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Abstract

Inverse methods offer a powerful tool for the identification of elasto-plastic material properties of metals. The basic
principle of the inverse method we are studying, is to compare an experimentally measured strain field with a strain field
computed by a finite element (FE) model. The material parameters in the FE model are iteratively tuned in such a way that
the numerically computed strain field matches the experimentally measured field as closely as possible. One of the building
blocks in this identification procedure is the optimization algorithm for the material parameters in the numerical model.
The key problem of this optimization algorithm is the determination of a sensitivity matrix, which expresses the sensitiv-
ities of the strains with respect to the material parameters. This paper presents an analytical method for the calculation of
this sensitivity matrix in the case of a tensile test with non-rotating principal axes of strain.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many companies optimise their metal forming operations by means of FE simulations, resulting in a reduc-
tion of the length and the cost of the ‘‘trial and error’’-phase. The success of a FE simulation, however, largely
depends on the accuracy of the input data, i.e. the geometry, the boundary conditions, the load distribution,
the contact properties, the material data, etc. In the case of metal forming, a good knowledge of the elasto-
plastic material properties is of the utmost importance to perform a sufficiently accurate simulation. In many
cases it can be a daunting task to characterize the mechanical behaviour of the material completely, especially
when thin sheet specimens are considered that exhibit a substantial anisotropy.

The most common way to evaluate the stress–strain relation of a material is by performing standard tensile
tests (ASTM Standard E8M-96, 1996). The shortcomings of these tests however are twofold. First of all, the
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deformation fields which are generated during these tests are homogeneous and do not resemble the complex
heterogeneous deformation fields which occur during real metal forming operations. As a result, the material
behaviour, obtained with these tests, is an approximation that in many cases appears to be insufficient to sim-
ulate a complex forming operation reliably. Second, the assumption of uniformity is no longer valid after the
onset of necking. Analytical models have been developed to take into account this necking phenomenon
(Bridgman, 1952), but are quite hard to apply in practice and are not always successful, especially for plate
specimens. Other authors have suggested to identify the post-necking behaviour by comparing the experimen-
tally measured stress-strain curve with FE simulations (Koc and S̆tok, 2004; Ling, 1996). The elasto-plastic
constitutive parameters are obtained by minimizing the difference between the FE curve and the experimental
one. This can be an adequate procedure for isotropic materials but, in order to characterize anisotropic mate-
rial behaviour, several of these standard tests are required.

Therefore, some authors (Ghouati and Gelin, 1998, 2001; Meuwissen et al., 1998; Kajberg and Lindkvist,
2004; Endelt and Nielsen, 2005) have proposed to identify the constitutive parameters based on more compli-
cated material tests. Such complex material tests can be obtained by applying complex loading conditions or
complex geometries, or by a combination of both. This procedure allows the simultaneous identification of
several material parameters. Moreover, the obtained material parameters are more realistic, since the resulting
heterogeneous deformation fields are much closer to those occurring in real (metal) forming operations. The
main problem of adopting more complicated tests in the past was always hindered by the fact that complex
displacement fields simply could not be measured. In recent years however, we have witnessed an increasing
number of important developments in the field of optical full-field measurement techniques. One of these tech-
niques is digital image correlation (DIC). DIC allows, in principle, to measure arbitrary complex (heteroge-
neous) displacement fields with relative ease (Chen et al., 1993; Synnergren and Sjoedahl, 1999). By
combining DIC with FE simulations of material tests in an inverse method, it has now become possible to
characterize the full elasto-plastic deformation behaviour under complex loading conditions with much higher
accuracy than before (Ghouati and Gelin, 1998; Ghouati and Gelin, 2001; Meuwissen et al., 1998; Kajberg
and Lindkvist, 2004). These inverse methods offer a powerful tool to identify all kinds of unknown parameters
in a numerical model, e.g. a FE model. Different implementations of inverse methods exist, but in most of
them the (material) parameters are iteratively determined by minimizing a cost function which expresses
the difference between the experimental and the computed response of the physical system under study, e.g.
by comparing displacement fields, strain fields, resonant frequencies, etc. We apply strain fields to express
the discrepancy between the experiment and the FE model.

