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A notion of fibre bundle is described, which makes sense in any category with finite inverse 

limits. An assumption is that some of the structural maps that occur are descent maps: this is the 

categorical aspect of the notion of glueing objects together out of local data. Categories of fibre 

bundles are proved to be equivalent to certain categories of groupoid actions. 

Some applications in locale theory are indicated. 

Introduction 

We describe a notion of fibre bundle which makes sense in any category 8 with 

finite inverse limits. To get a sufficiently rich theory, one needs to assume that cer- 

tain of the maps entering into the definition are descent maps, in a well-known sense 

which we shall recapitulate. 

The theory applies to the case where F is the category of locales, cf. e.g. [4] (or 

[5], whose authors call them ‘spaces’). Here one has a good class of descent maps, 

namely the open surjections. This category contains the category of (sober) topo- 

logical spaces as a full subcategory, and our theory specializes here to the classical 

one. 

In any topos, the epimorphisms are descent maps, and for this special case we 

have elsewhere [7,8] developed some of the theory of principal fibre bundles from 

the viewpoint of what we called ‘pregroupoids’. We recapitulate this notion in the 

present more general setting and adjoin the general fibre bundle notion. Only under 

descent assumptions will a pregroupoid itself be a fibre bundle, and in that case it 

deserves the name ‘principal fibre bundle’ which thus here is a derived concept. This 

is why we insist on keeping the homemade word pregroupoid. 

The last section contains some observations on pregroupoids in the category of 

locales. 

1. Pregroupoids and fibre bundles 

We consider a category W with finite inverse limits. We shall talk about its objects 

as if they were sets. 
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To motivate the pregroupoid notion, consider a groupoid in G, i.e. a small 

category where all arrows are invertible. Let the ‘set’ of objects be B, and let * E B 
be a given base point. The set of all arrows x of @ with domain * comes equipped 

with a map II :X+ B, namely ‘take codomain’, and it carries a 4-ary relation /1 

given by 

/l(X,Y,Z,U) * y.x?=u.z& * x~‘.z=y~‘.u. 

It is convenient to represent the statement /l(x, y,z, U) by a diagram 

(1.1) 

.a u 

Y 

(1.2) 

The diagram suggests the symmetries of the situation 

~(X,Y,G~u) * /l(Z,4X,Y) @ /1(Y,X,U,Z) 

as well as the ‘book-keeping’ condition 

/1(X,Y,Z,U) * n(x) = n(z) and x(y) = n(u). (1.3) 

We now abstract the situation and give the formal definition of the notion of pre- 

groupoid. 

Let rr :X4 B be a given map. A pregroupoid structure on it is a 4-ary relation 

/1 on X (i.e. a subobject of X4) such that the following four conditions hold: 

(1) the book-keeping condition (1.3); 

(2) given any three elements satisfying the relevant book-keeping condition, there 

is a unique fourth element making up a /l-quadruple (e.g. if x,y,z are given with 

z(x)=II(z), there is a unique u with /l(x,y,z,u); 

(3) the relation -,, between pairs of elements of X, given by 

(x, z) --” (Y, u) iff Nx, Y, z, 4 

is an equivalence relation; 

(4) the relation _,I between pairs of elements of X, given by 

(x9 Y) -h (z, u) iff A (x7 Y? z? u) 

is an equivalence relation. 

If X-+ B is equipped with a /1 in this way, we shall feel free to say ‘X is a pre- 

groupoid over B’. 
Pregroupoids arise from groupoids, and, as a special case, any kind of ‘frame 

bundle’ carries a pregroupoid structure. Also, the universal covering space of a 

space is a pregroupoid over it, cf. Section 5 below. 

Let E : E-+ B be given, and let X be a pregroupoid over B. Let F be an object in 
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F. To equip E + B with the structure of a fibre bundle for X with fibre F means 

to give a map 

a:XxF+E (1.4) 

over B (meaning e(& f)) = z(x)) such that the induced map 

tF:XxF-+Xx,E (1.5) 

(given by a(x, f) = (x, a(x, f))) is invertible, and such that 

A(X,Y,Z>~)~(a(x,f,)=a(z,f2)) * a(JJ,f,)=a(u,f,). (1.6) 

Equivalent, more equational, formulations of (1.6) appear as (4.3) and (4.4) below. 

