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A graph is called uniquely k-colorable if there is only one partition of its vertex
set into k color classes. The first result of this note is that if a k-colorable graph G
of order n is such that its minimal degree, 8(G), is greater than (3k — 5)/(3k — 2)n
then it is uniquely k-colorable. This result can be strengthened considerably if
one considers only graphs having an obvious property of k-colorable graphs.
More precisely, the main result of the note states the following. If G is a graph
of order » that has a k-coloring in which the subgraph induced by the union of
any two color classes is connected then 3(G) > (1 — (1/(k — 1))) n implies that G
is uniquely k-colorable. Both these results are best possible.

A coloring of a graph G with vertex set ¥ is the partitioning of ¥V into so
called color classes in such a way that no two vertices of the same class are
adjacent. A k-coloring contains exactly k color classes. We shall think of a
k-coloring of G as a map ¢: V' — {1, 2,..., k} such that J~1(?), i = 1, 2,..., k,
are the color classes of G. Naturally two maps, i, and i, , represent the same
k-coloring if and only if ¢; = i, o = for some permutation 7 of {1, 2,..., k}.
The chromatic number of G, denoted by x(G), is the minimal k for which G
has a k-coloring. A graph with exactly one k-coloring is called wniquely
k-colorable. It is obvious that if G is uniquely k-colorable then y(G) = k orn,
so we shall say simply that G is uniquely colorable if it is uniquely y(G)-
colorable.

As in the book [1], denote by K® the complete graph of order p and by K»-»
the complete bipartite graph with p vertices in each class. K,( p) denotes the
complete r-partite graph with p vertices in each class. The degree of a vertex x
of G is denoted by deg x or degs x. The minimal degree of a vertex of a
graph G is denoted by 8(G). The join of G and H is denoted by G 4 H.

Uniquely colorable graphs have been investigated by Cartwright and
Harary [2], Chartrand and Geller [3], Harary er al. [4], and Osterweil [5].
In this note we give best possible sufficient conditions involving 8(G) for a
graph G to be uniquely colorable.

Given k — 2 and [ — 1 let G, = 2K*! and G, = G, + K;_,(3]) (Fig. 1).
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Fig. 1. Gsforl =1,

Then G, is a graph of order n = (3k — 2)! and clearly x(G,) = k and
8(G,) = (3k — 5)I = ((3k — 5)/(3k — 2))n. Furthermore, G, is clearly not
uniquely 2-colorable so G, is not uniquely k-colorable.

As our first result we show that this graph G, has the largest minimal degree
among all nonuniquely k-colorable graphs of order n.

THEOREM 1. Let G be a k-colorable (k = 2) graph of order n such that
8(G) > (Bk — 5)|(Bk — D)n.
Then G is uniquely colorable.

Proof. We prove the result by induction on k. Suppose first that k = 2.
If G is not connected, let H be a component of G of order m < n/2. In H
every vertex has degree >m/2 so H contains a triangle. As this is impossible,
we can conclude that G is connected and so it is uniquely 2-colorable.

Let now k = 3 and suppose the result holds for smaller values of k. If
x is a vertex of G, denote by G, the subgraph of G spanned by the vertices
adjacent to x. Denote the order of G,, by n, . Then

n, > (Bk — 5)/(k — ))n
and the degree of a vertex y of G, (in G,) is at least

K= n) 3 o A= s
3% — 2 7 ) 3k —1) —2 =

Therefore by the induction hypothesis G, is uniquely (k — 1)-colorable.
Let now u; and u, be vertices of G. As
3k — 4

5 1
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there is a vertex x adjacent to both #;, and u, . In other words, u; and u,
belong to G, . Now a k-coloring of G always gives a (k — 1)-coloring of G,, .
As this (k — 1)-coloring is unique, either #, and u, get the same color or
they get different colors, independently of the k-coloring of G. Thus G is
uniquely colorable and so the proof is complete.

Cartwright and Harary [2] pointed out that if a graph is uniquely k-
colorable (k — 2) then

(*) the subgraph induced by the union of any two color classes of the
k-coloring is connected.

If k£ = 2 then (*) says simply that G is connected and then, naturally,
G is uniquely 2-colorable if it is 2-colorable. However, if & — 3 then it is
easily seen that a k-colorable graph with a k-coloring satisfying (*) is not
necessarily uniquely k-colorable. Thus it is natural to ask how large 8(G)
has got to be to ensure that a graph G with a k-coloring satisfying (*) is
uniquely k-colorable. As before, we start with an example of a nonuniquety
k-colorable graph G that satisfies (*) and for which 8(G) is large and then
we prove our main result, essentially stating that the example is best possible.

