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A spectral sequence for string cohomology
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Abstract

Let X be a 1-connected space with free-loop space�X. We introduce two spectral sequences converging to-
wardsH ∗(�X;Z/p) andH ∗((�X)hT;Z/p). TheE2-terms are certain non-Abelian-derived functors applied to
H ∗(X;Z/p). WhenH ∗(X;Z/p) is a polynomial algebra, the spectral sequences collapse for more or less trivial
reasons. IfX is a sphere it is a surprising fact that the spectral sequences collapse forp = 2.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Let X be a space and let�X denote its free-loop space. The circle groupT acts on�X by rotation of
loops. The associated homotopy orbit space�XhT is sometimes called the string space.

For a manifoldX, the free-loop space has numerous geometric applications. The most basic one is
via the Morse theory approach to the study of geodesic curves onX [12]. But later the free-loop space
has also been used to study diffeomorphisms. The main connection is through Waldhausen’s algebraic
K-theory of spaces, the so-calledA-theory[23]. One of the more refined versions of this connection relates
pseudo-isotopies at a primep to thep-local spectrumT C(X, p).

∗ Corresponding author. Tel.: +45 89 42 34 58; fax: +45 86 13 17 69.
E-mail address:marcel@imf.au.dk(M. Bökstedt).

1 I. Ottosen was supported by the University of Copenhagen and by the European Union TMR network ERB FMRX CT-97-
0107: AlgebraicK-theory, Linear Algebraic Groups and Related Structures.

0040-9383/$ - see front matter� 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.top.2005.04.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81935668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/top
mailto:marcel@imf.au.dk


1182 M. Bökstedt, I. Ottosen /Topology44 (2005) 1181–1212

One can defineT C(X, p) as the following homotopy pullback[2]:

T C(X, p) −−→ �∞(�X+)∧p� 1−�p

�
�∞(�(�XhT)+)∧p

T rf−−→ �∞(�X+)∧p

where�p is the map which winds a loopp times around itself andTrf is the S1-transfer map. The
spectrumT C(X, p) is an approximation to Waldhausen’sA(X), which in turn gives a hold on the stable
pseudoisomorphism space ofX. Even if the application we have in mind is for differentiable manifolds,
it does not matter toTC thatX is a manifold, as opposed to just a homotopy type.

There is a third train of thoughts, inspired by analogies with mathematical physics, especially with
quantum field theory and string theory. In[9] Sullivan and Chas introduced algebraic structures relating
H∗(�X;Z) andH∗(�XhT;Z). These algebraic structures use thatX is a closed manifold. More precisely,
the Thom class of the tangent bundle ofX plays an essential role.

The approach of this paper is homotopy theoretical. We start with a homotopy-typeX, and try to recover
the modulop cohomology of�X and of the Borel construction�XhT by homotopy theoretical spectral
sequences. We return to the construction of these spectral sequences later in the introduction. The most
essential properties are

• It is derived from a cosimplicial space similar to the cosimplicial space used to define the Adams
spectral sequence forX.

• TheE2 page of the spectral sequence is computed by non-Abelian homological algebra in the sense of
André–Quillen homology.

One competing homotopy theoretical approach to the cohomology of the Borel construction is the
following three-step method. Let us call it the fibration method.

• Compute the cohomology of�X using a spectral sequence (Serre or Eilenberg–Moore) belonging to
the fibration�X → PX → X.

• Compute the cohomology of�X using the previous result and the fibration�X → �X → X.
• Compute the cohomology of the�XhT using the previous result and the fibration�X → �XhT → BT.

The Eilenberg–Moore spectral sequence can be thought of as the spectral sequence for the cohomology
of a cosimplicial space, just like our spectral sequence. But the particular cosimplicial object is entirely
different from ours. We use a Postnikov decomposition ofX, which is not visible in the Eilenberg–Moore
situation.

We feed two types of information into the machine, which are not used by the fibration approach. Firstly,
we use that one can explicitly compute the cohomology in the case whenX is an Eilenberg–MacLane
space. Secondly, we use non-Abelian homological algebra to keep track of how the pieces of our resolution
fit together. In particular, a large part of the information about theT-action on�X is internal to the machine
of non-Abelian homological algebra. So this part is taken care of already in theE2 page.
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This does not necessarily say that our method is better than the fibration method, however
it does suggest that out method is different. So there might be reasons to use both methods
simultaneously.

