

computation of H.
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3. Taylor expansion of the Hill polarization tensor

Some authors have shown that the numerical evaluation of the
Hill polarization tensor P using one of the integrals of (9) is all the
more costly than the aspect ratio is small (Gavazzi and Lagoudas,
1990; Masson, 2008). Nevertheless, it has been put in evidence in
the previous section that the estimate of the concentration tensor
for a crack does not require the full tensor P but the term of the first
order P in its Taylor expansion with respect to the aspect ratio (16).
This tensor has been analytically determined only in a few cases: for
a penny-shaped crack in an isotropic matrix (Nemat-Nasser and
Hori, 1999; Pensée et al., 2002), in the symmetry plane of a trans-
versely isotropic matrix (Laws, 1977; Laws, 1985; Mura, 1987) or
more recently in 2D for an arbitrarily oriented crack in an orthotro-
pic matrix (Gruescu et al., 2005). This section aims at presenting a
method allowing a numerical evaluation of P for any ellipsoidal
crack in a matrix of arbitrary anisotropy. This tensor can be used
to compute the crack compliance in the Eshelby problem by the
method presented in Section 2.3 or simply to estimate the Hill tensor
up to the first order with respect to the aspect ratio (16).

3.1. 3D crack model

This paragraph focuses on a 3D crack of the type of Fig. 1. Let us
identify P from the first integral form of (9) in which the following
parametrization of the unit sphere is adopted:

n ¼ sin hðtnþ u/Þ with u/ ¼ cos /lþ sin /m and t ¼ cot h ð21Þ

Exploiting the properties of C (10), the Hill tensor can then be writ-
ten in the form (see Section B for a complete proof)

P ¼ CðnÞ þxg
8p

Z 2p

/¼0

Z þ1

t¼�1

� Lðt;/Þ
ðx2t2 þ cos2 /þ g2 sin2 /Þ3=2 dt d/ ð22Þ

with

Lðt;/Þ ¼ Cðtnþ u/Þ þ Cð�tnþ u/Þ � 2CðnÞ ð23Þ

The application of the dominated convergence theorem on the inte-
gral term of (22) when x tends towards 0 shows then that P can be
identified as

P ¼ g
8p

Z 2p

/¼0

Rð/Þ
ðcos2 /þ g2 sin2 /Þ3=2 d/ with

Rð/Þ ¼ �
Z þ1

t¼�1
Lðt;/Þdt ð24Þ

where Rð/Þ in (24) is convergent. This can be shown using the clas-
sical decomposition of K (Ting, 1996; Masson, 2008)

Kðt;/Þ ¼ t2Q þ tSþ T with
Q ¼ n � c � n
S ¼ n � c � u/ þ u/ � c � n
T ¼ u/ � c � u/

8><>: ð25Þ

and eventually the expression of C as a rational fraction with poly-
nomial numerator and denominator both of degree 6 with respect
to the variable t:

Cðtnþ u/Þ ¼
p/ðtÞ
q/ðtÞ

with

p/ðtÞ ¼ ðtnþ u/Þ�
s eK ðt;/Þ�s ðtnþ u/Þ

¼
P6

i¼0p
i
/ti

q/ðtÞ ¼ det Kðt;/Þ ¼
P6

i¼0qi
/ti

8>><>>:
ð26Þ

where eK is the tensor of cofactors of K which are polynoms of t of
degree 4. Observing that CðnÞ ¼ p6

/=q6
/ and using (26), it is straight-
forward to show that Lðt;/Þ (23) can write as a rational fraction
with a numerator of degree 10 and a denominator of degree 12 with
non-real roots, which ensures that Rð/Þ (24) converges. For practi-
cal implementation, the expressions of the coefficients pi

/ and qi
/

can be found in Masson (2008). For a given value of /, the three
complex roots of q/ðzÞ with a positive imaginary part are denoted
by z1; z2 and z3. If the latter are distinct, Cðznþ u/Þ and Lðz;/Þ can
be decomposed in the following elementary fractions:

