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Abstract 

The aim of this study was to evaluate the effect of laser welding on fatigue properties of DP600 and DP980 steels in relation to

the microstructural change and softening in the heat-affected zone. The degree of softening was found to be stronger in the 

DP980 welded joints than in the the DP600 welded joints. While the severity of the soft zone in the welded DP980 joints led to a

significant decrease in the fatigue limit, the mild soft zone present in the DP600 welded joints had little or only a minor effect on 

the fatigue resistance. Despite the strong effect of the soft zone, the DP980 welded joints showed a similar or even longer fatigue

life than that of both the DP600 welded joints and DP600 base metal at higher stress amplitudes. Fatigue crack initiation was 

observed to occur from the specimen surface, and crack propagation was characterized by the characteristic fatigue striations 

coupled with secondary cracks.  

Keywords: Dual-phase steels; laser welding; microstructure; fatigue property; fractography. 

1. Introduction 

The constantly increasing environmental concerns regarding reducing CO2 emissions and the drive of having 

better fuel economy have already motivated the car manufacturer to use the lighter weight materials having better 

mechanical properties. In terms of both mechanical properties and safety standards dual-phase (DP) steels have 

already built a reputation in the automobile industry. The microstructure of DP steels consists of islands of 

martensite in the ferrite matrix with or without the presence of retained austenite [1-4] where the martensite 

accounts for strength and the ferrite is responsible for ductility. Usually DP steels are produced by intercritical 

annealing followed by a rapid cooling [5,6]. During the intercritical annealing small pools of austenite are formed in 

the ferrite matrix, which subsequently transform into martensite upon rapid cooling. A hard and deformation-

resistant phase is thus introduced into the microstructure during the austenite-to-martensite transformation and the 

accompanied volume expansion leads to the formation of mobile dislocations in the surrounding ferritic matrix. The 

mobility of these dislocations and their interactions with each other and with the grain/phase boundaries are 

responsible for the high initial work hardening rate and continuous deformation behavior in different grades of DP 

steels [6,7]. Therefore, compared with high strength low alloy (HSLA) steels, DP steels show a slightly lower yield 
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strength but a larger and more uniform total elongation, a higher initial work hardening rate in conjunction with a 

higher ultimate tensile strength.  

The use of DP steels in the automotive applications unavoidably involves both the welding and joining in the 

manufacturing process and the fatigue resistance of welded joints due to the integrity and safety requirements. In 

terms of flexibility and ease of automation laser welding has already gained its popularity in the field of welding and 

joining. However, previous studies [3,8-10] showed that laser welding of DP steels led to the formation of a soft 

zone in the subcritical area of the heat-affected zone (HAZ) and the tensile properties of the welded joints were 

significantly influenced by the presence of such a soft zone. Then it is a matter of concern on how this soft zone 

manipulates the fatigue properties of laser welded DP steel joints. While a significant amount of work has been 

reported on the tensile properties of laser welded DP steel joints [8,11,12], the knowledge on the fatigue properties 

of this kind of joints is limited. As components of structural applications the laser welded DP steel joints with soft 

zones might be prone to failure under cyclic loading condition, it is necessary to characterize the fatigue resistance 

and fracture characteristics under cyclic loading. The present study was, therefore, aimed at evaluating the fatigue 

properties with emphasis on the failure mechanisms of the laser welded DP steel joints. 

2. Materials and experimental procedure 

The materials used in the present study were 1.2 mm thick DP600 steel sheet with a galvannealed coating (46 

g/m2 at the top and 47 g/m2 at the bottom) and 1.2 mm thick DP980 steel sheet with a galvannealed coating (60 g/m2

at the top and 67 g/m2 at the bottom). The chemical composition of both DP steels is shown in Table 1. A Nuvonyx 

ISL4000L diode laser was used, with the selected welding parameters listed in Table 2. During welding ultra high 

purity argon was used as shielding gas at a flow rate of 16.5 l/min for DP600 steel and 14.2 l/min for DP980 steel 

with a welding speed of 1 m/min.  

Table 1. The composition of dual-phase steels selected in the present study. 

Steel grade C Mn Si Al Mo Cr Cu S P

DP600 0.09 1.84 0.36 0.05 0.01 0.02 0.03 0.005 0.01 

DP980 0.15 1.50 0.31 0.05 0.006 0.02 0.02 0.006 0.01 

Table 2. Welding parameters selected in the present study. 

