Note

On graphic and 3-hypergraphic sequences

S.A. Choudum
School of Mathematical Sciences, Madurai Kamaraj University, Madurai-625 021, India

Received 15 September 1987
Revised 11 January 1989

Abstract

Chodum, S.A., On graphic and 3-hypergraphic sequences, Discrete Mathematics 87 (1991) 91-95.

In this paper we give a necessary condition for a sequence π of integers to be 3-hypergraphic. This necessary condition is on the lines of Erdós and Gallai conditions for graphic sequences and depends on a function M_{r} defined on π.

1. Introduction

Throughout this paper $\pi: d_{1}, d_{2}, \ldots, d_{p}$ denotes a non-increasing sequence of non-negative integers. A r-graph is a loopless undirected graph with at most r edges joining a pair of vertices. As usual V and E respectively denote the vertex set and the edge set of a graph under consideration and $\operatorname{deg}(v)$ denotes the number of edges incident with a vertex v. Let $G_{r}(\pi)=\{G: G$ is a r-graph on p vertices, say $v_{1}, v_{2}, \ldots, v_{p}$ such that $\operatorname{deg}_{G}\left(v_{i}\right) \leqslant d_{i}$, for every $\left.i, 1 \leqslant i \leqslant p\right\}$. Let $M_{r}(\pi)=\max \left\{|E(G)|: G \in G_{r}(\pi)\right\}$.

In the literature, π is said to be r-graphic if there is a r-graph whose degree sequence is π. Clearly, $M_{r}(\pi) \leqslant \frac{1}{2}\left(\sum_{i=1}^{p} d_{i}\right)$ and moreover, π is r-graphic iff $\sum_{i=1}^{p} d_{i}$ is even and $M_{r}(\pi)=\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}\right)$.

A n-hypergraph H is a pair (V, E) where V is a non-empty set and E is a family of n-subsets (that is, subsets with exactly n elements) of V; the elements of E need not be distinct. The elements of V are called vertices and the elements of E are called edges. A n-hypergraph $H=(V, E)$ is called simple if all the elements in E are distinct. Thus a 1-graph and a simple 2-hypergraph are the same objects 0012-365X/91/\$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)
and usually they are referred to as simple graphs. The degree $\operatorname{deg}_{H}(v)$ of a vertex v in a n-hypergraph H is the number of edges containing the vertex $v . \pi$ is said to be n-hypergraphic, if there is a simple n-hypergraph H on p vertices, say v_{1}, v_{2}, \ldots, v_{p}, such that $\operatorname{deg}_{H}\left(v_{i}\right)=d_{i}$, for every $i, 1 \leqslant i \leqslant p$. For general terminology we refer to [1]. The sequence $a_{1}^{r_{1}}, a_{2}^{r_{2}}, \ldots, a_{n}^{r_{n}}$ denotes the sequence in which a_{i} is repeated r_{i} times, $i=1,2, \ldots, n$.

A well-known theorem (see Theorem 6, Chapter 6 in [1]) due to Erdős and Gallai characterizes 2-hypergraphic (that is, graphic) sequences as follows:

Theorem A: π is 2-hypergraphic iff $\sum_{i=1}^{p} d_{i}$ is even and

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leqslant k(k-1)+\sum_{j=k+1}^{p} \min \left(d_{j}, k\right), \quad \text { for } k=1, \ldots, p \tag{1}
\end{equation*}
$$

Its generalization to n-hypergraphic ($n \geqslant 3$) sequences is unknown; see [2, 4-6]. The problem seems to be difficult even for $n=3$. In fact, in [4], the authors report that they were neither able to give a polynomial time algorithm to test the 3-hypergraphicness nor able to prove that the problem is NP-complete, though they settle several related problems.

In this note we first give a necessary condition for a sequence π to be 3-hypergraphic and then derive a formula for $M_{r}(\pi)$ to show that our necessary condition can be checked in polynomial time.