Let £ — 3 and / — 1 be integers. Let H; be the graph obtained from the
graph of the triangular prism (Fig. 2) by replacing each vertex by a cloud
of I vertices. Thus two vertices of H; are joined if and only if they belong to
different clouds that were adjacent in the graph of the prism. Put H, =
H; + K;,_5(3]). Then H, is a graph of order n = 3(k — 1),

k—2
x(Hy) =k and o(H,) =3k —2)I = At
Even more, H, has two different k-colorings, corresponding to the two
3-colorings of the prism, shown in Fig. 2, and both of these k-colorings
satisfy (*).

Fic. 2. Two 3-colourings of the prism.
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THEOREM 2. Let G be a graph of order n — k having a k-coloring (k = 2)
satisfying (*). If
3(G) > (1 — (/(k — 1))n

then G is uniguely colorable.

Proof. Note first that the degree condition in the theorem is exactly the
one that ensures that G is not (k — 1)-colorable and so x(G) = k. In fact,
the condition 8(G) > (1 — (1/(k — 1)))n is exactly the condition of
Zarankiewicz [6] ensuring that G contains a K* . Thus G has got a uniquely
k-colorable subgraph.

We prove the theorem by induction on k. For k = 2 the result is trivial:
A connected 2-colorable graph is uniquely colorable. Suppose k& > 3 and the
theorem holds for smaller values of k.

Denote by V the vertex set of G and let i, be a k-coloring satisfying (*).
Denote by G(i, j) the connected subgraph induced by the classes of colors i
and j. Suppose that, contrary to the assertion, G has another k-coloring, say . .
We may suppose without loss of generality that i, gives the same colors to
a uniquely k-colorable subgraph. This implies that

V(i) = V(i i) = {xeV:¢u(x) = o(x) = i} #~ @, i=1,2,..,k.

Put also
V(l’]) = {x eV lﬁl(x) =1, ‘l‘z(x) :]},

where ] <i <k, 1 <j<kandi .
Put furthermore
n@@) = | V()l,
n(t,j) = | VG, j)l,

where | X | denotes the number of elements in a set X.

We may suppose without loss of generality that G is the maximal graph
having these two colorings ¢; and s, , i.e., if x; € V(i;, j,), | = 1, 2, then x;x,
is an edge of G if and only if i, % i, and j,  j, .

As in the sequel we shall use the connectedness of G(7, /) a number of times.
Note that the structure of G(1, 2) is given in Fig. 3 in the following sense:
xy is an edge of G(I, 2) if and only if the vertex classes (V(i), V(k, [)) con-
taining them are joined by an edge. Note, e.g., that if V(l,2) #* @ and
V(2,1) = @ then V(2,]) #* @ for some [ > 2.

Let H; be the subgraph of G induced by the vertices adjacent to a vertex
x; € V(i). If H; has order m; and y; is any vertex in H, , then

n 1
degy, y; = dege y; — (n — my) > m; — T=T > (1 - k——f) m;. (1)
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FiG. 3. The structure of G(1, 2).

Suppose the coloring i, restricted to a subgraph H; , say to Hy, , is a (k — 1)-
coloring satisfying (*).

Then, as (1) holds, the induction hypothesis can be applied to H; and so
Py, = i, on Hy, ie., V(i,j) = & unless i = k or j = k. Note now that if
V({, k) = @ for some [ < k then the connectedness of G(/, k) implies
V(k,1) = . In that case i, is a (k — 1)-coloring of H, that satisfies (*) so
V(i,j) = @ unless i = [ orj = L Consequently V(i,j) = & whenever i £ j,
contradicting i, 5 ¥, . Therefore V(l, k) -+ @, 1= 1,2,..,k — 1, and so
V(k,i) # o for at least two values of i, say V(k,i) = @ fori <j(—2)and
Vik,i) = o forj <i < k. '

Denote by d(i) the degree of a vertex in V(i) and by d(i,j) the degree of a
vertex in V(i,j). (Recall that if x, y € V(i, f) then x and y are joined to exactly
the same vertices.) Put

S—S di)+ }f a0 + S di k) + ﬁ d(k, i).

i=j+1 i=1

As 8(G) > (1 — (1/(k — 1)n, and S is the sum of 3(k — 1) degrees,

S>3(k—1)(1—— )n=3(k—2)n.