One possible drawback of our method is that non-Abelian-derived functors are hard to calculate. We
have little use for a spectral sequence with an incalculableE2 page.

In order to show that this is not so bad, we do a few comparatively simple computations at the end of this
paper. We show that at least for the sphereSn we can solve the non-Abelian homological algebra, and that
the spectral sequence we get seems different from whatever comes out of the fibration method. We find
it quite surprising and encouraging that in this case the spectral sequence converging toH ∗(�XhT; F2)

collapses. We do not actually prove this collapsing by methods internal to our spectral sequence. We
quote the result which is known from other methods, and check by a counting argument that there is no
room for differentials.

Because of the homotopy theoretical nature of our work, it seems likely that we can use it to study
T C(X) for spacesXwith pleasant cohomology. We intend to study this closer, but have not yet done so.

It seems more difficult, but potentially very profitable to compare our computations with the Sullivan–
Chas theory. We have not done this either yet.

What we have done[4], is that we have studied the spectral sequence converging toH ∗(�X; F2) in the
very special case whereH ∗(X; F2) is a truncated polynomial algebra on one generator. We can compute
the relevantE2 page, and this makes it possible to compute the Steenrod algebra action onH ∗(�X; F2)

whenX is one of the projective spacesCPn, HPn or the Cayley projective planeCaP 2. The results led
us to conjecture a stable splitting of�X for these spaces. We have later proved this splitting by unrelated
methods.

The rest of the introduction is a more detailed description of our method. Consider the cohomology
H ∗(X; Fp) as given. The purpose of this paper is to study the cohomology of the free-loop space and of
its homotopy orbit space.

In some cases, it is relatively easy to compute this cohomology. For instance, suppose thatX is an
Eilenberg–MacLane space. Then there is a homotopy splitting�X 
 X × �X. The space�X is also a
Eilenberg–MacLane space, so that the cohomology of�X is known.

The cohomology of the homotopy orbits�XhT is more difficult to compute. However, this is achieved
in [3,20].

The main idea of the present paper is to use these computations to study the case of a generalX. In
essence, this application is done using a Postnikov decomposition ofX. From our point of view, the
simplest case is whenX is a product of Eilenberg–MacLane spaces, and correspondingly, the morek-
invariants a spaceX has, the more complicated it appears. In particular, the spheres are very complicated
spaces for this approach.

Formally, we will study two spectral sequences converging towards the cohomology groupsH ∗(�X; Fp)

and H ∗(�XhT; Fp). Both spectral sequences have origin in the Bousfield homology spectral
sequence[5].

This is a remarkable spectral sequence that under fortunate circumstances converges to the homology
of the total space of a cosimplicial space.

Let X be a simply connected space. We re-write its Postnikov tower as a cosimplicial space, whose
total space is thep-completion ofX. This cosimplicial space is thecosimplicial resolutionRX of Xwith
R = Fp. Given this, we can form two cosimplicial spaces�RX and(�RX)hT by applying the functors
�(−) and�(−)hT in each codegree. The total space of these new cosimplicial spaces are the completions
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of �X, respectively(�X)hT. These cosimplicial spaces have associated Bousfield homology spectral
sequences{Êr} and{Er}, respectively.

For 1-connectedX it is well known that{Êr} converges strongly towardsH∗(�X; Fp). We show that
{Er} converges strongly towardsH∗(�XhT; Fp) under the additional assumption thatH∗(X; Fp) is of
finite type.

For the dual cohomology spectral sequences,{Êr} and{Er}, we give an interpretation of theE2 page.
The idea is that theE1 page are given by the cohomology of the respective functors (from spaces to spaces)
applied to the Eilenberg–MacLane spaces. This cohomology can, according to[3,19,20]be written as
certain functors�, respectively,� (from algebras with a certain extra structure to algebras), applied to the
cohomology of the Eilenberg–MacLane spaces.