2. A necessary condition for 3-hypergraphic sequences

As usual for a real number x let $\lfloor x\rfloor$ denote the greatest integer not greater than x and let x^{+}denote $\max (0, x)$. We denote $\left(x_{1}^{+}, x_{2}^{+}, \ldots, x_{p}^{+}\right)$by $\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{+}$.

Theorem 1. If a sequence $\pi: d_{1} \geqslant d_{2} \geq \cdots \geqslant d_{p}$ is 3-hypergraphic, then

$$
\begin{align*}
\sum_{i=1}^{p} d_{i} \equiv & 0(\bmod 3) \tag{2}\\
\sum_{i=1}^{k} d_{i} \leqslant & k\binom{k-1}{2}+\sum_{j=k+1}^{p} 2 \min \left(d_{j},\binom{k}{2}\right. \\
& +M_{k}\left(d_{k+1}-\binom{k}{2}, \ldots, d_{p}-\binom{k}{2}\right)^{+}, \text {for } k=1,2, \ldots, p . \tag{3}
\end{align*}
$$

Proof. (2) is obvious. To prove (3), let $H=(V, E)$ be a simple 3-hypergraph on the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ such that $\operatorname{deg}\left(v_{i}\right)=d_{i}$, for every $i, 1 \leqslant i \leqslant p$. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $B=\left\{v_{k+1}, v_{k+2}, \ldots, v_{p}\right\}$. For an integer j, where $k+1 \leqslant j \leqslant p$, let $E_{j}=\left\{e \in E: e=\left\{v_{j}, v_{x}, v_{y}\right\}\right.$, where $\left.1 \leqslant x \leqslant k, 1 \leqslant y \leqslant k\right\} ;\left|E_{j}\right|=$ $d_{j, 1} ; E_{j}^{\prime}=\left\{e \in E: e=\left\{v_{j}, v_{x}, v_{y}\right\}\right.$ where $k+1 \leqslant x \leqslant p$ and $\left.1 \leqslant y \leqslant k\right\} ;\left|E_{j}^{\prime}\right|=d_{j, 2}$.

Then

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leqslant 3\left|\binom{A}{3}\right|+\sum_{j=k+1}^{p} 2\left|E_{j}\right|+\left|\bigcup_{j=k+1}^{p} E_{j}^{\prime}\right|, \tag{4}
\end{equation*}
$$

since an edge $e \in E \cap\binom{4}{3}$ contributes 3 , an edge $e \in E_{j}$ contributes 2, an edge $e \in E_{j}^{\prime}$ contributes 1 and every other edge contributes 0 to the sum $d_{1}+d_{2}+$ $\cdots+d_{k}$.

$$
\begin{equation*}
d_{j} \geqslant d_{j, 1}+d_{j, 2} ; \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{j, 1} \leqslant \min \left(d_{j},\binom{k}{2}\right) ; \tag{6}
\end{equation*}
$$

let $d_{j, 1}=\min \left(d_{j},\left(\frac{k}{2}\right)\right)-s_{j}$.
Since, the edges in H are all distinct it follows that the pair ($B,\{e-A$: $\left.\left.e \in \bigcup_{j=k+1}^{p} E_{j}^{\prime}\right\}\right)$ is a k-graph with degree sequence $d_{k+1,2}, d_{k+2,2}, \ldots, d_{p, 2}$. So

$$
\begin{equation*}
\left|\bigcup_{j=k+1}^{p} E_{j}^{\prime}\right| \leqslant M_{k}\left(d_{k+1,2}, d_{k+2,2}, \ldots, d_{p, 2}\right) . \tag{7}
\end{equation*}
$$

Now, substituting (6) and (7) in (4), we obtain

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leqslant k\binom{k-1}{2}+\sum_{j=k+1}^{p} 2\left(\min \left(d_{j},\binom{k}{2}-s_{j}\right)+M_{k}\left(d_{k+1,2}, \ldots, d_{p, 2}\right)\right. \tag{8}
\end{equation*}
$$