Laser system Laser

source 

Laser power 

(kW) 

Welding speed 

(m/min) 

Focal length 

(cm) 

Beam dimension 

(mm2)

Nuvonyx ISL-4000 Diode 4 1 9 12 × 0.9 

The metallographic samples of the welded joints were cut perpendicular to the welding direction and were 

examined via a JSM-6380LV scanning electron microscope (SEM) coupled with energy dispersive X-ray 

spectroscopy (EDS) and 3D fractographic analysis. Vickers microindentation hardness tests were performed on the 

unetched samples with a load of 500 gm and a dwell time of 15 seconds. ASTM-E8M subsized specimens were used 

for the fatigue tests, and the geometry and dimensions of the fatigue test samples can be seen from Fig. 1 where the 

laser weld positioned at the center of gauge area was perpendicular to the loading direction. Fatigue tests were 

conducted using a fully computerized Instron 8801 servo-hydraulic testing system under load control and at more 

than 6 levels of stress amplitudes. A stress ratio of R ( min/ max) equal to 0.1, sinusoidal waveform and a frequency 

of 50 Hz were used in all tests. The fatigue fracture surfaces were examined using SEM to identify fatigue crack 

initiation sites and propagation mechanisms.   
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Name L A W R B C Thickness

Dimension (mm) 140 32 6 6 ~50 9.5 1.2 

Fig. 1. Geometry and dimensions of the fatigue test specimens used in the present study. 

3. Results and discussion 

3.1. Microhardness and microstructural evolution 

Fig. 2 shows the micro-indentation hardness profile of laser welded DP600 steel joints (Fig. 2(a)) and DP980 

steel joints (Fig. 2(b)). The fusion zone (FZ) of DP600 welded joints showed significantly higher hardness values 

compared to the base metal. The SEM examinations of this region indicated that the microstructure in the FZ of 

DP600 joints was predominantly martensitic in conjunction with some sideplate ferrite and bainite (Fig. 3(a)). The 

variable hardness appeared in the FZ of DP600 welded joints would reflect the presence of such a multi-constituent 

microstructure. The formation of martensite in the FZ was a result of rapid cooling of the weld pool in the laser 

welding process.  

(b)(a) Soft zone Soft zone 

HAZ

Soft zone Soft zone 

HAZ FZ HAZ Base

Metal

Base

Metal FZ HAZ

Fig. 2. Typical microhardness profile of the laser welded (a) DP600 steel joint and (b) DP980 steel joint.

It is seen from Fig. 2 that the hardness in the HAZ was lower than that in the base metal, which was called the 

soft zone as indicate in the figure. The presence of the soft zone in the HAZ of the DP600 welded joints (Fig. 2(a)) 

was mainly due to the tempering of pre-existing martensite [3,8,13] which corresponded the SEM image taken in 
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that area showing tempered martensite along with bainite in ferrite matrix (Fig. 3(b)). The hardness values in the 

base metal region of the DP600 welded joints were almost constant (Fig. 2(a)), since the microstructure (i.e., 

martensite in the ferrite matrix) in this region which was far from the center of FZ remained unaffected by the 

thermal cycle during laser welding, as shown in Fig. 3(c).  

(b)(a)

(d)(c)

(e) (f)

Fig. 3. SEM micrographs showing the microstructural change of laser welded DP steel joints, (a) DP600 fusion zone, (b) DP600 HAZ (soft zone), 

(c) DP600 base metal, (d) DP980 fusion zone, (e) DP980 HAZ (soft zone) and (f) DP980 base metal.
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In contrast, the FZ of DP980 welded joints only showed a slight increase in the hardness values compared to the 

corresponding base metal (Fig. 2(b)) in spite of the formation of mostly martensitic microstructure in the FZ as well 

(Fig. 3(d)). This was due to the fact that more original martensite was already existent in the DP980 base metal (Fig. 

3(f)) arising mainly from a higher amount of carbon content compared with the DP600 base metal (Table 1), thus 

giving rise to only a limited role of newly formed lath martensite in the FZ after laser welding. The quantitative 

image analysis indicated that the volume fraction of martensite was 0.25 in the DP600 base metal and 0.52 in the 

DP980 base metal, respectively, leading to a much higher hardness in the DP980 base metal (~300 HV) than that in 

the DP600 base metal (~190 HV), as shown in Fig. 2. However, the degree of softening was more severe and the 

size of the soft zone was larger in the case of DP980 welded joints than DP600 welded joints. This might be related 

to the following two possible reasons: First, the peak temperature experienced in the soft zone during laser welding 

seemed to cause partial disappearance of the pre-existent martensite, as seen in Fig. 3(e) showing the microstructure 

in the soft zone and Fig. 3(f) showing the microstructure in the DP980 base metal. It was likely that the peak 

temperature undergone in the soft zone could be high enough to promote either partial martensite-to-austenite solid-

state transformation while the subsequent cooling phase might not cause the backward austenite-to-martensite solid-

state transformation, or full martensite-to-austenite transformation in the heating phase and partial austenite-to-

martensite transformation in the cooling phase, or both partial transformations in the heating and cooling phases 

during the welding thermal cycle. Apparently the occurrence of the microstructural changes depended on the 

location within the welded joint in view of the complexity of the temperature changes (magnitude, rate, and 

gradient, etc.). Further studies in this aspect are needed. Second, if there was no occurrence of the above-mentioned 

solid-state phase transformations, the presence of the higher amount of martensite in the DP980 steel would lead to a 

larger scale of tempering of pre-existing martensite in the HAZ, giving rise to greater and more severe softening in 

this material.  