Cðznþ u/Þ ¼ CðnÞ þ
X3

i¼1

ai

z� zi
þ �ai

z� �zi
with

ai ¼ ResðCðznþ u/Þ; ziÞ ¼
p/ðziÞ
q0/ðziÞ

ð27Þ

and

Lðz;/Þ ¼
X3

i¼1

ai

z� zi
� ai

zþ zi
þ

�ai

z� �zi
�

�ai

zþ �zi
ð28Þ

where Resðf ; zoÞ denotes the residue of the function f at point zo. The
decomposition (28) shows once again that Lðz;/Þ varies as 1=z2

when jzj tends towards infinity, as another proof of the convergence
of Rð/Þ (24). Moreover, the only poles of positive imaginary part of
Lðz;/Þ are zi and ��zi. Hence, by a classical application of the Cauchy
residue theorem, Rð/Þ and P are expressed as

Rð/Þ ¼ 4p
X

Im zi>0

ImRes Cðznþ u/Þ; zi
	 


¼ 4p
X

Im zi>0

ImRes
p/ðzÞ
q/ðzÞ

; zi

 !
ð29Þ

and

P ¼ g
2

Z 2p

/¼0

P
Im zi>0ImRes p/ðzÞ

q/ðzÞ
; zi

� �
ðcos2 /þ g2 sin2 /Þ3=2 d/ ð30Þ

The evaluation of P is finally achieved by applying a quadrature
algorithm on the integral over / (30) (gaussian quadrature, New-
ton–Cotes formula, etc.).

In the case of double or triple roots of q/ðzÞ occurring in pres-
ence of material symmetries, (29) and (30) still apply with a sum-
mation over the single, two or three roots of q/ðzÞ of positive
imaginary part but the expression of the residue of a double or tri-
ple pole is given by

q/ðzÞ ¼ ðz� ziÞnrðzÞ; rðziÞ–0 ) Res
p/ðzÞ
q/ðzÞ

; zi

 !

¼ 1
ðn� 1Þ!

dn�1

dzn�1

p/ðzÞ
rðzÞ

� �
jz¼zi

ð31Þ

However, for some cases of material symmetries at the origin of
double or triple roots (Masson, 2008), the present procedure may
be inadequate since closed-form solutions may already exist (Laws,
1977; Laws, 1985; Nemat-Nasser and Hori, 1999). By the way, in
the case of a flat spheroid aligned with the isotropy plane of a trans-
verse isotropic matrix, (30) leads to the same closed-form solution
as that obtained in Laws (1985) (see Section C).

Another expression of P, coming from an integration by parts of
the first integral of (9), can be found in Huang and Liu (1998)

P ¼ � g
4p

Z 2p

/¼0

Z 1

x¼�1

xffiffiffiffiffiffiffiffi
1�x2
p @G

@x ðx;/Þ
ðcos2 /þ g2 sin2 /Þ3=2 dxd/

with Gðx;/Þ ¼ Cðxnþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

u/Þ ð32Þ

The integrand in (32) shows some singularities in x ¼ �1 and
may not be convergent in the neighborhood of these two bounds
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considered separately. So as to ensure the convergence at both
x ¼ �1 and x ¼ 1, a better writing should be to replace @G

@x ðx;/Þ by
@G
@x ðx;/Þ � @G

@x ð�x;/Þ
	 


=2. The integrand remains singular but be-
haves as a function of finite integral at each bound of x. Whereas
some cubature algorithm such as Espelid and Genz (1994) could
be used to perform the double integral of such a singular integrand,
it is worth remarking that the change of variable t ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

leads to (24) and thus to (30). As a single integral, the latter is far
more efficient in terms of CPU time.