But for $j=k+1, k+2, \ldots, p$, we have

$$
d_{j, 2} \leqslant d_{j}-d_{j, 1}=d_{j}-\min \left(d,\binom{k}{2}\right)+s_{j}=\left(d_{j}-\binom{k}{2}\right)^{+}+s_{j}
$$

So,

$$
\begin{aligned}
M_{k}\left(d_{k+1,2}, \ldots, d_{p, 2}\right) & \leqslant M_{k}\left(\left(d_{k+1}-\binom{k}{2}\right)^{+}+s_{k+1}, \ldots,\left(d_{p}-\binom{k}{2}\right)^{+}+s_{p}\right) \\
& \leqslant M_{k}\left(d_{k+1}-\binom{k}{2}, \ldots, d_{p}-\binom{k}{2}\right)^{+}+\sum_{j=k+1}^{p} s_{j},
\end{aligned}
$$

since $M_{k}\left(b_{1}+c_{1}, \ldots, b_{p}+c_{p}\right) \leqslant M_{k}\left(b_{1}, \ldots, b_{p}\right)+\sum_{j=1}^{p} c_{j}$, where b_{i} and c_{j} are nonnegative integers. Hence (3) follows from (8).

It easily follows that the conditions (2) and (3) can be checked in polynomial time provided M_{r} can be evaluated in polynomial time. Our next theorem shows that $M_{r}(\pi)$ can be indeed evaluated in polynomial time.

3. A formula for $\boldsymbol{M}_{\boldsymbol{r}}(\boldsymbol{\pi})$

Let

$$
\begin{align*}
& \delta_{r}(\pi, k)=\sum_{i=1}^{k} d_{i}-r k(k-1)-\sum_{j=k+1}^{p} \min \left(d_{j}, r k\right), \tag{9}\\
& \delta_{r}(\pi)=\max \left\{\delta_{r}(\pi, k): 1 \leqslant k \leqslant p\right\} . \tag{10}
\end{align*}
$$

Theorem B (Chungphaisan [3]). π is r-graphic iff $\sum_{i=1}^{p} d_{i}$ is even, and

$$
\begin{equation*}
\delta_{r}(\pi, k) \leqslant 0, \quad \text { for } k=1,2, \ldots, p \tag{11}
\end{equation*}
$$

We use this theorem to derive a formula for $M_{r}(\pi)$.
Theorem 2. $M_{r}(\pi)=\left\lfloor\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}-\delta_{r}^{+}(\pi)\right)\right]$.
Proof. Without loss of generality we assume that $r \geqslant 1, p \geqslant 2$ and $d_{p} \geqslant 1$.

$$
\begin{equation*}
M_{r}(\pi) \leqslant\left\lfloor\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}-\delta_{r}^{+}(\pi)\right)\right\rfloor . \tag{12}
\end{equation*}
$$

To prove this inequality, let $G \in G_{r}(\pi)$ be a r-graph with $|E(G)|=M_{r}(\pi)$. Let π^{\prime} : $d_{1}^{\prime} \geqslant d_{2}^{\prime} \geqslant \cdots \geqslant d_{p}^{\prime}$ be its degree sequence; so $d_{i}^{\prime} \leqslant d_{i}$, for $i=1,2, \ldots, p$. Let t be such that $\delta_{r}(\pi)=\delta_{r}(\pi, t)$. Then

$$
\begin{aligned}
2 M_{r}(\pi) & =2|E(G)|=\sum_{i=1}^{t} d_{i}^{\prime}+\sum_{i=t+1}^{p} d_{i}^{\prime} \\
& \leqslant r t(t-1)+\sum_{i=t+1}^{p} \min \left(d_{i}^{\prime}, r t\right)+\sum_{i=t+1}^{p} d_{i}^{\prime} \\
& \leqslant r t(t-1)+\sum_{i=t+1}^{p} \min \left(d_{i}, r t\right)+\sum_{i=t+1}^{p} d_{i} \\
& =\sum_{i=1}^{p} d_{i}-\delta_{r}(\pi), \quad \text { by }(9) \text { and (10). }
\end{aligned}
$$