Fig. 4. S-N curves obtained for the base metals and laser welded joints of DP600 and DP980 steels tested at R = 0.1, 50 Hz and room temperature 

where the data points with arrow marks indicate the run-out samples. 
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3.2. Fatigue properties  

The S-N curves obtained from the load control fatigue tests are shown in Fig. 4. The DP600 welded joints were 

found to have a slightly lower fatigue limit than that of the base metal. Indeed the DP600 base metal and the welded 

joints showed almost the same fatigue life within the experimental scatter at higher stress amplitudes.  

This indicated that for the DP600 welded joints the slight drop in the hardness (Fig. 2(a)) in the HAZ was not 

large enough to reduce the fatigue strength at higher stress amplitudes, and thus the effect of laser welding on the 

fatigue resistance of DP600 steel could be negligible. On the other hand, DP980 welded joints showed a lower 

fatigue life than the DP980 base metal at both higher and lower stress amplitude levels. This corresponded well to 

the effect of the severe soft zone with a significant reduction in the hardness (Fig. 2(b)). Due to this significant 

softening in the HAZ the DP980 welded joints showed a considerably (~100 MPa) lower fatigue limit than the 

DP980 base metal. It should be noted that the softening in the DP980 welded joints was so severe that the lowest 

hardness in the soft zone was even slightly lower than that of DP600 welded joints (Fig. 2(a) and (b)), which also 

resembled to the findings from the fatigue tests (Fig. 4) where the DP980 welded joints showed even a fatigue limit 

lower than that of the DP600 welded joints. However, even though the negative effect of the soft zone on the fatigue 

resistance of the DP980 welded joints in comparison with the DP980 base metal was large, the fatigue life of the 

DP980 welded joints was basically longer than that of both the DP600 welded joints and DP600 base metal at the 

higher stress amplitudes (Fig. 4). 

The obtained fatigue limit and fatigue ratio are tabulated in Table 3. The fatigue limit of the DP600 welded joints 

was 12.5% lower than that of the base metal, whereas the DP980 welded joints showed a 40% reduction in the 

fatigue limit compared to the base metal. The fatigue ratio of the DP600 welded joints and DP980 welded joints was 

obtained to be 0.28 and 0.21 respectively. All these results suggested that although the presence of the severe soft 

zone in the DP980 welded joints showed a detrimental effect, the mild soft zone present in the DP600 welded joints 

only exhibited a minor effect on the fatigue strength after laser welding.   

Table 3. Fatigue limit and fatigue ratio of the base metals and laser welded joints of DP600 and DP980 steels tested at R = 0.1, 50 Hz and room 

temperature. 

Material type Fatigue limit (MPa) Ultimate tensile strength (MPa) Fatigue ratio 

DP600 base metal 200 634 0.32 

DP600 welded joints 175 630 0.28 

DP980 base metal 250 1095 0.23 

DP980 welded joints 150 724 0.21 

Table 4. Fatigue parameters f
’ and b for the base metals and laser welded joints of DP600 and DP980 steels tested at R = 0.1, 50 Hz and room 

temperature. 

Material type f
’ (MPa) b

DP600 base metal 415  -0.049 

DP600 welded joints 435 -0.057 

DP980 base metal 1019 -0.098 

DP980 welded joints 472 -0.057 

The obtained fatigue data plotted in Fig. 4 may be further fitted using the following Basquin type equation, 
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, (1) ( )b
fa N2'σσ =

where a is the stress amplitude, f
’ is the fatigue strength coefficient defined by the stress intercept at 2N =1, N is 

the number of cycle to failure and b is the fatigue strength exponent. The obtained values of f
’ and b of the base 

metals and laser welded joints of DP600 and DP980 steels tested at R = 0.1, 50 Hz and room temperature are given 

in Table 4. Apparently the fatigue life at a given stress amplitude was dependent on both fatigue strength coefficient 

f
’ and fatigue strength exponent b.

