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A graph is called uniquely k-colorable if there is only one partition of its vertex 
set into k color classes. The first result of this note is that if a k-colorable graph G 
of order n is such that its minimal degree, ~(G), is greater than (3k -- 5)/(3k -- 2) n 
then it is uniquely k-colorable. This result can be strengthened considerably if 
one considers only graphs having an obvious property of k-colorable graphs. 
More precisely, the main result of the note states the following. If G is a graph 
of order n that has a k-coloring in which the subgraph induced by the union of 
any two color classes is connected then ~(G) > (1 -- (1/(k -- 1))) n implies that G 
is uniquely k-colorable. Both these results are best possible. 

A coloring o f  a g raph  G with ver tex set V is the par t i t ion ing  o f  V into so 
called color classes in such a way  tha t  no two vertices o f  the same class are 
adjacent .  A k-co lor ing  contains  exact ly k co lor  classes. W e  shall th ink  o f  a 
k-color ing  o f  G as a m a p  ~b: V --+ {1, 2 ..... k} such tha t  ~b-l(i), i = 1, 2 ..... k, 
are the color  classes o f  G. Na tu ra l ly  two maps ,  ~b 1 and  ~b 2 , represent  the same 
k-color ing  i f  and  only i f  ~bl =- ~b 2 o 7r for some pe rmu ta t i on  rr o f  {1, 2 ..... k}. 
The chromatic number of  G, deno ted  by  x(G), is the min imal  k for  which G 
has  a k-coloring.  A graph with exact ly one k-co lor ing  is called uniquely 
k-eolorable. I t  is obvious  that  i f  G is uniquely k-co lorab le  then x(G) --- k or  n, 
so we shall say s imply tha t  G is uniquely colorable i f  i t  is un ique ly  x(G)- 
colorable.  

As  in the b o o k  [1], denote  by  K �9 the comple te  g raph  o f  o rder  p and  by K ~,~ 
the complete  b ipar t i te  graph with p vertices in each class. K~(p) denotes  the 
complete  r -par t i te  g raph  with p vertices in each class. The degree o f  a vertex x 
o f  G is deno ted  by  deg x or  degc x. The min ima l  degree o f  a vertex of  a 
g raph  G is deno ted  by  3(G). The jo in  o f  G and  H is deno ted  by  G q- H. 

Unique ly  co lorab le  graphs have been invest igated by  Car twr ight  and  
H a r a r y  [2], C h a r t r a n d  and  Gel ler  [3], H a r a r y  et aL [4], and  Osterweil  [5]. 
In  this note  we give best  possible  sufficient condi t ions  involving ~(G) for  a 
g raph  G to be uniquely  colorable.  

Given k - -  2 and  l - -  1 let G2 = 2K z'z and  Ga = G2 + Kk_~(3l) (Fig. 1). 
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Fro. 1. G 3 f o r l =  1. 

Then Ga is a graph of  order n = (3k - -  2)l and clearly x(Ga) = k and 
8(G,) = (3k - -  5)I = ((3k - -  5)/(3k - -  2))n. Fur thermore,  G2 is clearly not  
uniquely 2-colorable so G,  is not  uniquely k-colorable. 

As our  first result we show that  this graph G, has the largest minimal degree 
among  all nonuniquely  k-colorable graphs o f  order  n. 

THEOREM 1. Let G be a k-colorable (k >/2) graph of  order n such that 

3(G) > ((3k - -  5)/(3k - -  2))n. 

Then G is uniquely colorable. 

Proof. We prove the result by  induction on k. Suppose first that  k = 2. 
I f  G is not  connected, let H be a componen t  o f  G of  order m ~ n/2. In  H 
every vertex has degree >m/2 so H contains a triangle. As this is impossible, 
we can conclude that  G is connected and so it is uniquely 2-colorable. 

Let  now k ~> 3 and suppose the result holds for  smaller values o f  k. I f  
x is a vertex o f  G, denote by G~ the subgraph of  G spanned by the vertices 
adjacent to x. Denote  the order o f  G~ by n~. Then 

n~ > ((3k - -  5)/(3k - -  2))n 

and the degree o f  a vertex y o f  G~ (in G~) is at least 

3 k - -  5 3 3 ( k - -  1 ) - -  5 
3 k - - 2  n - -  (n - -  n~) ----- n~ 3 k ~  n > 3 ( k - -  1 ) - - 2  n~. 