Since, $M_{r}(\pi) \leqslant \frac{1}{2}\left(\sum_{i=1}^{p} d_{i}\right)$ and it is an integer, we obtain

$$
\begin{align*}
M_{r}(\pi) & \leqslant \min \left\{\left\lfloor\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}\right)\right],\left\lfloor\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}-\delta_{r}(\pi)\right)\right]\right\} \\
& =\left\lfloor\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}-\delta_{r}^{+}(\pi)\right)\right] . \\
M_{r}(\pi) & \geqslant\left\lfloor\frac{1}{2}\left(\sum_{i=1}^{p} d_{i}-\delta_{r}^{+}(\pi)\right]\right) . \tag{13}
\end{align*}
$$

To prove this inequality, let π^{1} denote the sequence $d_{1}, d_{2}, \ldots, d_{p}, 1^{n}$ where

$$
n= \begin{cases}\delta_{r}^{+}(\pi) & \text { if } \sum_{i=1}^{p} d_{i} \equiv \delta_{r}^{+}(\pi)(\bmod 2) \\ \delta_{r}^{+}(\pi)+1 & \text { otherwise }\end{cases}
$$

Clearly, the sum of the terms in π^{1} is even. Next one can routinely show that $\delta_{r}\left(\pi^{1}, k\right) \leqslant 0$, for $k=1,2, \ldots, p+n$. So, π^{1} is r-graphic, by Theorem B. Let G^{1} be a realization of π^{1} and let $u_{1}, u_{2}, \ldots, u_{n}$ be n vertices of degree 1 in G^{1}. Then $G=G^{1}-\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in G_{r}(\pi)$. So,

$$
2 M_{r}(\pi) \geqslant 2|E(G)| \geqslant 2\left(\left|E\left(G^{1}\right)\right|-n=\sum_{i=1}^{p} d_{i}-n .\right.
$$

4. Remarks

(1) If a sequence $\pi: d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{p}$ satisfies the conditions (2) and (3), then there is a 3-hypergraph H (not necessarily simple) on p vertices, say $v_{1}, v_{2}, \ldots, v_{p}$ such that $\operatorname{deg}_{H}\left(v_{i}\right)=d_{i}$, for $i=1,2, \ldots, p$. This assertion follows easily from Theorem 1.1 on p. 63 in [7]. It is easy to construct sequences which realize 3 -hypergraphs but do not satisfy condition (3). For example, the sequence $\pi:(2 p+1)^{3} 3^{p-3}$ (where $p \geqslant 4$) realizes 3 -hypergraphs but does not satisfy (3) for $k=2$.
(2) We feel that our conditions (2) and (3) are not sufficient for a sequence to be 3-hypergraphic. The upper bound in (3) is probably larger than what it should be. So, the straightforward generalization of Theorem 1 for n-hypergraphic sequences ($n \geqslant 4$) does not seem to be worthwhile.

Acknowledgement

This research was done while the author was a Commonwealth Fellow (1986-1987) at the Department of Mathematics, University of Reading, United Kingdom. The author gratefully acknowledges various suggestions received from Professor C.St.J.A. Nash-Williams during several discussions and the hospitality of the University of Reading.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] D. Billington, Lattices and degree sequences of uniform hypergraphs, Ars Combin. 21-A (1986) 9-19.
[3] V. Chungphaisan, Conditions for sequences to be r-graphic, Discrete Math. 7 (1974) 31-39.
[4] C.J. Colbourn, W.L. Kocay and D.R. Stinson, Some NP-complete problems for hypergraph degree sequences, Discrete Appl. Math. 14 (1986) 239-254.
[5] A. Dewdney, Degree sequences in complexes and hypergraphs, Proc. Amer. Math. Soc. 53 (1975) 535-540.
[6] P. Erdôs, Personal reminiscences and remarks on the mathematical work of Tibor Gallai, Combinatorica 2 (1982) 207-212.
[7] H.J. Ryser, Combinatorial Mathematics (Math. Assoc. Amer., 1963).

