reduction of rate (-6.9%, -10.1%, and -15.9%) and of the EDD (-9.7%, -20.5%, and -23.2%, respectively, n= 4-7) while no differences were observed in the TOP. MDP and APD values were significantly different from control only at the 0.6 mg/ml dose; in particular APD increased by +15.7% (n=7) and MDP became less negative by -6.9% (4.0 mV, n=7). The time course of the spontaneous rate decrease proceeded with time constants of 18.4 s, 17.6 s, and 14.2 s for 0.2, 0.6 mg/ml respectively. The effect of the drug was reversible upon wash-out at all concentrations.

Conclusions: Our preliminary experiments provide the first evidence that TMXY, a drug largely used in the treatment of cardiac arrhythmias in TCM, acts as a dose-dependent spontaneous agent in SAN cells. These preliminary data also indicate that at doses of 0.2 mg/ml or less, the chronicotropic effect reflects a selective action on the early diastolic "pacemaker" depolarization, and thus suggests an effect on the If current. Since TMXY is a mixture of several pure compounds, we intend to proceed with the identification of the specific molecule (s) responsible for its chronotropnic the action. Financial support from Tianjin Zongxin Pharmaceutical Co. Ltd. Le Ren Tang Pharmaceutical Factory to MB and DD and from MURST grant PRIN 2010BWY8E9 to DD.

GW25-e5170

Estrogen inhibits cardiac hypertrophy via upregulation of B-type natriuretic peptide expression in primary neonatal cardiomyocytes

Ling-Ling Wu, Yi-Ti Chen, Yi-Ti Huang, Xin He, Yue Zhou, Jian-Gui He
Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou (510080), Guangdong Province, China

Objectives: The main purpose of this study was to determine whether estrogen could regulate cardiac B-type natriuretic peptide (BNP) expression and to examine signal transduction pathways (s) that are involved in this process. The role of estrogen-induced BNP expression in estrogen’s anti-hypertrophic effect will be also investigated in this study.

Methods: BNP expression and related signal pathway of neonatal rat ventricular cardiomyocytes (NRVCs) under estrogen treatment (E2, 0.1 nM~10 nM) was analyzed by real-time quantitative PCR, Western-blotting or immunofluorescence.

**Phenylephrine (PE) -induced cardiac hypertrophy under estrogen with or without BNP neutralizing antibody treatment was indicated by immunostain of cardiac troponin I (cTnI) and quantification of cardiomyocytes size, and by real-time quantitative RT-PCR of cardiac hypertrophic markers.

Results: Our results confirmed that estrogen treatment induced both cardiac BNP mRNA transcription (1.89±0.18 fold vs control, n=4, P<0.05) and protein translation (glycosylated proBNP, 3.93±0.36 fold vs control ; non-glycosylated proBNP, 1.78±0.20 fold vs control, n=4, P<0.05) in a concentration-dependent manner. Compared with control group, a higher percentage (63.3±0.39 fold vs control, n=3, P<0.01) of BNP expression positive NRVCs was also observed in estrogen treatment group, as indicated by BNP immunostaining. Our data also shown that upregulation of BNP expression under estrogen treatment was accompanied by Akt (2.10±0.16 fold vs control n=3, P<0.01) and p38 (1.87±0.39 fold vs control, n=3, P<0.05) phosphorylation but not Erk1/2.

Treatment of PI3-kinase/Akt inhibitor LY294002 or p38 MAPK inhibitor SB203580 decreased the estrogen-induced BNP expression in NRVCs (P<0.05).

Furthermore, while estrogen significantly reduced PE induced cardiomyocytes hypertrophy (cell-surface area, 2.17±0.136 fold vs PE+E2; beta-MHC mRNA, 1.76±0.10 fold vs PE+E2; alpha-Actin mRNA, 1.70±0.21 fold vs PE+E2, n=4, P<0.05), BNP specific neutralizing antibody partially reversed the ability of estrogen to block PE-induced cell size enlargement (cell-surface area vs PE+E2+antiBNP vs PE, P<0.05) and hypertrophic marker gene upregulation (beta-MHC mRNA, alpha-Actin mRNA, PE+E2+antiBNP mRNA, PE-E2+antiBNP vs PE, P<0.05) in NRVCs.

Conclusions: Our study shows that estrogen enhances intracellular BNP expression in primary cardiomyocytes. Both PI3-kinase/Akt and p38 MAPK signal pathways were involved in estrogen-induced BNP expression. Further, our data suggests that BNP partially mediates estrogen’s anti-hypertrophic effect on cardiomyocytes. Our study helps to explain the higher BNP level observed in normal cycling women than men and offers an insight into estrogen-mediated cardioprotection.