Therefore by the induction hypothesis G~ is uniquely (k - -  1)-colorable. 
Let  now ul and u2 be vertices o f  G. As 

3k - -  5 4 1 
d e g u i > ~ ( G )  > 3 k ~  n >~ -ff n > -~ n, 
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there is a vertex x adjacent to both ul and us. In other words, ul and u2 
belong to G~. Now a k-coloring of G always gives a (k --  1)-coloring of G~. 
As this ( k - -  1)-coloring is unique, either Ul and u2 get the same color or 
they get different colors, independently of the k-coloring of G. Thus G is 
uniquely colorable and so the proof  is complete. 

Cartwright and Harary [2] pointed out that if a graph is uniquely k- 
colorable (k -- 2) then 

(*) the subgraph induced by the union of any  two color classes of the 
k-coloring is connected. 

If  k = 2 then (*) says simply that G is connected and then, naturally, 
G is uniquely 2-colorable if it is 2-colorable. However, if k --  3 then it is 
easily seen that a k-colorable graph with a k-coloring satisfying (*) is not 
necessarily uniquely k-colorable. Thus it is natural to ask how large 3(G) 
has got to be to ensure that a graph G with a k-coloring satisfying (*) is 
uniquely k-colorable. As before, we star t  with an example of a nonuniquely 
k-colorable graph G that satisfies (*) and for which 3(G) is large and then 
we prove our main result, essentially stating that the example is best possible. 

Let k --  3 and l -- 1 be integers, Let Ha be the graph obtained from the 
graph of the triangular prism (Fig. 2) by replacing each vertex by a cloud 
of l vertices. Thus two vertices of Ha are joined if and only if they belong to 
different clouds that were adjacent in the graph of the prism. Put H , - - -  
Ha -? Kk_3(31). Then Hk is a graph of order n ~ 3(k -- 1)l, 

k - - 2  
x (Hk)  = k and 8(Hk) ---- 3(k --  2) l -- k -- 1 n. 

Even more ,  H ,  has two different k-colorings, corresponding to the two 
3-colorings of the prism, shown in Fig. 2, and both of these k-colorings 
satisfy (*). 
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FtG. 2. Two 3-colourings of the prism. 
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THEOREM 2. Let  G be a graph o f  order n --  k having a k-coloring (k ~ 2) 
satisfying (*). I f  

3(G) ~ (1 -- (1/(k -- 1)))n 

then G is uniquely colorable. 

Proo f  Note first that the degree condition in the theorem is exactly the 
one that ensures that G is not (k - -  1)-colorable and so x(G) ~ k. In fact, 
the condition 3 ( G ) >  ( 1 -  ( 1 / ( k -  1)))n is exactly the condition of 
Zarankiewicz [6] ensuring that G contains a K k . Thus G has got a uniquely 
k-colorable subgraph. 

We prove the theorem by induction on k. For k ~ 2 the result is trivial: 
A connected 2-colorable graph is uniquely colorable. Suppose k ~ 3 and the 
theorem holds for smaller values of k. 

Denote by V the vertex set of G and let ~b 1 be a k-coloring satisfying (*). 
Denote by G(i, j )  the connected subgraph induced by the classes of colors i 
andj.  Suppose that, contrary to the assertion, G has another k-coloring, say ~b 2 . 
We may suppose without loss of generality that ~b~ gives the same colors to 
a uniquely k-colorable subgraph. This implies that 

V(i) : V(i, i) : {x ~ V: ~l(x) : ~b2(x) = i} ~ ~ ,  i : l, 2 , . ,  k.  