This means that theE2 page is the homology of a chain complex, where the chains are given by
these functors applied to the cohomology of Eilenberg–MacLane spaces. Since the cohomology of an
Eilenberg–MacLane space turns out to be a free object, we can compute theE2 pages as derived functors.

To be precise, they are the non-Abelian derived functor of� applied toH ∗(X; Fp), respectively, the
non-Abelian derived functor of� applied toH ∗(X; Fp). WhenH ∗(X; Fp) is a polynomial algebra the
higher derived functors vanish so the spectral sequences collapse at theE2 page.

So far, the results are of a theoretical nature. As a concrete example, we finally study the caseX = Sn

andp = 2. We develop homological algebra sufficient for computing the relevantE2 pages.
For these spaces, there are other methods for computingH ∗(�X; Fp) andH ∗(�XhT; Fp).
Comparing ourE2 pages with these results, we show that forX= Sn with n�2 andp= 2 the spectral

sequences collapse at theE2 pages.
We emphasize that this collapsing is not something to be expected a priori. Since spheres have com-

plicated Postnikov systems, from the point of view of our spectral sequences, one would naively expect
that these spectral sequence could have many non-trivial differentials. So maybe the collapsing happens
for a larger class of spaces?

Finally, we want to thank the referee of Bökstedt and Ottosen[3] for suggesting that we look at the
Bousfield spectral sequence in this connection.

2. Cosimplicial spaces with group actions

In this section, the category of simplicial sets is denotedS and the category of cosimplicial spaces
cS. ForA,B ∈ S we let map(A,B) = BA denote the simplicial mapping space. We writecA for the
constant cosimplicial space with(cA)n = A for eachn.

The categorycS is a model category with weak equivalences, cofibrations and fibrations as described
in [7, Chapter X, Section 4]. The fibrations are here defined in terms of matching spaces. By this definition
it is clear that iff : A → B is a fibration inS thenc(f ) : cA → cB is a fibration incS.

The categorycS is in fact a simplicial model category in the sense of Quillen[21] with X ⊗K ∈ cS,
XK ∈ cS and Map(X,Y) ∈ S defined as follows forK ∈ S andX,Y ∈ cS:

(X ⊗K)(�)= X(�)×K,

(XK)(�)= X(�)K ,
Map(X,Y)n = HomcS(X ⊗ �n,Y),
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where� is a morphism in the simplicial category and�n = �[n] ∈ S denotes the standardn-simplex. In
caseK is a simplicial group, this notation potentially clashes with the usual notation for fixed points. In
this paper, we are not going to consider fixed points.

Let � be the cosimplicial space which in codegreen equals�n. We write�[m] for the simplicialm-
skeleton and put�[∞] = �. By Bousfield and Kan[7, Chapter X, Section 4.3]we have that�[m] is a
cofibrant cosimplicial space for each 0�m�∞.

The total space of a cosimplicial spaceX is defined as TotX =Map(�,X). If X is not fibrant, the total
space might not give you the “right” homotopy type. In this case, we have to choose a fibrant replacement
Z of X, that is a weekly equivalent, fibrant cosimplicial space, and defineTotX = TotZ.

When the cosimplicial space has a group action one can choose an equivariant fibrant replacement in
the following sense:

Lemma 2.1. Let G be a simplicial group andX a cosimplicial G-space. Assume thatXn is a fibrant
simplicial set for eachn�0.Then there is a cosimplicial G-spaceE(X) such that bothE(X) andE(X)/G
are fibrant cosimplicial spaces and such that the following diagram commutes:

EG× X ∼−−→ E(X)�
�

EG×GX
∼−−→ E(X)/G.

(1)

Here the vertical maps are the obvious quotient maps, and the horizontal maps are weak equivalences.
The mapE(X) → E(X)/G is the pullback of the principal G-fibrationcEG → cBG over a fibration
E(X)/G → cBG.

Proof. By the model category properties we can factor the projection mapEG×GX → cBG as a
compositep ◦ i wherei : EG×GX → Y is a cofibration which is simultaneously a weak equivalence,
andp : Y → cBG is a fibration.BG is a fibrant space by Goerss and Jardine[11, Lemma I.3.5.]socBG

is a fibrant cosimplicial space. ThusY is fibrant.
We form the codegree wise pullback of� : cEG → cBG overp.