3.2. Cylindrical crack model

The crack is considered here as a flat cylinder (see Fig. 2). When
the axis of the cylinder is aligned with a material symmetry axis,
the closed-form solution of Gruescu et al. (2005) should be used.
If the cylinder is arbitrarily oriented, the following generalizing
procedure can be considered.

First, P is conveniently expressed by means of the second inte-
gral of (9) with A�1 written in (7) for a cylindrical crack. Using the
polar angle w in the plane spanned by n and m as integration
parameter and the change of variable t ¼ tan w=q; P becomes
(Masson, 2008)

P ¼ 1
p

Z p
2

w¼�p
2

C
tan w

q
nþm

� �
dw ¼ q

p

Z þ1

t¼�1

CðtnþmÞ
1þ ðqtÞ2

dt ð33Þ

Following a reasoning similar as that of the 3D case, (33) is rear-
ranged in

P ¼ CðnÞ þ q
2p

Z þ1

t¼�1

Lðt;p=2Þ
1þ ðqtÞ2

dt ð34Þ

with Lðt;/Þ already defined in (23). Here again, Lðt;p=2Þ is preferred
to the simple difference CðtnþmÞ � CðnÞ in (34) because the inte-
gral of the latter diverges whereas that of Lðt;p=2Þ converges,
behaving as 1=t2 when jtj tends towards infinity. This remark is of
major interest for an application of the dominated convergence the-
orem on the integral in (34) leading to

P ¼ � 1
2p

Z þ1

t¼�1
Lðt;p=2Þdt ð35Þ

It follows that the tensor P of a cylindrical crack is directly related
to Rð/Þ defined in (24) for the particular value / ¼ p=2. Hence, the
reasoning leading to the evaluation (29) of R can be reproduced
here and thus P simply writes

P¼Rðp=2Þ
2p

¼2
X

Imzi>0

ImResðCðznþmÞ;ziÞ¼2
X

Imzi>0

ImRes
pp=2ðzÞ
qp=2ðzÞ

;zi

 !
ð36Þ

The evaluation of P is straightforward here and does not require
any quadrature method. In Section D, (36) is shown to be consistent
with a first order Taylor expansion with respect to the aspect ratio
of the 2D Hill tensor expressed in Masson (2008). Moreover, (36)
also corresponds to the extension to arbitrary anisotropy of the for-
mulation provided in Gruescu et al. (2005) in the framework of an
orthotropic medium. This last reference highlights in particular that
(36) allows to derive the analytical expressions of Laws (1977)
when the crack is aligned with the orthotropy axes.

4. A numerical illustration of the effect of cracks in an
anisotropic matrix

This section is devoted to an application of the preceding results
in the case of two orthogonal families of aligned open cracks
embedded in an anisotropic matrix. The first family of cracks is
such that the normal is oriented along the axis 3, the aspect ratio
in the crack plane is g1 ¼ 1=2 and the major axis is oriented along
the axis 1, i.e. ðl1;m1;n1Þ ¼ ðe1; e2; e3Þ. The characteristics of the sec-
ond family are ðl2;m2;n2Þ ¼ ðe3; e2; e1Þ and g2 ¼ 1=2.

A Mori–Tanaka scheme (Mori and Tanaka, 1973) is applied to
this cracked medium. This scheme consists in estimating the con-
tribution of each crack family to the macroscopic strain rate by
means of Eshelby problems in which the reference medium is
the matrix itself of stiffness cs and the remote stress rate is the
macroscopic one applied on the r.v.e. The stiffness of the matrix
is represented by the following matrix in the basis
E ¼ ðe1 � e1; e2 � e2; e3 � e3;

ffiffiffi
2
p

e2�
s

e3;
ffiffiffi
2
p

e3�
s

e1;
ffiffiffi
2
p

e1�
s

e2Þ (Kelvin
notation)

ð37Þ

The application of (30) on each family yields the following P ten-
sors represented in the local frames Fi ¼ ðli � li;mi �mi;ni � ni;ffiffiffi