1
k—1
However, this is impossible, since when expanding S as a linear combination

of the n(i)’s and n(i,j)’s, no coefficient is larger than 3(k — 2). This contra-
diction shows that the coloring ; restricted to a graph H; (1 < i < k) does



UNIQUELY COLORABLE GRAPHS 59

not satisfy (*). In other words, for every i, 1 < i < k, there is a pair (j, ]),
1 <j<l<k,j+ i+l such that the subgraph of G spanend by

U VG, myu U v, m)

m#£é msi

is disconnected. Call this unordered pair (j, ) the edge belonging to the
color i. 1t is easily checked that, as G(j, /) is connected,

(**) one of the following three assertions holds.

N vy,D # o, VIL,j)# @, V(ji,m) = V({I,m)= o if m #i and
V(v Vii) + .

Q) VG, # 2, V1)) # o, Vm) = @ it m # iand V(i) # .

G) V(D) = o, V(1)) # 2, V(j,m) = o ifm % iand V(j,i) # &.

(Note that (3) is obtained from (2) by interchanging j and [.)

It is easily checked that by (**) an “edge” can not belong to two different
colors. There is an “edge” belonging to each color so there must be a cycle
formed by such edges.

To simplify the notation we shall consider colors 1, 2,... instead of i,
iy ,...; naturally we can do this without loss of generality.

Suppose 123 ---m (m = 3) is a cycle in the following sense: (i, i+ 1)
belongs to a color ¢; (1 < i << m) and (m, 1) belongs to ¢, .

(a) Suppose furthermore, that (1) of (*)) holds for the edge (1,2)
belonging to the color ¢, and, say, V(2, ¢;) = @. Then (**) applied to (2, 3)
gives that ¢; = 3. By repeated applications of (**) one can show that ¢, = 1,
¢g = 2and V(1,1), V(2,1), V(3, 1) are empty for all / > 3. It is easily checked
that the notation can be chosen in such a way that V(1, 2), (2, 3) and V(3, 1)
are not empty.

(b) Suppose now that (1) of (**) does not hold for any edge of the cycle
12--m. We may suppose without loss of generality that V(l,2) # &,
V(2,m = @ if m # ¢ and V(2,¢) # @. Applying (**) to the “edge”
(2, 3) belonging to ¢, (s#¢; , 2, and 3) we see that ¢; = 3 and, as (1) does not
hold for (2, 3), V(3,m) = @ if m # ¢, and V(3, ¢,) 3= @. The application
of (**) to (3.4) gives ¢, = 4, etc. Therefore we obtain the following:
{5 5 €} = {1, 2,..., m}, the sets V(1,2), V(2,3),..., V(m — 1, m), V(m, 1)
are nonempty and all other sets of the form V{7, j) are empty where 1 < i < m,
J#FL

We have shown in particular, that the k “‘edges” belonging to the colors
1, 2,..., k form a 2-factor with vertex set {1, 2,..., k}.

We are now ready to prove the theorem by arriving at a contradiction
in the situation above.



60 BELA BOLLOBAS

For each color i we take a vertex x; € V(i) and another vertex x,” of color i
in the coloring ¥, and add the degrees of these 2 k vertices. These vertices x,’
are chosen as follows. (As before, instead of “i”” we use the color “1”.)

If 123 is a triangle in (a), then choose the notation in such a way that
V(1, 2), ¥(2, 3), and V(3, 1) are nonempty and let x," € V(1, 2), x,’ € V(2, 3),
and x5’ € V(3, 1).

If 12--m is a cycle in (b) then let x;" € V(1, 2), x," € V(2, 3),..., x,,/ €
V(m, 1).

Then

k k
S=Zdegx2’+2degxi’>2k(1~k_l_l)n. 2
i=1 i=1

Note now that when expanding deg x;, deg x,” in terms of #(/) and n(i, j)
then each n(i) and n(3, j) is missing at least three times. As the sum of all n(i)
and n(i, j)’s is exactly n, this expansion gives

S < 2k — 3)n.
Comparing this with (2) we obtain
2k(1 — (1/tk — D)n < 2k — 3)n, k < 3.

This contradiction completes the proof of the theorem.

Finally let me mention an open problem connected to the ones discussed
here. What is the minimal number of edges of a uniquely k-colorable (k > 3)
graph of order n? Denoting this minimal number by m(n, k) it is easily seen
that

_kz_'lgm(n,k)<(k“1)n_(]2€)’

but it does not seem to be trivial to disprove either of the following relations:

mn, k) k .
— = lim sup

n—->o

lim inf W;Q:k—L

n->o0
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