A fibre bundle for X is a triple (E + B, F, a), where a equips E + B with the struc- 

ture of a fibre bundle for X with fibre F; a morphism of fibre bundles for X, 

(E+B,F,a)+(E’+B,F’,a’) 

is a pair of maps, E-t E’ (over B), and F+ F’, compatible with the a’s. For a given 

pregroupoid X we thus get a category Fib(X) of fibre bundles for X. 

The intention is that an XE X with n(x) = b is a ‘frame’ at the point b of the space 

B; that /l(x, y, Z, u) means ‘the coordinate change from x to z is the same as from 

y to u’; that F is the coordinatizing space; and that a(x, f) is the point in E which 

in the frame x has coordinates f. 
More concretely, if G is the category of sets, or a topos, then we may form the 

‘concrete’ pregroupoid 

where an element of H over b E B is a bijective map F-, E,, from F to the b-fibre of 

E; the /1 for H is given by (1.1). To equip E -+ B with a fibre bundle structure for 

X with fibre F is then equivalent to giving a pregroupoid homomorphism over B, 

, 

& being essentially the exponential adjoint of the a of (1.4). 

2. Descent 

We consider again a category 8 with finite inverse limits. A morphism is called 

regular epi if it is a coequalizer of its kernel pair, and stable regular epi if pulling 

it back along an arbitrary map yields a regular epi. 
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Given a map y : X-+ C and a map q : Y + X. Consider the diagram (full arrows) 

I 
I 

rlXX 1 1 fl * 
I 
I 

PO i 
xx x:x-c C 

PI Y 

(2-l) 

By descent data for descent of Y along y we mean a map T : Y xc X+ Y xc X 

‘living over the twist map tw :Xx,X+ Xx,X via q xX’ (meaning 

where tw(xr, x2) = (x2, xl)), and such that the pair of maps (pe, p. 0 r) : Y xc X - Y is 

an equivalence relation on Y, with r as its symmetry. 

By a solution of such descent data we mean a pullback square as * in (2. l), such 

that (po, poor) is the kernel pair of q. We refer to the whole diagram (2.1) as a 

‘descent situation defining Q’. 

By a descent map y we mean a stable regular epi y : X-t C with the property that 

any descent data for descent along it has a solution. 

Since y is now assumed to be a stable regular epi, it follows that q is a (stable) 

regular epi, and so in particular is a coequalizer of its kernel pair (po, poo T) - from 

which in turn it follows that a solution for the descent data is uniquely determined 

up to a unique isomorphism. 

3. Group and groupoid associated to a regular pregroupoid 

By a regular pregroupoid we understand a pregroupoid X+ B such that X+ B 
and X+ 1 are descent maps. For such a pregroupoid we have the following two des- 

cent situations, defining objects X, and X*, respectively. The first one is 

51, (7 qu (xx,x)xx~xx,x-x, 

I*jj po jpo I 
xxx :X ’ 1 

(3.1) 

with T,(x, z, y) = (y, u, x), where u is the unique element satisfying A(x, y, z, u). (The 

book-keeping condition is here n(x) = Z(Z); then n(y) = X(U) follows.) The second 
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one is 

Xx,X , ,x-B 
71 

with rh (x, y, z) = (z, u,x), where u is again the unique element satisfying /l(x, y, z, U). 

(The book-keeping condition being again z(x) = z(z).) 

It is immediately clear that rU and rh do satisfy the conditions for descent data. 

In the case of rU, the relation (p,,, poorU) on Xx,X is exactly the subobject of 

(XxB X) x (X xB X) described by {(x, z, y, U) 1 A(x, y, z, u)} , which is an equivalence 

relation by assumption 3 on pregroupoids. Similarly, assumption 4 takes care of 

(3.2). 