E(X) E(X)
p̄−−→ cEG� �p

� �

�
E(X)/G

�−−→ Y
p−−→ cBG.

The principalG-action (in the sense of May[16]) of G onEG gives a principalG-action onE(X)n for
eachn and an isomorphism of cosimplicial spacesE(X)/G�Y as written in the diagram. By Bousfield
[5, Lemma 7.1]it follows that�p is a fibration soE(X) is fibrant.

By the pullback property we can lift the mapi to a mapEG×X → E(X). This constructs the missing
map in the statement of the lemma. In each codegree (1) is a map of fibrations overBGand we conclude
that the lifting is also a weak equivalence.�
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Theorem 2.2. LetX be a fibrant cosimplicial space and G a simplicial group. ThenXG is a cosimplicial
G-space and we can form its equivariant fibrant replacementE(XG).There is a natural map of fibrations
of simplicial sets for each m with0�m�∞:

(Totm X)G −−→ EG×G(Totm X)G −−→ BG

∼
� ∼

� �

�
Totm(E(XG)) −−→ Totm(E(XG)/G) −−→ Totm(cBG).

The first and middle vertical maps are weak equivalences and the right vertical map is an isomorphisms
of simplicial sets.

Proof. SinceX is fibrant eachXn is fibrant such that(XG)n = (Xn)G is fibrant by May[16, Theorem
6.9.]. Hence we can formE(XG).

By May [16, Definition 20.3 and Theorem 20.5], we have that the top vertical line in the diagram
is a fiber bundle. By Bousfield and Kan[7, Chapter X, Section 5]SM7 and the fact that�[m] ∈ cS

is cofibrant we see that ifp : A → B is a fibration incS then Totm(p) : Totm A → Totm B
is a fibration inS. In particular Totm X is fibrant sinceX is fibrant and by May[16, Theorem 6.9]
we have that(Totm X)G is fibrant. Thus the top vertical line is a Kan fiber bundle and hence a fi-
bration by May [16, Lemma 11.9]. The lower vertical line is Totm of a fibration and hence a
fibration.

There is a commutative diagram as follows:

(Totm X)G −−→ EG×G(Totm X)G −−→ BG

�

� fm

� �

�
Totm(XG) −−→ Totm(EG×GXG) −−→ Totm(cBG)

∼
�

�
∥∥∥∥∥

Totm(E(XG)) −−→ Totm(E(XG)/G) −−→ Totm(cBG).

The isomorphism(Totm X)G�Totm(XG) is one of the axiomatic isomorphisms in a simplicial model
category. We examine it closer in order to definefm. A cosimplicial space is a diagram inS and the
axiomatic isomorphism comes from the corresponding isomorphism in the simplicial model categoryS.
ForA,B,C ∈ S this isomorphism is the composite

F : (AB)C�AB×C�AC×B�(AC)B .
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The following commutative diagram shows thatF is equivariant with respect to actions of the
monoidCC :

CC × (AB)C
◦−−−−−−−−−−−→ (AB)C�

�
CC × AB×C i2×1−−→ (B × C)B×C × AB×C ◦−−→ AB×C�

�
CC × AC×B i1×1−−→ (C × B)C×B × AC×B ◦−−→ AC×B�

�
CC × (AC)B

i×1−−→ (CC)B × (AC)B
(◦)B−−→ (AC)B.

ForZ ∈ S the action ofG on the mapping spaceZG is defined by

G× ZG ad(�)×1−−−−−−−−−−−→ GG × ZG ◦−−→ ZG,

wheread(�) denotes the adjoint of the product� : G×G → G. So takingC =G in the above we see
thatF isG-equivariant such that we have a map

1×GF : EG×G(A
B)G → EG×G(A

G)B .

The composite

EG× (AG)B
i×1−−→ (EG× AG)B −−→ (EG×GA

G)B

factors throughEG×G(A
G)B and we compose with 1×GF to get a map

EG×G(A
B)G → (EG×GA

G)B .