2
p

mi �
s

ni;
ffiffiffi
2
p

ni�
s

li;
ffiffiffi
2
p

li�
s

miÞ

ð38Þ

and

ð39Þ

Subsequently, the compliance H tensors defined in (13) and (17) are
computed according to the limit (20) and write in the local frames

ð40Þ

and

ð41Þ

The matrices (40) and (41) illustrate the crucial role of the orienta-
tion of the crack with respect to the surrounding material if the lat-
ter is anisotropic. Indeed, the two crack families have the same
shape but different orientations. In the present case, the second
family shows a higher compliance in the direction of its normal
n2, i.e. along the axis 1. Moreover, unlike materials of higher sym-
metries, the crack compliances have non-zero components out of
the diagonal, thus inducing sliding in a traction experiment in the
normal direction or dilatancy in a pure shear experiment along
the crack plane.
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According to the Mori–Tanaka scheme, the macroscopic stiff-
ness of the cracked medium is estimated by (5) together with (4)
and (13)

Chom ¼ ss þ 4
3
p�1g1H1 þ

4
3
p�2g2H2

� ��1

ð42Þ

in which �i denotes the Budiansky density of the ith family, namely
�i ¼Nia3

i where Ni is the number of cracks per volume unit and ai

the major radius. In Fig. 3, the evolutions of some components of
Chom are plotted against the total density �, given that each family
has the same density �i ¼ �=2.
5. Conclusion

After recalling that crack families in an elastic matrix manifest
themselves at the macroscopic scale by additional compliances,
the paper focused on the Eshelby problem of a single ellipsoidal
or cylindrical crack embedded in an infinite matrix on which are
based many homogenization schemes. In this problem, it was
shown that the crack compliance, expressed as a limit when the as-
pect ratio tends towards zero, could easily be computed from the
first-order term in the Taylor expansion of the Hill polarization
tensor with respect to the crack aspect ratio. The second part of
the work consisted in providing an optimized method to compute
this first-order term. The latter was first written as a double inte-
gral for a 3D ellipsoidal crack and as a single integral for a cylindri-
cal crack. The application of the Cauchy residue theorem, inspired
from Masson (2008), allowed then to reduce respectively the dou-
ble integral to a single one adapted for quadrature algorithms and
the single integral to a simple expression. In both cases, the com-
putation only required to compute the roots of positive imaginary
part of a sextic polynom built as the determinant of the acoustic
tensor.
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Appendix A. Proof of the limit (20)

The following block matrix limit is considered:

M ¼ lim
x!0

x
X 0
0 0

� �
þx

Y11 Y12

Yt
12 Y22

� �� ��1

ðI:1Þ

where X and Yij are square matrices of R3. Moreover X and Y22 are
assumed invertible. Simple algebraic calculations on (I.1) lead to
Fig. 3. Evolution of the normalized macroscopic moduli with the crack densit
M ¼ lim
x!0

x
X 0
0 xY22

� �
þx

Y11 Y12

Yt
12 0

� �� ��1

ðI:2Þ

¼ lim
x!0

xX�1 0
0 Y�1

22

 !
I þ

Y11 Y12

Yt
12 0

� �
xX�1 0

0 Y�1
22

 !" #�1

ðI:3Þ

Applying the limit on (I.3), M successively becomes

M¼
0 0
0 Y�1

22

� �
Iþ

Y11 Y12

Yt
12 0

� �
0 0
0 Y�1

22

� �� ��1

ðI:4Þ

¼
0 0
0 Y�1

22

� �
Iþ 0 Y12Y�1

22

0 0

 !" #�1

¼
0 0
0 Y�1

22

� �
I� 0 Y12Y�1

22

0 0

 !" #
ðI:5Þ

¼
0 0
0 Y�1

22

� �
ðI:6Þ

which achieves the proof of (20).