Since the maps qu and qh are stable regular epis, it follows that one may repre- 

sent ‘elements’ in X, (respectively X*) by ‘elements’ of Xx,X (respectively 

XxX); denoting q”(x,z) by g and qh(x,Y) by Xy, we are back to the situation of 

[8] as far as the construction of algebraic structure on X* and X* is concerned (note 

that qu X qu and qh x qh are also stable regular epis, for genera1 categorical reasons, 

cf. e.g. [6, Proposition 5.111). Thus X, carries a group structure given by 

xzzw :=xw, -- 

and X* carries the structure of groupoid over B, with 

and 
do(xy) = 77 (x)9 %(xy) = n(r) 

yuoxy :=x0. 

The group X* acts fibrewise on X -+ B from the right, and the groupoid X* acts 

on X-B from the left, the actions being given by 

x.g=z 

and 
xy.x=y, 

respectively. 

Alternatively, since the right-hand square of (3.1) is a pullback, we have an iso- 

morphism 

xxx*~xx,x, (3.3) 

and composing with the projection to the second factor defines a map XxX, -+X 

over B, which is the action. We may further observe that this action provides X with 

the structure of a fibre bundle for X with fibre X*; the isomorphism required in 



238 A. Kock 

(1.5) is now just (3.3), and the proof of (1.6) is quite straightforward, but we shall 

not give it since it is a special case of a calculation in Section 4 below. When X-+ B 

is made a fibre bundle for X (with fibre X,) in this way, it deserves the name prin- 
cipal fibre bundle (for X). 

Similarly, since the right-hand square in (3.2) is a pullback, we have an iso- 

morphism 

x*x,xAxxx, (3.4) 

and composing it with the projection to the second factor defines the action of the 

groupoid X* on X. 

The two actions commute with each other, and both are principal homogeneous 

in a certain sense; at least for the X,-action, this is in the standard sense that “to 

any two elements in the same fibre, there is a unique group element which takes the 

one element to the other” (or, “X is torsor over B”). For, making the phrase in 

quotation marks into a diagrammatic statement yields exactly the statement that 

(3.3) is an isomorphism. 

For the X*-action, the statement that it is principal homogeneous can be for- 

mulated in an analogous way, whose diagrammatic expression is the statement that 

(3.4) is an isomorphism. It can also be formulated by saying that the category X of 

elements of the action X* on X is the codiscrete category XXX on X. 

We may remark that the category of regular pregroupoids over B may be describ- 

ed in an alternative way: 

Call a group action (Y : XX G + Xprincipal homogeneous if the pair consisting of 

p. : Xx G + X and cz has a coequalizer X -+X/G with kernel pair (po, a). And call 

the action regdar principal homogeneous if furthermore X+X/G and X+ 1 are 

descent maps. 

For any principal homogeneous action a : Xx G -X, X can be made into a pre- 

groupoid over X/G by postulating /l(x, y,xg, yg) for all x, y E X and g E G. If fur- 

thermore the action is regular, the pregroupoid is regular, and has X,gG 

canonically, and compatibly with the action, as is seen by comparing the coequalizer 

XxXxGZXxG+G with the top row of (3.1). 

On the other hand, if X is a regular pregroupoid over B, the isomorphism (3.3) 

shows that the X, action is principal homogeneous and with B=X/G, so that 

X-X/G is a descent map, and so the action is also regular. This gives the equi- 

valence of the category of regular pregroupoids over B with the category of regular 

principal nomogeneous actions (X, G, (x) with X/G G B. 

4. Fibre bundles as actions 

We shall prove that for a regular pregroupoid X, the category Fib(X) may be 

described in two other ways, namely as the category of left X*-, respectively left 
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X*-actions. The viewpoint of fibre bundles as groupoid actions is due to C. 