The morphismfm in the theorem is codegree wise given by this map.
The lower part of the diagram is induced by (1). The functor(−)K : cS → cS whereK ∈ S

preserves fibrations as one sees from the right lifting property by taking adjoints. HenceXG is fibrant
sinceX is fibrant. By Bousfield and Kan[7, Chapter X, Section 5.2]we get a weak equivalence when
applying Totm to a weak equivalence between fibrant cosimplicial spaces. Thus, the left vertical map is
a weak equivalence. The result follows.�

3. Bousfield homology spectral sequences

Let X be a fibrant cosimplicial space and letA be an Abelian group. In[5], Bousfield constructs a
spectral sequence{Er(X;A)} with the homology of the total spaceH∗(TotX;A) as expected target.

The precise convergence statement is as follows. Recall that there is a tower of fibrations

· · · → Totm X → Totm−1X → · · · → Tot0X
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with inverse limit TotX. Hence for eachn�0 there is a tower map

Pn(X) : {Hn(TotX;A)}m�0 → {Hn(Totm X;A)}m�0,

where the domain tower is constant. LetA ⊗ X denote the cosimplicial simplicial Abelian group with
(A⊗X)mt =A⊗Xm

t whereA⊗ S=⊕x∈SA for a setS. Bousfield forms the double normalized complex
and letT (A⊗X) denote its total complex. It is filtered by subcomplexesFmT (A⊗X) and the quotient
complexT (A⊗ X)/Fm+1T (A⊗ X) is denotedTm(A⊗ X). A comparison map is defined

�n(X) : {Hn(Totm X;A)}m�0 → {HnTm(A⊗ X)}m�0

and the following result is proved:

Lemma 3.1. {Er(X;A)} converges strongly toH∗(TotX;A) if and only if the tower map�n(X)◦Pn(X)
is a pro-isomorphism for each n.

If �n(X) is a pro-isomorphism for eachn thenX is called anA-pro-convergent cosimplicial space and
{Er(X;A)} is called pro-convergent.

We are interested in two special cases of this spectral sequence. LetR = Fp be the field onp elements
wherep is a fixed prime. For a spaceX we letRX denote the cosimplicial resolution ofX in the sense
of Bousfield and Kan[7]. Note that(RX)n = Rn+1X. The free-loop space onX is by definition the
simplicial mapping space�X = map(T, X) where we takeT = BZ. By applying� codegree wise we
get a cosimplicial space�RX. We can also form theT homotopy orbit space codegree wise and get the
cosimplicial space(�RX)hT. We are interested in the Bousfield homology spectral sequences for these
two spaces. As a corollary of Bousfield[6, Proposition 9.7]we have

Proposition 3.2. If X is a 1-connected and fibrant space thenPn(�RX) and �n(�RX) are pro-
isomorphisms for each n and the spectral sequence{Er(�RX; Fp)} converges strongly to
H∗(�(X∧

p ); Fp)�H∗(�X; Fp).

4. Strong convergence

In this section, we discuss convergence of the Bousfield homology spectral sequence associated with
(�RX)hT whereR = Fp, the field onp elements. We useFp coefficients everywhere unless stated
otherwise.

Proposition 4.1. If X is a 1-connected space then�X and�XhT are nilpotent spaces. In fact we have
�1(�X)—respectively, �1(�XhT)—central series as follows for eachi�1:

�i(�X) ⊇ �i(�X) ⊇ 0, (2)

�i(�XhT) ⊇ �i(�X) ⊇ �i(�X) ⊇ 0. (3)

Proof. (2) The fibration�X → �X → X splits by the constant loop inclusionX → �X.So we
have�i(�X)��i(�X)⊕ �i(X) for i�1. Since the action of the fundamental group is natural there is a
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commutative diagram

�1(�X)× �i(�X) −−→ �i(�X)�
�

�1(�X)× �i(�X) −−→ �i(�X)�
�

�1(X)× �i(X) −−→ �i(X).