An alternative to the latter approach is the Virtual Fields Method (Grédiac and Pierron, 2006), which is
also an inverse method. As the name of the method suggests, this approach consists of minimizing the differ-
ence between the internal and external virtual work of the system by optimizing the elasto-plastic material
parameters. A major advantage of this method is the lack of time consuming FE calculations. Although
the first results look promising, there is still much uncertainty about suitable choices for the adopted virtual
fields.

This paper will focus on the FE based inverse methods. One of the building blocks in the elasto-plastic
material parameter identification procedure is the optimization algorithm. In general, a distinction can be
made between zero-order methods, where only cost function evaluations are needed (e.g. Simplex and Monte
Carlo methods) and first-order methods, which require gradient evaluations of the cost function (e.g. Gauss–
Newton and Levenberg–Marquardt). In the case of elasto-plastic material parameter identification, the latter
approach seems to be the most efficient since this method requires far less iterations, resulting in less time-con-
suming elasto-plastic FE simulations. The most important aspect of this updating algorithm is the determina-
tion of the sensitivity matrix, which expresses the sensitivities of the strains with respect to the material
parameters. A good choice for the sensitivity matrix will give rise to less iterations and, hence, reduced calcu-
lation times.

The following paragraphs will first explain the basic principles of inverse methods, based on a first order
optimization routine. The importance of the sensitivity matrix will be demonstrated. Next, an analytical
method for the calculation of this matrix will be proposed. The analytical method presented in this paper
is restricted to the case of isotropic material behaviour and non-rotating principal axes of deformation. Other
deformation fields will be discussed in forthcoming papers.
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2. Inverse methods

The main objective of inverse methods is the determination of a selected set of unknown parameters in a
numerical model. Starting from an initial guess, these unknown parameters are estimated iteratively by com-
paring experimentally measured with numerically computed quantities (displacement (Kleinermann, 2000;
Flores, 2006) or velocity fields (Dinescu et al., 2002), resonance frequencies (Sol et al., 1996, 1997; Shi
et al., 2005), applied forces (Endelt and Nielsen, 2005), etc). If the purpose of the inverse method consists
of determining material parameters, the experiment will be some kind of material test, while the numerical
model is a FE model of that same test. The unknown parameters in the FE model are the desired mechanical
material properties, i.e. elastic constants, yield surface and hardening behavior. Fig. 1 shows the general
updating flow-chart.

Where standard material tests such as tensile tests or compression tests require uniform stress and strain
fields, inverse methods can cope with heterogeneous strain fields. Thus, inverse methods allow to identify
the unknown material parameters based on complex material tests, e.g. a biaxial tensile test. The resulting
strain fields provide much more information and, hence, allow the simultaneous identification of several mate-
rial parameters; e.g. assume that the plastic behaviour of a material can be characterized by isotropic harden-
ing and a Hill 1948 yield surface. When applying standard testing methods, at least three simple tensile tests
have to be performed to identify all unknown parameters; when applying an inverse method, only one biaxial
tensile test on a perforated cruciform specimen should be sufficient.

As was already stated, the material parameter identification is performed in an iterative way by minimizing
a cost function Cð�pÞ which expresses the discrepancy between the experimentally measured and the numeri-
cally computed strain fields. A possible expression for this cost function is a least squares formulation:
Cð�pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs

i¼1

�num
i ð�pÞ � �exp

i

�exp
i

� �2

vuut ð1Þ
with �p the parameter update column, s the number of experimental data points, �exp
i the experimentally mea-

sured strains and �num
i ð�pÞ the numerically computed strains as a function of the unknown material parameters.

The minimization of the cost function can be formally expressed by requiring that the partial derivatives of the
cost function with respect to the different material parameters are zero:
Fig. 1. Flow-chart of the inverse method for material parameter identification.
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By developing a Taylor expansion of the numerical (FEM) strains around a given parameter set, an expression
is obtained in which the difference between the last parameter values and their new estimates is given by:
�num
i ð�pÞ � �num

i ðpkÞ þ
Xm

j¼1

o�num
i ðpkÞ
opj

ðpj � pk
j Þ
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Xm

j¼1

Sk
ijðpj � pk

j Þ
ð3Þ
with pk the unknown material parameter column at iteration step k, m the number of unknown material
parameters and Sk

ij the sensitivity matrix at iteration step k. This sensitivity matrix Sij expresses the sensitivity
of the three strain components (we only consider in-plane deformation) with respect to the unknown material
parameters for all data points considered in the updating algorithm:
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ð4Þ
with n the number of geometrical data points and s = 3n (three strain values (�xx, �yy and �xy) can be measured
per geometrical data point). It should be noted that the sensitivity matrix Sij has to be recomputed at each
iteration step.