Appendix B. Proof of the expression (22), (23)

Subtracting the constant tensor CðnÞ to P in (9) gives

P� CðnÞ ¼ det A

4p

Z
knk¼1

CðnÞ � CðnÞ
kA � nk3 dSn

¼ 1
4p

Z
kfk¼1
ðCðA�1 � fÞ � CðnÞÞdSf ðII:7Þ

Thanks to the properties of C (10) and the parametrization (21), the
first expression of (II.7) becomes

P� CðnÞ ¼ xg
4p

Z 2p

/¼0

Z p=2

h¼0

� Cðcot hnþ u/Þ � CðnÞ
ðx2cot2hþ cos2 /þ g2 sin2 /Þ3=2 sin2 h

dhd/ ðII:8Þ

then, with the change of variable t ¼ cot h

P� CðnÞ ¼ xg
4p

Z 2p

/¼0

Z þ1

t¼�1

� Cðtnþ u/Þ � CðnÞ
ðx2t2 þ cos2 /þ g2 sin2 /Þ3=2 dt d/ ðII:9Þ

By the change t#� t, (II.9) can also write

P� CðnÞ ¼ xg
4p

Z 2p

/¼0

Z þ1

t¼�1

� Cð�tnþ u/Þ � CðnÞ
ðx2t2 þ cos2 /þ g2 sin2 /Þ3=2 dt d/ ðII:10Þ

The expression (22) is finally obtained as the half-sum of (II.9) and
(II.10).
y (the absolute values for � ¼ 0, i.e. uncracked matrix are given in (37)).
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Appendix C. Derivation of for a spheroid in a transverse
isotropic matrix

In this section, the procedure exposed in Section 3.1 leading to
the formula (30) is applied and adapted to the case of a flat spher-
oid ðg ¼ 1Þ embedded in a transverse isotropic matrix such that the
crack plane is aligned with the matrix isotropy plane. The latter is
spanned by the orthonormal vectors e1 and e2 whereas e3 corre-
sponds to the axis of revolution of both the spheroid and the ma-
trix stiffness.

The symmetry of revolution of the problem allows to simplify
(30) in so far as g ¼ 1 and the dependence of Cðte3 þ u/Þ (26) on
/ is very simple. Indeed, it is straightforward to show that

Cðte3 þ u/Þ ¼ R/½Cðtnþ e1Þ	 ðIII:11Þ

where R/ is a rotation operator applied on fourth-order tensors de-
fined by

R/ T½ 	ijkl ¼ XipXjqXkrXlsTpqrs with X ¼
cos / � sin / 0
sin / cos / 0

0 0 1

0B@
1CA
ðIII:12Þ

It follows from the linearity of R/ that Rð/Þ in (24) is also obtained
from Rð0Þ by the rotation (III.12). Consequently the determination
of the residues of Cðte3 þ u/Þ needed to compute Rð/Þ in (29) re-
quires here the only case / ¼ 0.

The transverse isotropy of the matrix means that c is defined by
the five independent moduli c1111; c1122; c1133; c3333 and c2323 and
is such that c1212 ¼ ðc1111 � c1122Þ=2. Hence Kðz;/ ¼ 0Þ (25) is sim-
ply represented by the following matrix in the basis ðe1; e2; e3Þ

MatðKðz;0Þ; eif gÞ¼
z2c2323þc1111 0 zðc2323þc1133Þ

0 z2c2323þc1212 0
zðc2323þc1133Þ 0 z2c3333þc2323

0B@
1CA

ðIII:13Þ

The inverse of Kðz;/ ¼ 0Þ can then be represented as a matrix with
rational polynoms as components:

MatðK�1ðz;0Þ; eif gÞ ¼

z2c3333þc2323
qðzÞ 0 � zðc2323þc1133Þ

qðzÞ

0 1
z2c2323þc1212

0

� zðc2323þc1133Þ
qðzÞ 0 z2c2323þc1111

qðzÞ

0BBB@
1CCCA

ðIII:14Þ

where qðzÞ is the quartic (not sextic here) polynom:

qðzÞ ¼ z4c3333c2323 þ z2ðc1111c3333 � 2c1133c2323 � c2
1133Þ þ c1111c2323

ðIII:15Þ

This polynom admits two pairs of non-real conjugate roots ðz1;�z1Þ
and ðz2;�z2Þ with z1 and z2 of positive imaginary part.