Put also 

V(i , j )  : {x E V: ~bl(x ) : i, ~2(x) : j } ,  

where 1 ~ i ~ k ,  1 ~ j ~ k a n d i ~ j .  
Put furthermore 

n(i) : [ V(i)[, 

n(i , j )  : [ V(i,j)[, 

where I X ] denotes the number of elements in a set X. 
We may suppose without loss of  generality that G is the maximal graph 

having these two colorings ~b 1 and ~b2, i.e., if  xz ~ V(i~, jr), l : 1, 2, then XlX2 
is an edge of G if and only if il :/: is and j l  @ J2 �9 

As in the sequel we shall use the connectedness of G(i , j )  a number of times. 
Note that the structure of G(1, 2) is given in Fig. 3 in the following sense: 
x y  is an edge of G(1, 2) if and only if the vertex classes (V(i), V(k, l)) con- 
taining them are joined by an edge. Note, e.g., that if V(1, 2) ve ~ and 
V(2, 1) = ~ then V(2, l) :~ ~ for some l > 2. 

Let Hi be the subgraph of G induced by the vertices adjacent to a vertex 
xi  ~ V(i). If  Hi has order mi and Yi is any vertex in H i ,  then 

n ( 1 
degH~Yi ~ d e g c Y i - -  ( n - - m i )  > m i - -  k - -  1 > 1 k - - 2  m i .  (1) 
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v ( 1 ) ~ / ~  V(2) 

v (I ,5) v (2,5) 

FIG. 3. The structure of G(1, 2). 

Suppose the coloring r restricted to a subgraph Hi ,  say to Hk , is a (k -- 1)- 
coloring satisfying (*). 

Then, as (1) holds, the induction hypothesis can be applied to H~ and so 
r : r on Hk ,  i.e., V(i,j) : ;~ unless i ----- k o r j  : k. Note  now that  if  
V(/, k)---- ;~ for some 1 < k then the connectedness o f  G(l, k) implies 
V(k, l) : ~ .  In  that  case r is a (k - -  D-coloring o f  H~ that  satisfies (*) so 
V(i,j) ---- ~ unless i = 1 o r j  : L Consequently V(i,j) ~- ~ whenever i v a  j ,  
contradicting r =/= ~b2. Therefore V(l, k) =/= ~ ,  1 = 1, 2 ..... k -  1, and so 
V(k, i) v~ ;~ for  at least two values o f  i, say V(k, i) ~ ~ for  i ~< j ( - -2)  and 
V(k,i)  -~ ~ f o r j < i < k .  

Denote  by d(i) the degree o f  a vertex in V(i) and by d(i,j) the degree o f  a 
vertex in V(i,j). (Recall that  if x, y E V(i,j) then x and y are joined to exactly 
the same vertices.) Put  

S = 
k--1 k--I k--i 

Z d(i)-~ Z d(i,k) + Z d(i,k)-]- Z d(k,i). 
1 i=1 i= j+ l  i=1 

As 3(G) > (1 - -  (I / (k - -  1))n, and S is the sum of  3(k - -  1) degrees, 

s > 3(k --  1) (I , )  
k - 1 n - - - - 3 ( k - - 2 )  n. 

However,  this is impossible, since when expanding S as a linear combinat ion  
o f  the n(i)'s and n(i,j)'s, no coefficient is larger than 3(k - -  2). This contra-  
diction shows that  the coloring r restricted to a graph Hi (1 ~ i ~ k) does 
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not satisfy (*). In other  words, for  every i, 1 ~< i ~< k, there is a pair (L l), 
1 ~< j < l ~ k, j 4= i # I, such that  the subgraph of  G spanend by 

U V( j ,m)  u U t1(l,m) 
m#i  m~i  

is disconnected. Call this unordered pair (j,  l) the edge belonging to the 
color i. It is easily checked that,  as G(j, l) is connected, 

(**) one of  the following three assertions holds. 

(1) V(j , l )  4: ;g, V(I,j) # ;g, V( j ,m)  = V(l,m) = ~ if m # i  and 
V(j, i) u V(I, i) v ~ ;~. 

(2) V(j,I)  # ;~, V(I,j) # ~ ,  V(l ,m) = ~ i f m  : / : / a n d  V(l,i) # Z.  

(3) V(j,I)  : ~ ,  V(I,j) # ~ ,  V( j ,m)  : ~ i fm  : / : / a n d  V(j , i )  # ;~. 