3.3. Fatigue failure location and mechanism 

In all cases of fatigue tests the DP980 welded joints failed in the soft zone/HAZ, regardless of the stress 

amplitudes applied. Unlike the DP980 welded joints, the DP600 welded joints failed in the HAZ at the stress 

amplitudes above 250 MPa, but failed far away from the weld centreline or FZ at the stress amplitudes below 250 

MPa. This distinct failure location was possibly due to the cyclic hardening mechanism involving deformation 

induced martensitic transformation [15-17]. The small amount of retained austenite existed in the DP steels 

transformed to martensite and gave additional strengthening effect during cyclic loading. These martensitic particles 

were considered to further pin the dislocations and dominate the deformation results [18]. In the low cycle fatigue 

(LCF) region, i.e., when the DP600 welded joints were tested at higher stress amplitudes, the dislocations could 

overcome these martensitic barriers; as the applied stress amplitude surpassed the pinning effect created by 

martensite a more cumulative damage occurred in the gauge section or in the HAZ in this case. But in the high cycle 

fatigue (HCF) region where the samples lasted for a longer period the applied stress amplitude was too low to 

overcome the pinning effect of the martensite and the area near the end of the gauge section became the weakest 

area due to potential stress concentration caused by the more or less notch effect. It was reported previously that the 

notch effect became stronger in the HCF region than the LCF region [19]. In contrast, in the case of DP980 welded 

joints the hardness reduction in the HAZ was so severe compared with the base metal (Fig. 2(b)) that the role of the 

deformation induced martensitic transformation would be masked. As a result, the soft zone in the HAZ directly 

represented the location of fatigue failure at all stress amplitudes. The fractographic examinations of the fracture 

surfaces revealed that fatigue crack initiation occurred from the specimen surface (Fig. 5(a) and (b)).  

If there was no severe defects existent inside the material, fatigue crack initiation normally occurred from the 

specimen surface since the surface was usually less constrained than the interior grains [20]. The back and forth fine 

slip movement during cyclic loading built up notches or ridges at the surface (i.e., extrusions and intrusions) [14]. 

These kinds of notches with a notch root of atomic dimension could act as a stress riser and might act as the 

nucleation site of the fatigue crack. The fatigue crack could also result from the surface roughness. The samples 

tested at lower stress amplitudes showed the crack initiation from the surface along with a larger crack propagation 

area on the fracture surfaces. The crack propagation was mainly characterized by typical fatigue striations in 

conjunction with secondary cracks (Fig. 5(c)). These striations, usually perpendicular to the propagation direction, 

occurred by a repeated plastic blunting-sharpening process due to the slip of dislocations in the plastic zone at the 

fatigue crack tip [14,21]. The spacing between these striations was smaller near the crack initiation site and became 

larger with increasing distance from the crack initiation site since the striation spacing was associated with fatigue 

crack propagation rate. The faster crack propagation at the center of the left part of fracture surface in Fig. 5(a) was 

characterized by characteristic dimple rupture (Fig. 5(d)), representing typical ductile type of fracture mode. The 

slightly elongated oval shaped dimples due to shear motion were the primary feature near the edge of the fracture 

surface representing final rapid failure of the sample.      
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(a) (b)

(c) (d)

Fig. 5. Fatigue fracture surface of a DP980 welded joint tested at a stress amplitude of 225 MPa, (a) Overall view of the fracture surface at a low 

magnification, (b) crack initiation site, (c) crack propagation area, and (d) fast fracture area. 

4. Conclusions  

1. Rapid cooling of the weld pool in the laser welding process resulted in mostly lath martensitic structure in the 

fusion zone (FZ) which gave rise to higher hardness values significantly for DP600 steel and modestly for DP980 

steel. A soft zone located in the heat-affected zone (HAZ) was observed. This was partly due to the occurrence of 

tempering of martensite pre-existent in the DP steels, and partly due to the disappearance of the original martensite 

in the form of solid state transformations caused by the high peak temperature experienced in the HAZ. The degree 

of softening was found to be more severe in the DP980 welded joints compared with the DP600 welded joints due to 

the higher volume fraction of martensite pre-existing in the DP980 base metal.  

2. As a result of the presence of a severe soft zone the DP980 welded joints showed a significant decrease in the 

fatigue limit compared with the corresponding base metal. On the other hand, the presence of a mild soft zone in the 

DP600 welded joints were observed to have little or only a minor effect on the fatigue limit and fatigue life at higher 

stress amplitudes within the experimental scatter. However, even though the negative effect of the severe soft zone 

on the fatigue resistance of the DP980 welded joints was large, the fatigue life of the DP980 welded joints was still 

equivalent to or even longer than that of both the DP600 welded joints and DP600 base metal at higher stress 

amplitudes. 

3. The DP980 welded joints failed exclusively in the soft zone, irrespective of the applied stress amplitudes. The 

DP600 welded joints failed in the soft zone at the stress amplitudes above 250 MPa, but failed in the base metal area 

at the stress amplitudes below 250 MPa. This distinct failure location appeared to be associated with deformation 

induced martensitic transformation.  
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4. Fatigue crack initiation was observed to occur from the specimen surface, and crack propagation was mainly 

characterized by the characteristic fatigue striations coupled with secondary cracks, with the striation spacing 

increasing with increasing distance from the crack initiation site. 
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