Substitution of Eq. (3) into Eq. (2) yields the updates of the unknown material parameters:
Dp ¼ ðSkT � SkÞ�1 � ðSkÞT � ð�exp � �numðpkÞÞ ð5Þ
with Dp the parameter update column, �exp the experimentally measured strain column, �numðpkÞ the numeri-

cally computed strain column as a function of the unknown material parameters at iteration step k and Sk the
sensitivity matrix at iteration step k. The above update algorithm is also known as a Gauss–Newton
algorithm.

The sensitivity matrix S can be determined in several ways. A straight forward way is by finite differentia-
tion (Ghouati and Gelin, 1997; Meuwissen et al., 1997). Finite differentiation requires computation of the
strains for small variations of each of the parameter values. This is time consuming since the number of nec-
essary FE simulations will increase linearly with the number of unknown material parameters. Another pos-
sible method is the adjoint method (Kleinermann, 2000). The code for this method must be implemented in the
FE code. This is a disadvantage for researchers with difficult access to the FE code. It is advantageous to use a
procedure that only requires the FE code as a black box. Using strain fields as experimental output in the
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inverse method, allows us to perform the material parameter identification without the need of access to the
source code of the FE software. The next paragraph describes a procedure to compute the sensitivity matrix
analytically.

3. Analytical calculation of the sensitivity matrix

3.1. Introduction

In this section, an analytical approach for the sensitivity matrix calculation will be developed. A list of sym-
bols with their explanation can be found in Appendix A.

As can be seen from Eq. (4), the goal is to calculate the derivative of the in-plane strain components with
respect to the unknown parameters of the constitutive material model. This can be easily done in the case of
elastic deformation (Lecompte et al., 2005), but can be quite difficult if non-linear plastic deformation occurs.
A major difficulty is the stress path dependency of the parameters which has to be taken into account. In order
to simplify the analytical derivation, some assumptions concerning the deformation and material behaviour
were made. These are summarized in Sections 3.2 and 3.3.

3.2. Assumptions concerning the deformation behaviour

A first assumption is that the principal axes of strain do not rotate during deformation. Second, part of the
analytical derivation is based on the fact that, during a simple tensile test, the First Piola–Kirchoff stress tensor
RI is not influenced by the material behaviour, at least as long as no necking occurs. Hence:
F ¼ ox

oX
¼ R �U ¼ V � R ¼

X3

i¼1

kiNiNi ð6Þ
with F the tensor of deformation gradients, x the vector of Eulerian (spatial) coordinates, X the vector of
Lagrangian (material) coordinates, R the rotation tensor of the polar decomposition, U (V) the right (left)
stretch tensor of the polar decomposition, ki (i = 1,2,3) the principal values of U (and V) and Ni

(i = 1,2,3) the principal directions of U. Since R = I, the principal directions of strain do not rotate and as
a result the principal axes of U and V coincide.

3.3. Material model

In the case of metals, the rate of deformation D can be split into an elastic and a plastic part:
D ¼ Del þDpl ð7Þ
The elastic part of the logarithmic strain tensor �el can be easily calculated from Hooke’s law:
r ¼ C : �el ð8Þ
with C the fourth order elastic stiffness tensor. The plastic part of the rate of deformation can be calculated by
the associated flow rule:
Dpl ¼ _k
oU
or

ð9Þ
with _k the plastic multiplier and U the yield function. In the case of rate independent plasticity, the yield sur-
face U = 0 can be a function of the Cauchy stress r, the temperature h and a set of hardening parameters Ha.
In many cases temperature dependency can be neglected and only two hardening parameters have to be con-
sidered, namely the equivalent plastic strain �pl

eq and the back stress a. Hence the yield surface U = 0 is defined
by:
U ¼ U r; a; �pl
eq

� �
¼ f ðr� aÞ � j �pl

eq

� �
¼ 0 ð10Þ
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with f a function of the Cauchy stress r and the backstress a which describes the shape and the center of
the yield surface U = 0 and j a function of the equivalent plastic strain �pl

eq which describes the size of the
yield surface. Eq. (10) can be used to represent the yield surface of an isotropic/kinematic hardening
material.