GW25-e5214

Angiotensin II Promotes Atherogenesis by Increasing the Expression of Connexin 43 in Dendritic Cells

NIE Wencheng, 5

Objectives: Angiotensin II contributes to atherogenesis and plaque vulnerability, but the mechanisms are not fully understood. Dendritic cells are vital both in the development of atherogenesis and atherosclerosis. To study the relationships between angiotensin II, dendritic cells, and atherosclerosis, we investigated the effects of angiotensin II on the expression of connexin 43 in dendritic cells.

Methods: Treatment of angiotensin II increased connexin 43 expression (P<0.05) and enhanced the induction of connexin 43 expression by lipopolysaccharide in mouse bone marrow-derived dendritic cells (P<0.05). The pro-atherogenesis effect were attenuated by the angiotensin II type 1 receptor blocker valsartan.

Results: In atherosclerotic plaques of mice expressing high levels of endogenous angiotensin II ApoE/-, generated by the 2-kidney-1clip method, connexin 43 expression in dendritic cells was also increased (P<0.01), accompanied by the upregulation of the dendritic cell maturation marker CD80 (P<0.01) and vulnerable plaque phenotypes. The in vitro and in vivo effects of angiotensin II on connexin 43 expression, as well as the proatherogenesis effect, were attenuated by the angiotensin II type 1 receptor blocker valsartan.

Conclusions: Angiotensin II may promote atherosclerosis and plaque vulnerability by increasing the expression of connexin 43 in dendritic cells and inducing the maturation of dendritic cells through the angiotensin II type 1 receptor, thus altering the inflammatory balance in favor of T helper 1 polarization.

GW25-e1648

The Ligament of Marshall: a conduit between left stellate ganglion and ventricle as well as a target for treating long QT syndrome induced by cesium chloride

Wang Songyan, Hong Jiang
Renmin Hospital of Wuhan University

Objectives: Histology and electrophysiology show that the ligament of Marshall (LOM) is richly innervated by sympathetic and parasympathetic nerves in humans and animals. However, the effect of LOM ablation on cardiac autonomic nervous system and local electrophysiology is still unknown. To explore it, we investigate the impact of LOM ablation on left stellate ganglion (LSG) stimulation induced blood pressure and ventricular electrophysiological changes as well as cesium chloride (Cs) induced ventricular arrhythmias.

Methods: In 24 anesthetized mongrel dogs, a left thoracotomy exposed the LSG and LOM. Step 1: In 6 dogs, the maximal systolic blood pressure percent change (MSBP%) and ventricular effective refractory period (ERP) change induced by LSG stimulation were measured before and after LOM ablation. Step 2: ventricular arrhythmias were assigned into ventricular tachycardia and ventricular fibrillation. Two Cs-induced ventricular arrhythmias were recorded and the concentration of Cs required to induce ventricular tachycardia was measured.

Results: LOM ablation could markedly attenuate the increase in the MSBP% and the decrease in ventricular ERP induced by LSG stimulation (P<0.05). During 50V LSG stimulation, the MSBP% before and after LOM ablation were 54.32% and 26.96%, respectively (P=0.003). Compared to the control group, the incidence of Cs-induced ventricular arrhythmias could be significantly decreased and the concentration of Cs required to induce ventricular tachycardia was significantly elevated in the LOM ablation group (1.25 vs 0.75mmol/kg, P=0.002).

Conclusions: Ventricular electrophysiological changes induced by LSG stimulation could be attenuated by LOM ablation. In Cs-induced LQTS model, LOM ablation could significantly decrease the incidence of ventricular arrhythmias and increase the ventricular tachycardia susceptibility. LOM may act as a conduit between left stellate ganglion and ventricle as well as a target for treating Cs-induced LQTS.

GW25-e2116

The effects of local cardiac sympathetic ablation on ventricular electrical instability after acute myocardial infarction

Jingjie Li, Juang Chen, Xiaoli Wu, Rui Jiang
The First Affiliated Hospital of Harbin Medical University

Objectives: Increased sympathetic activation after acute myocardial infarction (AMI) is thought to contribute to the potential for fatal arrhythmia. However, whether local cardiac sympathetic ablation can reduce ventricular arrhythmias (VA) is not known. The aim of this study was to investigate the impact of the coronary sinus (CS) and great cardiac vein peripheral nerve ablation on ventricular electrical instability in acute myocardial infarction dogs.

Methods: Twenty one anesthetized dogs were randomly divided into sham group (n=5) or MI group (MI-placebo group n=8; MI-ablation group n=8). The dogs were ligated with left anterior descending branch for MI induction. The incidence and duration of VA were monitored for 1h after ablation. The ventricular effective refractory period (VERP) and spatial distribution of refractory periods were measured before creating MI and in 2 h after ablation. Subsequently the ventricular fibrillation threshold (VFT) was determined in the dogs without spontaneous VF. Finally, the tissues from around CS and great cardiac vein were removed and indicating nerve by immunohistochemical staining of tyrosine hydroxylase (TH). Norepinephrine levels in the Coronary Sinus and ventricle tissues Stores as well as inflammation were also detected during the experiment. The other groups were the same as the MI-ablation group.