Ehresmann [2], see also [l]. 
Let (y : Xx F-t E equip E : E-+ B with the structure of a fibre bundle for X. We 

then have an inverse /? for d = (id,, a>, 

XxF+Xx,E, 

and j? may be written p= (id,, p> for a unique p : XX, E+ F. The fact that d and 

p are mutually inverse implies 

a&, f) = e * P&e) =f (4.1) 

for XE X, f e F, e E E and n(x) = e(e). Also clearly 

a(P(x, e)) = e; P(a(x, f 1) =f. (4.2) 

Finally, condition (1.6) is equivalent to A(x,y,z, u) implying either of 

P(x, a(z, f )) = Pti, 44 f )I, (4.3) 

0, P(x, e)) = a@, P(z, e)) (4.4) 

(where rc(x) = s(e). 

From these, we immediately deduce the well-definedness of the left action by the 

group X* on F given by 

xz-f =P(x, a(z,f I>, (4.5) 

as well as the well-definedness of the left action by the groupoid X* on E + B 
given by 

XY. e = a& Pk 4) (4.6) 

(in both cases with ~(x)=&(e)). 

We can now analyze the kernel pairs of a and /3: they are given by the actions 

of X* and X*, respectively. More precisely, we claim that the diagrams (4.7) and 

(4.8) below are exact (= kernel pair/coequalizer diagrams): 

(XxF)xX,$XxFAE (4.7) 

with t(x,f,g)=(x.g,gpl.f) for gEX,; 

(Xx, E) xX *%x~,ELF (4.8) 
I 

with r(x, e, h) = (/I. x, he e), for h E X* with J,(h) = n(x) = c(e). 

To see that (4.7) is a kernel pair diagram, first observe that if g=g, 

a(x.g,g-‘.f)=a(z,_w.f)=a(z,P(z,a(x,f)))=a(x,f) 

by (4.5) and (4.2), so (4.7) commutes. And if a(x, f,) = a(z, fi), then n(x) = rc(z), 
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and then by (4.1) and (4.9, g.ft =fi; therefore the element (x,f,,x~) E (XxF) xX, 

goes by p. and t to (x,f,) and (z,f& respectively. 

The proof that (4.8) is a kernel pair diagram is similar. The fact that (r and /? are 

coequalizers of their kernel pairs follows because by Xx F= Xx, E they sit in pull- 

back squares over X + B and X + 1, respectively, and these maps were assumed 

stable regular epis. 

Letting Act(X,) denote the category of objects F with a left X,-action, and 

similarly letting Act(X*) denote the category of objects E + B with a left action by 

the groupoid X *Z B, we thus have functors 

Fib(X) -+ Act(X,); Fib(X) + Act(X*) (4.9) 

sending the fibre bundle (E + B, F, a) into, respectively, F with the action (4.9, and 

E-* B with the action (4.6). 

Theorem 4.1. The functors (4.9) are equivalences of categories. 

Proof. We construct inverses for them. Let F~Act(x*). Then we have a descent 

situation, defining a and XAF, 

rl PO ;I 
Xx,X X 

,I 
B 

PI 

(4.10) 

with s(x,f,g) :=(x.g,g-’ .f,g-‘) and r(x,f,g) :=(x,x.g). The fact that the left- 

hand square is a pullback follows because 

by (3.3), and under this identification, r corresponds just to the projection. The fact 

that po, po. t is an equivalence relation with r as symmetry is immediate from the 

fact that it is derived out of the (diagonal) group action of X, on XX F. 
We shall see that the XA F thus constructed is made into a fibre bundle for X with 

fibre F by means of (x. First, because the right-hand square in (4.10) is a pullback 

(by the construction of XAF by descent), we immediately get that d (cf. (1.5)) is 

invertible. Let /3 : X xB (Xl\ F) + F be derived out of d ’ as above, SO that (4.1) 

and (4.2) hold. Then we can prove (4.9, or equivalently (by (4.1)) 

a(x,xz.f)=o(z,f), 

which however is clear, since cz coequalizes the group action. 

From validity of (4.5), however, immediately follows (4.3) and thus (1.6), so that 
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a indeed does make XA F into a fibre bundle with fibre F. Also validity of (4.5) tells 

us that the X,-action on F derived from this fibre bundle structure agrees with the 

given one on F. This implies that the composite Act(X,) + Fib(X) --t Act(X,) is the 

identity functor. 