As was mentioned in the previous section, only simple tensile tests will be considered. As a result it will be
impossible to identify both hardening components. Neither is it possible to determine the shape of the yield
surface. Therefore this paper focuses on isotropic materials with isotropic hardening, following the Von Mises
flow rule:
U ¼ U r; �pl
eq

� �
¼ rdev : rdev � 2

3
r2

y ¼ 0 ð11Þ
with rdev the deviatoric part of the Cauchy stress tensor r and ry the flow stress, which is a function of the
equivalent plastic strain �pl

eq and can be described by a hardening law:
ry ¼ ry �pl
eq; qi

� �
ð12Þ
where qi is a set of independent constants which describe the relation between the flow stress ry and the equiv-
alent plastic strain �pl

eq.
The plastic multiplier _k can be derived from the consistency condition which states that the stress point

should stay on the yield surface during plastic deformation:
_U ¼ oU
or

: _rþ oU

o�pl
eq

_�pl
eq ¼ 0 ð13Þ
In the case of a Von Mises yield surface, the equivalent plastic strain rate _�pl
eq is determined as:
_�pl
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
Dpl : Dpl

q
ð14Þ
Substitution of Eqs. (9), (11), (12) and (14) in Eq. (13) finally yields an expression for the plastic multiplier _k:
_k ¼ 9rdev : _r

8r2
y

ory

o�
pl
eq

ð15Þ
In the case of a simple tensile test, the total plastic logarithmic strain �pl can be calculated by integrating the
plastic part of the rate of deformation Dpl:
�pl ¼
Z
S

Dpl dt ð16Þ
where
R
S

stands for the integral over the deformation history. Substitution of Eqs. (9), (11) and (15) in the
above equation yields:
�pl ¼
Z
S

rdev 9rdev : _rdt

4r2
y

ory

o�
pl
eq

ð17Þ
Finally the total logarithmic strain � can be calculated as:
� ¼ �el þ �pl

¼ C�1 : rþ
Z
S

rdev 9rdev : _rdt

4r2
y

ory

o�
pl
eq

ð18Þ

¼ C�1 : rþ
Z rEY

rIY

rdev 9rdev : dr

4r2
y

ory

o�
pl
eq

ð19Þ
where rIY and rEY indicate the onset and end of plastic deformation, respectively.
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3.4. Analytical derivation

The only independent parameters in the constitutive material model are the elastic constants of the fourth-
order stiffness tensor C and the constants qi of the hardening law. The sensitivity matrix contains the deriv-
atives of the in-plane strain components with respect to these independent parameters. The sensitivities with
respect to the elastic constants can be calculated quite easily (Lecompte et al., 2005) and therefore will not be
considered here. Thus, the goal is to determine the following derivative:
d�

dqi

¼ d

dqi

C�1 : rþ
Z rEY

rIY

rdev 9rdev : dr

4r2
y

ory

o�
pl
eq

0
@

1
A ð20Þ
Since C is independent of the constants qi of the hardening law, the above equation reduces to:
d�

dqi

¼C�1 :
dr

dqi

þ d

dqi

Z rEY

rIY

rdev 9rdev : dr

4r2
y

ory

o�
pl
eq

0
@

1
A

¼ d�el

dqi

þ d�pl

dqi

ð21Þ
According to Leibniz the derivative of an integral can be calculated as follows:
d

dt

Z bðtÞ

aðtÞ
gðx; tÞdx

 !
¼
Z bðtÞ

aðtÞ

ogðx; tÞ
ot

dxþ dðbðtÞÞ
dt

gðbðtÞ; tÞ � dðaðtÞÞ
dt

gðaðtÞ; tÞ ð22Þ
Hence:
d�pl

dqi
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oqi
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rIY

ð23Þ
The integration can be performed based on the stress data which is available from the FE simulation. The two
other terms of Eq. (23) can be calculated as described in the following.