Results: The incidence and duration of VA in MI-ablation group were significantly lower than that of MI-placebo group (P<0.05), two dogs in only MI-placebo group died of spontaneous VF. Before creating MI, there were no statistical differences in the VERP and spatial distribution of refractory periods between the three groups, whereas the ventricular ERP of infarct size were prolonged and the spatial distribution of refractory periods were decreased when compared with MI-placebo group in 2 h after ablation (P<0.05). VFT also showed a increased trend (P<0.05). During the experiment, NE levels from CS
blood were reduced in MI-ablation dogs, but only slight changes in ventricular thickness and thinning of the ventricular wall, and the derangement myocyte in remodeled myocardial tissues, otherwise, induced the hyperplasia of fibril-connective tissues. In focuses with serious pathological change some myocytes were fragmented and some sarcomeres were partially or wholly lost. Masson staining indicated that myocardial inflammation of AST group than that of the CT-1-CP-injected groups, but was significantly lower than that of the latter at third (t=4.821, P<0.01) and forth week (t=2.019, P<0.05) and the body weight of the four-week group had exceeded slightly the control group; The heart weight of mice in CT-1-CP-injected groups were higher than that of the control group, but the heart to body weight ratio has no significant difference among them (P=0.1833, P>0.05). Intraperitoneal injection of CT-1-CP one week later, the mice began to appear enlarging of ventricular cavity and thinning of the ventricular wall, and the derangement myocardium and the blunted cross striation complicated with uneven staining of cytoplasm, which were scattered in the ventricular wall, were detected. After 2 weeks, the anatomical changes of ventricles became more serious and local hypertrophy of ventricular wall appeared, and the focuses of pathological changes of cardiomocytes increased. 3, 4 weeks later, the lesion was more obvious and the scope of focuses gradually expanded. In focuses with serious pathological change some myocytes were fragmented and some sarcomeres were partially or wholly lost. Masson staining also shows exaggerated growth of cardiomycocytes surrounding myofibrils and in the spaces where the myofibril array disturbed or sarcomere detected. Conclusions: Long-term exposure to CT-1-CP could promote cardiac hypertrophy and lead to cardiac remodeling in Kunming mice as well as the ultrastructural damage of cardiomycocytes in remodeled myocardial tissues, otherwise, induced the hyperplasia of fibril-connective tissues.

GW25-e0840
Inhaled Budesonide for the prevention of acute mountain sickness in unacclimatization young men: a double-blind randomized controlled trial
Li xiangjun, Huang lan
Cardiovascular Department of Xinqiao Hospital, Third Military Medical University

Objectives: Oral glucocorticoids can prevent Acute Mountain Sickness (AMS); however, these drugs are associated with multiple systemic side effects. The effects of inhaled Budesonide, an alternative AMS therapy, remain unknown.

Methods: The 80 healthy young male plain residents (17~33 years old) were recruited. Potential participants were excluded if they had a high altitude (>2500 m) exposure history in the last year or organic diseases such as congenital heart disease, arrhythmia, liver or kidney dysfunction, psychological or neurological disorder. The subjects were randomly assigned to receive inhalation of budesonide (BUD, 200 μg, bid), procaterol tablet (PT, 25 μg, bid), inhalation of budesonide/fomoterol (BUD/FTM, 160 μg/4.5 μg, bid) or placebo (1 tablet, bid) (n = 20 subjects, respectively). Subjects began treatment three days before an ascent to 3700 m from 500 m plan within 2.5 h by air. The treatment stopped after arrival. The Lake Louis AMS questionnaire, blood pressure (BP), heart rate (HR), and oxygen saturation (SpO2) were scored at 20 h, 72 h and 120 h following exposure to high altitude. Pulmonary function was measured after 20 h exposure. Results: Compared with placebo, BUD significantly reduced the incidence of AMS (70% vs. 25% at 20 h after exposure, P<0.05; 10% vs. 5% at 72 h, P>0.05; 10% vs. 5% at 120 h, P>0.05) without side effects, relative risk is 0.357, and the attributable risk is 0.45. SpO2 was higher in BUD, BUD/FTM and PT groups compared to placebo at 20 h (P = 0.0001). All subjects’ SpO2 dropped following ascent (89.1% vs 88.12%, P<0.01) and increased gradually but still lower at 120 h than that at plain (92.04% vs 98.1%, P<0.01). Pulmonary function was not different among the four groups at 20 h. There was no HAE or HACE reported. Conclusions: BUD can prevent AMS without side effects. The alleviation of AMS may be related to increased SpO2 rather than pulmonary function. The registration number of this clinical trial was ChiCTR-PRC-12002748.