We have�1(�X)��1(�X) sinceX is simply connected. Further,�1(�X) acts trivially on�i(�X)

since�X is an H-space. From the upper square we see that the filtration (2) is�1(�X)-stable and that
the action on�i(�X) is trivial. Since�1(X) = 0 the lower square shows that the action on the quotient
�i(�X)/�i(�X) is trivial.

(3) The fibration�X → �XhT → BT splits by a map constructed from a constant loop.So fori�1 we
have�i(�XhT)��i(�X)⊕�i(BT). Especially�1(�XhT)��1(�X). By naturality there is a commutative
diagram

�1(�X)× �i(�X) −−→ �i(�X)�
�

�1(�XhT)× �i(�XhT) −−→ �i(�XhT)�
�

�1(BT)× �i(BT) −−→ �i(BT).

From the upper square we see that the inclusion�i(�XhT) ⊇ �i(�X) is �1(�XhT)-stable. The lower
square shows that the action on the quotient�i(�XhT)/�i(�X) is trivial. The rest of the sequence (3) has
the desired properties since (2) is a�1(�X)-central series. �

Proposition 4.2. If X is a1-connected space then the cosimplicial spaceE(�RX)/T isR-pro-convergent.

Proof. This is a consequence of Bousfield[5, Section 3.3]. Via the weak equivalences from Lemma 2.1
we can use the filtrations from Proposition 4.1 in each codegree. Then the quotients are�i(cBT), �i(RX)

and�i+1(RX). Hence, it suffices to show that whenn�0 the following holds for allm�0:

�m�m+n(cBT)= 0, �m�m+n(RX)= 0, �m�m+n+1(RX)= 0. (4)

Clearly�m�m+n(cBT)=0 unlessm+n=2 and�2−n�2(cBT)=0 since the differentials in the complex
�2(cBT) are alternating zeros and ones.

By the proof of 6.1 in[7, Chapter I, and Proposition 6.3 in Chapter X], the following holds for any
spaceY: If H̃i(Y ;R)= 0 for i�k then�j�i(RY )= 0 for i�k + j . So the last two groups in (4) are also
zero. �
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Lemma 4.3. Let X be a1-connected space withH∗X of finite type.ThenRsX is1-connected andH∗RsX

is of finite type for each0�s <∞.

Proof. By Bousfield and Kan[7, Chapter I, Section 6.1]we have thatRsX is 1-connected for eachs.
Recall thatR(Y ) is weakly equivalent to

∏∞
n=0K(H̃n(Y ), n) for any spaceY. So ifH∗Y is of finite type

thenH∗R(Y ) is also of finite type and�iR(Y )= H̃iY is finite for eachi. Hence�i((RX)m) is finite for
eachi, m. From Shipley[22, Lemma 2.6]we see that�i(RsX) is finite for eachi, s. By the Postnikov
tower forRsX we conclude thatH∗RsX is of finite type for eachs. �

Lemma 4.4. Let · · · → C∗(2) → C∗(1) → C∗(0) be a sequence of maps of chain complexes. If for all
n and m the groupCn(m) is finite, then there is an isomorphismHn(lim C∗(m))� lim Hn(C∗(m)) for
all n.

Proof. This is a consequence of the lim1-sequence which can be found in, e.g.[15, Appendix A.5.] �

Proposition 4.5. Let G be a simplicial group such thatHn(BG) is finite for all n. Let{Zm} be a tower
of G-spaces and putZ∞= lim Zm.Assume that{H∗(Z∞)}m�0 → {H∗(Zm)}m�0 is a pro-isomorphism
and thatHn(Zm) is finite for all integersn,m. Then{H∗((Z∞)hG)}m�0 → {H∗((Zm)hG)}m�0 is also a
pro-isomorphism.

Proof. We have Leray–Serre spectral sequences for 0�m�∞ as follows:

E2(m)=H∗(BG;H∗(Zm)) ⇒ H∗((Zm)hG).