In order to determine those terms, one has to calculate the sensitivity of stress at the onset and at the end of
plastic deformation due to a variation of the parameter qi. The only non-zero stress component is the longi-
tudinal stress rl, which equals the equivalent stress req. Once plastic deformation occurs, the equivalent stress
req equals the momentaneous yield stress ry. Hence, the derivative of the longitudinal stress rl with respect to
the unknown parameter qi at the onset of plastic deformation can be calculated as:
drl

dqi

¼
oryð�pl

eq; qiÞ
oqi

" #
�

pl
eq¼0

ð24Þ
In the case of small deformations, the variation of the cross-section can be neglected and all stresses can be
calculated based on the original, undeformed configuration. As a result, the stresses will be independent of
the material behaviour and the second term on the left of Eq. (23) vanishes. However, for large plastic defor-
mations, it has to be taken into account, which can be done by considering the First Piola–Kichoff stress ten-
sor RI:
RI ¼ detðFÞr:F�T ð25Þ
As long as no necking occurs the First Piola–Kirchoff stress RI is not influenced by the material behaviour.
Hence, the sensitivity of the Cauchy stress at the end of plastic deformation can be calculated as:
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dr
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dqi

ðFTÞ
� �
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� �
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ðFTÞ
� �
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dF

dqi

� �
r

� �
þ r � F�T � dFT

dqi

� �

ð26Þ
with:
dF

dqi

¼ dFT

dqi

¼
X3

j¼1

eln kj
dðln kjÞ

dqi

NjNj ð27Þ
where lnkj (j = 1,2,3) represent the principal logarithmic strains, which are also available from the FE simula-
tion. The variation of these principal logarithmic strain components with respect to the parameter qi is defined as:
dðln kjÞ
dqi

¼
d�el

j

dqi

þ
d�pl

j

dqi

ð28Þ
with �el
j (j = 1,2,3) and �pl

j (j = 1,2,3) the elastic and the plastic part of the principal logarithmic strains,
respectively.

It is clear from the above that the sensitivity of the logarithmic strains with respect to one of the parameters
of the hardening law qi has to be calculated in an iterative way: the result of Eq. (23) has to be input in Eq. (26)
(through Eq. (27)) and Eq. (26) has to be used to compute the second term on the right of Eq. (23).

4. Verification of the analytical approach

4.1. Setup

In order to check the validity of the analytical approach, the sensitivities calculated by means of the above
derived formulas were verified with those obtained by finite differentiation, which is considered to yield a ‘‘cor-
rect’’ numerical solution. In order to achieve this a FE simulation of a tensile test was performed. The geom-
etry of the tensile specimen is shown in Fig. 2. During the test the force F was linearly increased up to 480 kN.
The material is assumed to be isotropic. The elastic behaviour is characterized by a Young’s modulus
E = 210 GPa and a Poisson’s coefficient m = 0.3. The hardening behaviour is described by a Swift law:
ry ¼ r0 þ Kð�pl
eqÞ

n ð29Þ
with ry the momentaneous flow stress, r0 (=600 MPa) the initial yield stress, K (=1500 MPa) the deformation
resistance and n (=0.6) the hardening exponent.

To be able to determine the sensitivities by means of finite differences, one has to run an extra FE simula-
tion (for each of the unknown parameters of the hardening law) with a perturbed value of the parameter under
consideration. The sensitivities can then be determined as follows:
d�

dqi

� D�
Dqi

¼ �ðqi þ DqiÞ � �ðqiÞ
Dqi

ð30Þ
with Dqi = 0.001qi.
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The simulations are performed in Abaqus/Standard. Since necking is not considered, the stress and strain
fields are homogeneous over the entire specimen. As a result only one linear solid element with one integration
point (element type ‘C3D8R’ in Abaqus) is needed to model the tensile specimen.