Because of the bi-square character of (III.15), two cases can
occur:

zu ¼ queihu ¼ icu ðu ¼ 1;2Þ

with
ð1Þ cu 2 R
þ ðhu ¼ p=2Þ
ð2Þ c2 ¼ �c1 2 C n R ðq2 ¼ q1; h2 ¼ p� h1Þ

�
ðIII:16Þ

where c1 and c2 correspond exactly to the roots defined in Laws
(1985).

The application of (29) to the present case to obtain Rð0Þ from
the residues of Cðze3 þ e1Þ requires the calculation of the following
elementary expressions:
kk ¼
X2

u¼1

zk
u

q0ðzuÞ
¼ 1

c3333c2323jz1 � �z2j2
zk

1

z1 � �z1
þ zk

2

z2 � �z2
� zk

2 � zk
1

z2 � z1

� �
;

0 6 k 6 4 ðIII:17Þ

After straightforward calculations taking (III.16) into account, the kk

coefficients write

k0 ¼ il0 with l0 ¼ �
1

2c3333c2323

1
c1c2ðc1 þ c2Þ

2 R ðIII:18Þ

k1 ¼ 0 ðIII:19Þ

k2 ¼ il2 with l2 ¼ �
1

2c3333c2323

1
c1 þ c2

2 R ðIII:20Þ

k3 ¼
1

2c3333c2323
ðIII:21Þ

k4 ¼ il4 with l4 ¼
1

2c3333c2323

c2
1 þ c1c2 þ c2

2

c1 þ c2
2 R ðIII:22Þ

Applying (29), it follows that the non-zero components of Rð0Þ
are

R1111¼�
2p

c1þc2

1
c2323

þ 1
c1c2c3333

� �
ðIII:23Þ

R1133¼
2p

c1þc2
1þc1133

c2323

� �
1

c3333
ðIII:24Þ

R3333¼
2p

c1þc2
c2

1þc1c2þc2�c1111

c2323

� �
1

c3333
ðIII:25Þ

R2323¼
p
2

ffiffiffiffiffiffiffiffiffiffi
c1212

c3
2323

s
ðIII:26Þ

R3131¼
p

2ðc1þc2Þ
c2

1þc1c2þc2þ2
c1133

c3333
� c1111

c1c2c3333

� �
1

c2323
ðIII:27Þ

R1212¼�
p
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2323c1212
p ðIII:28Þ

The calculation of P can eventually be obtained by applying the
integration over / (24) in the particular case of g ¼ 1 and Rð/Þ de-
duced from Rð0Þ by the rotation R/ (III.12). The symmetry of the
problem obviously implies that P is a transverse isotropic tensor
defined by the following components:

P1111 ¼
3R1111 þ 4R1212

32

¼ � p
16

3
c1 þ c2

1
c2323

þ 1
c1c2c3333

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2323c1212
p

� �
ðIII:29Þ

P1122 ¼
R1111 � 4R1212

32

¼ p
16
� 1

c1 þ c2

1
c2323

þ 1
c1c2c3333

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2323c1212
p

� �
ðIII:30Þ

P1133 ¼
R1133

8
¼ p

4ðc1 þ c2Þ
1þ c1133

c2323

� �
1

c3333
ðIII:31Þ

P3333 ¼
R3333

4

¼ p
2ðc1 þ c2Þ

c2
1 þ c1c2 þ c2 � c1111

c2323

� �
1

c3333
ðIII:32Þ

P2323 ¼ P3131 ¼
R2323 þ R3131

8

¼ p
16

1
c1 þ c2

c2
1 þ c1c2 þ c2 þ 2

c1133

c3333
� c1111

c1c2c3333

� ��
� 1

c2323
þ

ffiffiffiffiffiffiffiffiffiffi
c1212

c3
2323

s #
ðIII:33Þ

P1212 ¼
P1111 �P1122

2
ðIII:34Þ
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The expressions (III.29)–(III.34) are identical to the results obtained
by another method in Laws (1985), except that, in this last refer-
ence, the term ðc2