Also the composite Fib(X) + Act(X,) -Fib(X) is isomorphic to the identity 

functor, for E and XA F both appear as coequalizer of the same parallel pair, name- 

ly (4.7), respectively top row of (4.10). This proves that the first functor in (4.9) is 

an equivalence. 

The proof that the second functor is an equivalence is quite similar, so we only 

indicate the construction of the inverse. Let (E+ B) eAct(X*). Then we have a 

descent situation defining p and XV E, 

(4.11) 

xxx :X ‘I 

with T(X, e, h) := (h . x, h. e, h- ‘) and T(X, e, h) := (x, h. x). First, because the right- 

hand square is a pullback (by the construction of XVE by descent), we get an iso- 

morphism d 

Xx(XvE)=Xx,E 

which, when followed by the projection to E, provides the latter with a structure 

(x of fibre bundle for X with fibre XVE. 

We leave the rest of the details of proving Fib(X)=Act(X*) to the reader. The 

arguments are ‘symmetric’ to those carried out for Fib(X)zAct(X*). In fact, this 

symmetry suggests that one might generalize to the case where X is structured with 

two maps X+ B, and X+ B,, with X* and X* becoming groupoids over B, and 

B2, respectively. 

For the convenience of possible future reference, we shall indicate also directly 

the composite equivalence Act(X,) r Act(X*): to FE Act(X,), associate XA F-t B 

with left action by X* given by 

xy*o(z,f)=u(u,f), (4.12) 

where /l(x, y, Z, u); and to E--t BE Act(X*), associate XV E with left action by X, 

given by 

xz. P@, 4 =P(Y, 4, (4.13) 

where again /l(x, y, z, u). q 
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5. Applications in locale theory 

In the category Lot of locales (cf. e.g. [4]; ‘spaces’ in the terminology of [5]), 

open surjections are known to be descent maps. We consider in what follows open 

pregroupoids 71 :X-+ B in Lot, meaning that 7c and X+ 1 are open surjections. 

Open pregroupoids are therefore in particular regular in the sense of Sections 3 and 

4, so the theory developed there applies. 

Although we shall not need it here, we may remark that the category of open pre- 

groupoids over B is equivalent to the category of principal homogeneous actions 

(X, G, cr) with X/G= B and with G -+ 1 and X+ 1 open surjections. For, if 

a:XxG-+Xisanaction,themapd:XxG 4 Xx G given by (x, g) - (xg, g) will be 

invertible, and satisfy pO. d = a, and since pO is an open surjection, so is CY. But 

then, by [9, 1.31, say, the coequalizer 7c :X +X/G will also be an open surjection. 

The rest of the construction of the equivalence is then as in Section 3. 

We shall develop only one issue concerning fibre bundles in locale theory, related 

to the notion of 6tale map (=local homeomorphism, in topological terms). Recall 

that ‘F discrete’ means ‘F+ 1 is Ctale’, (cf. [5]). 

Proposition 5.1. Let E : E + B be structured as a fibre bundle for X with fibre F. 

Then E is &tale iff F is discrete. 

Proof. The two squares in 

F-XxF=Xx,E-E 

X 
71 

are pullback diagrams, and the two bottom maps are open surjections. But pulling 

back along an open surjection preserves and reflects the notion of Ctaleness. 0 

Proposition 5.2. The following conditions on the pregroupoid X are equivalent: 

(i) z : X+ B is &ale. 

(ii) X* is discrete. 

(iii) (a,, a,) :X* -+ B x B is &tale. 