4.2. Results

The results are summarized in Figs. 3–8. Figs. 3 and 4 show the results for the sensitivities with respect to
the hardening exponent n, Figs. 5 and 6 show the results for the sensitivities with respect to the deformation
resistance K and Figs. 7 and 8 show the results for the sensitivities with respect to the initial yield stress r0.
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Fig. 5. Comparison of the analytically calculated sensitivities and those calculated by means of finite differences with respect to the
deformation resistance K (without variation of the cross-section).
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Fig. 6. Comparison of the analytically calculated sensitivities and those calculated by means of finite differences with respect to the
deformation resistance K (with variation of the cross-section).
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Fig. 7. Comparison of the analytically calculated sensitivities and those calculated by means of finite differences with respect to the initial
yield stress r0 (without variation of the cross-section).
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Fig. 8. Comparison of the analytically calculated sensitivities and those calculated by means of finite differences with respect to the initial
yield stress r0 (with variation of the cross-section).

S. Cooreman et al. / International Journal of Solids and Structures 44 (2007) 4329–4341 4339
If the change of cross-section is neglected, the stress is independent of the material behaviour. As a result
only the plastic part of the logarithmic strain will be sensitive to a variation of one of the parameters of the
hardening law. Those results are summarized in Figs. 3, 5 and 7. The other figures show the results for the case
in which the variation of the cross-section is taken into account. As one can see, the analytically calculated
sensitivities are in perfect agreement with those obtained by means of finite differences.

5. Conclusions and future work

An analytical approach for the calculation of the sensitivities of the logarithmic strains with respect to the
unknown parameters of the hardening law is proposed. The derived formulas only apply to simple tensile tests.
The analytically obtained sensitivities coincide perfectly with those obtained by means of finite differences.

The ultimate goal of the outlined approach is to determine the unknown elasto-plastic material parameters
of an anisotropic material based on a heterogeneous strain field. In a next step, the above described analytical
approach will be extended so that it is applicable to arbitrary deformations. Work along these lines is conduct-
ed and results will be published in forthcoming articles.
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Appendix A. List of symbols
Symbol
 Explanation
Dp
 the parameter update column
SðkÞ ¼ SðkÞij
 the sensitivity matrix (at iteration step k)

�exp
 the experimentally measured strain column

�numðpkÞ
 the numerically computed strain column as a function of the unknown material parameters

pk
 the unknown material parameter column at iteration step k
F
 the tensor of deformation gradients

x
 the vector of spatial coordinates

X
 the vector of Lagrangian coordinates

R
 the rotation tensor from the polar decomposition

U
 the right stretch tensor from the polar decomposition

V
 the left stretch tensor from the polar decomposition

ki
 the ith principal value of the left or right stretch tensor

Ni
 the ith principal direction of the right stretch tensor

D
 the rate-of-deformation tensor

Del
 the elastic rate-of-deformation tensor

Dpl
 the plastic rate-of-deformation tensor

r
 the Cauchy stress tensor

RI
 the First Piola–Kirchoff stress tensor

a
 the back stress tensor

C
 the fourth-order stiffness tensor

�
 the logarithmic strain tensor

�el
 the elastic part of the logarithmic strain tensor

�pl
 the plastic part of the logarithmic strain tensor

_k
 the plastic multiplier

U
 the yield surface
References

ASTM Standard E8M-96, 1996. Standard test methods for tension testing of metallic materials [metric]. In: Annual Book of ASTM
Standards, vol. 03.01, pp. 76–96.

Bridgman, P.W., 1952. Studies in Large Plastic Flow and Fracture. McGraw Hill, New York.
Chen, D.J., Chiang, F.P., Tan, Y.S., Don, H.S., 1993. Digital speckle displacement measurement using a complex Fourier spectrum

method. Applied Optics 32 (11), 1839–1849.
Dinescu, D., Sol, H., Hoes, K., 2002. RTM preform permeability identification by an iterative inverse technique. In: Proceedings of the

First International Conference on High Performance Structures and Composites 2002. Sevilla – Spain, 11–13 March.
Endelt, B., Nielsen, K.B., 2005. General framework for analytical sensitivity analysis for inverse identification of constitutive parameters.

In: Proceedings of COMPLAS 2005, 8th International Conference on Computational Plasticity. Barcelona – Spain, 5–7 September.
Flores, P., 2006. Development of Experimental Equipment and Identification Procedures for Sheet Metal Constitutive Laws. PhD thesis,

Université de Liège.
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