(Note that (3) is obtained f rom (2) by in te rchangingj  and L) 
It  is easily checked that  by (**) an "edge"  can not  belong to two different 

colors. There is an "edge"  belonging to each color so there must  be a cycle 
formed by such edges. 

To simplify the nota t ion we shall consider colors 1, 2 .... instead o f / 1 ,  
i2 .... ; naturally we can do this without loss of  generality. 

Suppose 1 2 3 ... m (m ~ 3) is a cycle in the following sense: (i, i -k 1) 
belongs to a color ci (1 ~ i < m) and (m, 1) belongs to cm. 

(a) Suppose furthermore, that (1) of  (*)) holds for the edge (1, 2) 
belonging to the color cl and, say, V(2, cl) # ~ .  Then (**) applied to (2, 3) 
gives that  cl = 3. By repeated applications of  (**) one can show that  c2 = 1, 
ca : 2 and V(1, l), V(2, l), V(3, l) are empty for  all l > 3. It is easily checked 
that  the notat ion can be chosen in such a way that V(1, 2), V(2, 3) and V(3, l) 
are not  empty. 

(b) Suppose now that (1) of(**)  does not hold for any edge of  the cycle 
1 2 .-. m. We may  suppose without loss of  generality that  V(1, 2) # ;~, 
V(2, m) : ;~ if m :/: ca and V(2, Ca) # ~ .  Applying (**) to the "edge"  
(2, 3) belonging to c2 ( # c a ,  2, and 3) we see that  c~ = 3 and, as (1) does not  
hold for (2, 3), V(3, m) = ~ if m :/: c2 and V(3, c2) # ;~. The application 
of  (**) to (3.4)  gives c2 = 4, etc. Therefore we obtain the following: 
{c~ ,..., ck} = {1, 2 ..... m}, the sets V(1, 2), V(2, 3) ..... V(m -- 1, m), V(m, 1) 
are nonempty  and all other  sets of  the form V(i,j)  are empty where 1 ~< i ~< m, 
j ~ i .  

We have shown in particular, that  the k "edges"  belonging to the colors 
1, 2 ..... k form a 2-factor with vertex set {1, 2 ..... k}. 

We are now ready to prove the theorem by arriving at a contradiction 
in the situation above. 
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For each color i we take a vertex xi  ~ V(i)  and another vertex x / o f  color i 
in the coloring ~b I and add the degrees of these 2 k vertices. These vertices x /  
are chosen as follows. (As before, instead of " i "  we use the color "1".) 

I f  123 is a triangle in (a), then choose the notation in such a way that 
V(1, 2), V(2, 3), and V(3, 1) are nonempty and let xl '  ~ V(1, 2), x2' ~ V(2, 3), 
and x3' ~ V(3, 1). 

If  1 2 . . .m is a cycle in (b) then let x l ' ~  V(1, 2), x2'~ V(2, 3) ..... x~ 'E  
V(m, 1). 

Then 

k ( 1 ) 
S =  Z d e g x 2 ' - k  • degxi '  > 2 k  1 - n. (2) 

i=1 i=1 k -  1 

Note now that when expanding deg x i ,  deg xi' in terms of n(i) and n( i , j )  
then each n(i)  and n( i , j )  is missing at least three times. As the sum of all n(i) 

and n( i , j ) ' s  is exactly n, this expansion gives 

S ~ (2k -- 3)n. 

Comparing this with (2) we obtain 

2k(1 -- (1/(k -- 1)))n < (2k -- 3)n, k < 3. 

This contradiction completes the proof  of the theorem. 
Finally let me mention an open problem connected to the ones discussed 

here. What is the minimal number of edges of  a uniquely k-colorable (k ~ 3) 
graph of order n ? Denoting this minimal number by m(n, k)  it is easily seen 
that 

2 ~ m ( n , k ) ~ ( k - -  1) n - -  , 

but it does not seem to be trivial to disprove either of the following relations: 

lira inf m(n,  k)  _ k lim sup re(n, k)  _ k - -  1. 
, , ~  n 2 ' ,,-| n 
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