The tower map{E2
i,j (∞)}m�0 → {E2

i,j (m)}m�0 is a pro-isomorphism for alli and j by the pro-

isomorphism in the assumption, soE2
i,j (∞)� lim E2

i,j (m). By the assumptions on the homology ofBG

andZm, the groupsE2
i,j (m)withm<∞are all finite so by Lemma 4.4 we haveE3

i,j (∞)� lim E3
i,j (m). By

inductionEr
i,j (∞)=lim Er

i,j (m) for eachr and since we have only finite filtrationsE∞
i,j (∞)� lim E∞

i,j (m).
SinceE∞

i,j (m) is finite for alli, j,m it follows that{E∞(∞)}m�0 → {E∞(m)}m�0 is a pro-isomorphism.
The result follows by the five lemma[7, Chapter III, Section 2.7]. �

Theorem4.6. If X is a1-connected fibrant spacewithH∗(X; Fp) of finite type, then theBousfield spectral
sequence{Er(�RXhT; Fp)} converges strongly toH∗(�(X∧

p )hT; Fp)�H∗(�XhT; Fp).

Proof. Let Y = �RX. The spectral sequence abuts to the homology of the total space of a fibrant
replacement ofYhT. We choose the fibrant replacementE(Y)/T from Lemma 2.1. The total space of
this fibrant replacement is weakly equivalent to�(X∧

p )hT by Theorem 2.2. Thus, the spectral sequence
converges to the stated result if it converges. (A Leray–Serre spectral sequence argument shows that we
can remove thep-completion inside the homology group.)

We have shown in Proposition 4.2 that the spectral sequence is pro-convergent. Hence, it suffices to
show thatPn(E(Y)/T) or equivalentlyPn(YhT) is a pro-isomorphism. By the Eilenberg–Moore spectral
sequence and Lemma 4.3 we see thatH∗(Tots Y)�H∗(�RsX) is of finite type for each 0�s <∞. By
Propositions 4.5 and 3.2 the result follows.�

We now change to cohomology. The dual of Proposition 3.2 and Theorem 4.6 is as follows:
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Theorem 4.7. If X is a 1-connected and fibrant space withH∗X of finite type then we have strongly
convergent Bousfield cohomology spectral sequences

Êr ⇒ H ∗(�X), Ê
−m,t
2 = (�mH ∗(�RX))t ,

Er ⇒ H ∗((�X)hT), E
−m,t
2 = (�mH ∗((�RX)hT))

t .

We are going to give a description of theE2-terms as certain non-Abelian derived functors evaluated
atH ∗X. In the next section we set up categories relevant for this purpose.

5. The categoryF and the simplicial model categorysF

For a fixed primep we let A denote the modp Steenrod algebra andK the category of unstable
A-algebras. The category of non-negatively graded unitalFp-algebras with the property thatA0 is a
p-Boolean algebra (i.e.x = xp for all x ∈ A0) is denotedAlg. In [19,20], we defined a categoryF with
forgetful functorsK → F → Alg as follows:

Definition 5.1. An object inF consists of an objectA in Alg which is equipped with anFp-linear map
	 : A → A with the following properties:

• |	x| = p(|x| − 1)+ 1 for all x ∈ A.
• 	x = x when|x| = 1 and ifp is odd and|x| is even then	x = 0.
• 	(xy)= 	(x)yp + xp	(y) for all x, y ∈ A.

FurthermoreA is equipped with anFp-linear map
 : A → A with the following properties:

• |
x| = |x| + 1 for all x ∈ A.
• 
 ◦ 
 = 0 and if|x| = 0 then
x = 0.
• 
(xy)= 
(x)y + (−1)|x|x
(y) for all x, y ∈ A.

If p = 2 we require that
 = 0. A morphismf : A → A′ in F is an algebra homomorphism such that
f (	x)= 	′f (x) andf (
x)= 
′f (x).

Remark 5.2. For an objectK ∈ K the map	 : K → K is defined by	x = Sq |x|−1x whenp = 2 and
	x = P (|x|−1)/2x whenp is odd and|x| is odd. The map
 is the Bockstein operation whenp is odd.

There is an obvious product onF. There is also a coproduct. For two objectsA andA′ in F the
coproductA⊗ A′ is the tensor product of the underlying objects inAlg equipped with maps	 ∗ 	′ and

 ∗ 
′ as follows:

	 ∗ 	′(x ⊗ y)= 	(x)⊗ yp + xp ⊗ 	′(y),


 ∗ 
′(x ⊗ y)= 
(x)⊗ y + (−1)|x|x ⊗ 
′(y).