Proof. The equivalence (i) ti (ii) follows from the previous proposition since X ‘is’ 

a fibre bundle for X with fibre X* as observed in Section 3. Next, from the right- 

hand pullback square in (3.2) which defines X *, it follows by a pure diagrammatic 
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argument that the right-hand square in 

PI 
x-xxx-x* 

n I I XX77 I @,,a,) (5.1) 

B-XxB- 
PI rrxx BxB 

is also a pullback, and the two bottom maps are open surjections. But pulling back 

along an open surjection preserves and reflects the notion of Ctaleness, whence 7~ 

is Ctale iff (a,,~!),) is. 0 

Example. If a path-connected space B has a universal covering space 7c : X-t B, then 

X carries a canonical pregroupoid structure over B (and is &ale); namely, if 

x,y,z~X have z(x)=rc(z)=a and rc(y)=b, we define u with rc(~)=b as follows: 

choose a path y from x to y. Then rr 0 y is a path from a to b, and since z(z) = a, 

there is a unique lifting 6 of nay starting in z. The other end point of 6 is then u 

with A(x, y, z, u). It does not depend on the choice of path y since another path y’ 

from x to y is homotopic to y (X being simply connected), and then the resulting 

homotopy from n 0 y to ~0 y’ lifts to a homotopy from 6 to 6’. 

In this example, X* is canonically isomorphic to the fundamental groupoid of B, 
whereas X* is isomorphic to ‘the’ fundamental group (which is only defined up to 

non-canonical isomorphism; of course, ‘the’ universal covering space has the same 

defect). 

Pregroupoids satisfying the conditions of Proposition 5.2 deserve the name &tale 
pregroupoids. Note that if X is an etale pregroupoid, the groupoid X* will usually 

not be Ctale over B in the sense of a, : X* + B being Ctale. The proper word for pro- 

perty (iii) of the groupoid X* is that it is focally codiscrete. For recall that a groupoid 

CD over B is called codiscrete if (a,, ~3,) : @ -+ B x B is bijective. Since an Ctale map 

is ‘locally bijective’ (in a sense which can be made precise), we arrive at the word 

‘locally codiscrete’ if (&,,13,) is Ctale. 

Note that for any regular pregroupoid X, the map (a,, 8,) :X* + B x B is stably 

regular epic; this can be seen by contemplating the right-hand pullback square in 

(5.1) and using standard properties of stable regular epis (e.g. [6, Proposition 5.121). 

We finish by presenting some observations on classifying toposes for localic 

groupoids (cf. [9]). Recall that if @ is a groupoid over B in Lot, with a,, 13, : CD + B 
and B + 1 open surjections, then the classifying topos [B(a) may be described as the 

category of Ctale locales over B equipped with a left Q-action (thus it is a full sub- 

category of [@, Lot]). 

Theorem 5.3. Let X-+ B be a pregroupoid in Lot, with X-t B and X-t 1 open sur- 
jections. Then B(X*) = IB(X,). 
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Proof. The equivalence Act(X,)=Act(X*) of Theorem 4.1 takes discrete 

X,-actions to X*-actions which are Ctale over B, by Proposition 5.1. 0 

Corollary 5.4. Consider a groupoid @ over B in Lot. Assume that @ is locally co- 
discrete (i.e. (a,, a,) : CD + B x B is an &tale surjection) and assume that B has a 
global point * : 1 + B. Then IB(@) is equivalent to Set’ for a (discrete) group G. 
(For applications to base toposes other than Set, one should explicitly require B to 
be an open locale, [S].) 

Proof. We construct a pregroupoid X over B, namely by the pullback 

X *@ 

(a,,, a, ) 

B=lxB*x~_BxB 

cf. the motivating remarks at the beginning of Section 1. It is almost immediate that 

X*= @ as a groupoid over B. Also 71 is an etale surjection since (a,,&) is. By 

Theorem 5.3, we have the middle equivalence in the string 

5(Q)= B(X*)= 5(X,)=SetX*; 

and the last equivalence follows because Xy, is discrete, by Proposition 5.2. 0 

Remark 5.5. All these results relativize to base toposes other than Set. In particular, 

even if B does not have a global point, we may adjoin one generically by taking 

sh(B) as base topos. Then X* becomes a sheaf @* of groups on B (morally the sheaf 

of all vertex groups), and by the stability theorem of [9], Theorem 6.7, B(@,) is 

the pullback topos of lB(@) along sh(B) + Set. We deduce that 

sh(B) xSe, @Set, @) z sh(B)@*. 
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