1 þ c1c2 þ c2Þ=ðc1c2Þ should be corrected in
ðc2

1 þ c1c2 þ c2Þ=ðc1 þ c2Þ in the Taylor expansion of the coefficient
I1.
Appendix D. Consistency between (36) and the Taylor expansion
of P in Masson (2008)

The expression of P in Masson (2008) to which (36) can be com-
pared writes with the notation of the present paper:

P ¼
pð i

qÞ
qð i

qÞ
þ 2i

q
X2

u¼1

pðzuÞ
1
q2 þ z2

u

� �
q0ðzuÞ

ðIV:35Þ

where the index p=2 on p and q, referring to the specific orientation
of the angle / for a cylindrical crack, has been omitted to simplify
the expression. It should be first emphasized that in Masson
(2008), the 2D case leading to (IV.35) involves quartic polynoms
pðzÞ and qðzÞ and not sextic polynoms as in the present paper. This
is due to the fact that (IV.35) concerns a 2D matrix, i.e. such that the
stiffness of the matrix admits the cylinder axis as a symmetry axis.
Consequently, in this particular case, Cðznþ up=2Þ actually writes as
a reduced rational fraction with polynomial numerator and denom-
inator of degree 4 in the same way as in Section C but with other
expressions since the symmetries are different.

Indeed, if the index 3 refers to the cylinder axis, the symmetry
property of c here implies that cijkl ¼ 0 if 3 appears an odd number
of times among the four indices. It follows then that the symmetric
acoustic tensor KðnÞ defined in (10) is such that K13 ¼ K23 ¼ 0 since
n3 ¼ 0. Therefore, it is straightforward to deduce that the sextic
polynoms pp=2 and qp=2 of the general case have here a pair of con-
jugate roots in common, say ðz3;�z3Þ, which allows to reduce them
to the quartic polynoms of Masson (2008). Thus, the summation
in (36) concerns only two poles since the third root of positive
imaginary part is not a singularity anymore.

A Taylor expansion of (IV.35) to the first order with respect to q
gives

P¼ p4

q4|{z}
CðnÞ

�q 2
X2

u¼1
Im

pðzuÞ
q0ðzuÞ

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P

þiq 2
X2

u¼1
Re

pðzuÞ
q0ðzuÞ

� �
�p3

q4
þq3p4

q2
4

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U

þOðq2Þ

ðIV:36Þ

The two first terms of the right hand side of (IV.36) correspond to
(36). It is then necessary to show that the third term, i.e. the one in-
side the brackets U, is null. A simple argument could be to recall
that P is real as well as U. The factor i before the latter allows then
to conclude that U is actually null and the consistency between (36)
and (IV.35) is satisfied. Another proof could also come from the
following elementary algebraic results which can easily be obtained
from calculations similar to those leading to III.17 and (III.18)–
(III.22) (adapted to the case of a quartic but not bi-square
polynom q):

qðzÞ ¼ q4

Y2

u¼1

ðz� zuÞðz� �zuÞ;

q4 2 R )

Re
P2
u¼1

za
u

q0ðzuÞ ¼ 0; 8a 2 0;1;2f g

Re
P2
u¼1

z3
u

q0ðzuÞ ¼
1

2q4

Re
P2
u¼1

z4
u

q0ðzuÞ ¼
Reðz1þz2Þ

q4
¼ � q3

2q2
4

8>>>>>>>><>>>>>>>>:
ðIV:37Þ
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