In appendices in[19,20] we showed thatF is complete and cocomplete. It is well known thatK and
Alg also possess these properties.

In the followingR denotes any one of the categoriesK, F or Alg. Let nFp denote the category of
non-negatively gradedFp-vector spaces. The free functorSR : nFp → R is by definition the left adjoint
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of the forgetful functorR → nFp. If X is a non-negatively graded set we putSR(X)=SR(Fp⊗X) where
Fp ⊗X is the free gradedFp-vector space with basisX. In particular we have free objectsSR(xn) on one
generatorxn of degreen.

Remark 5.3. Note thatSF(V )= SAlg(V̄ ) where

V̄ = V ⊕ ⊕
i�1

	iV ∗�2, p = 2,

V̄ = V ⊕ 
V ∗�1 ⊕ ⊕
i�1,�∈{0,1}


�	i(
V even,∗�2 ⊕ V odd,∗�2), p >2.

In the following, we use[21, Chapter II, Section 4, Theorem 4]to see that the categorysR of simplicial
objects inR is a simplicial model category. The arguments are standard but we have included them
anyhow.

We start by verifying thatR has enough projectives. Recall that a morphismf : X → Y in a category
D is called aneffective epimorphismif for any objectT and morphism� : X → T there is a unique

 : Y → T with 
 ◦ f = � provided� satisfies the necessary condition that� ◦ u = � ◦ v whenever
u, v : S ⇒X are maps such thatf ◦ u= f ◦ v [21, Chapter II, Section 4, proof of Proposition 2].

Proposition 5.4. Let f be an effective epimorphism in a categoryD. Then f is an epimorphism. Further-
more if f can be factored asf = i ◦ p where i is a monomorphism then i is an isomorphism.

Proof. Assume thatf is an effective epimorphism. Letr, s be two parallel arrows such thatr ◦ f = s ◦ f .
Then for� = r ◦ f we have
 ◦ f = � both for
 = r and
 = s. So by uniquenessr = s. Thusf is an
epimorphism.

Assume thatf = i ◦ p wherei is a monomorphism. Iff ◦ u= f ◦ v for two parallel arrowsu, v then
i ◦p ◦ u= i ◦p ◦ v andp ◦ u=p ◦ v sincei is a monomorphism. Hence there exists an arrowj such that
p= j ◦f . Now, i ◦ j ◦f = i ◦p=f which implies thati ◦ j = id sincef is an epimorphism. Furthermore
i ◦ j ◦ i = id ◦ i = i which implies thatj ◦ i = id sincei is a monomorphism. �

Proposition5.5. Amorphism inR is aneffective epimorphism if andonly if it is a surjectiononunderlying
graded sets.

Proof. Any morphismf : X → Y may be factored asX → f (X) → Y where the last map is clearly a
monomorphism. So by the previous proposition we see that an effective epimorphism is surjective.

Assume thatf : X → Y is a surjection and let
 : X → T be a map which satisfies
 ◦ u = 
 ◦ v

wheneverf ◦ u = f ◦ v. For a givenx ∈ ker f let n = |x| and defineu, v : SR(xn)⇒X by u(xn) = x

andv(xn)= 0. Thenx ∈ ker
 so we have kerf ⊆ ker
. Now � : Y → T with �(f (a))= 
(a) is well
defined and has� ◦ f = 
. �

Recall that in[21] an objectP in a categoryD is calledprojectiveif HomD(P,−) sends any effective
epimorphism to an surjection of hom-sets.

Proposition 5.6. The following statements hold in the categoryR:

1. SR(V ) is projective for any object V innFp.
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2. R has enough projectives.
3. {SR(xn)|n�0} is a set of small projective generators.

Proof. (1) By taking adjoints and applying the previous proposition we see thatSR(V ) is projective. (2)
LetU : R → nFp denote the forgetful functor and letXbe an object inR. The adjoint� : SR(U(X)) → X

of idU(X) is surjective and hence an epimorphism. ThusR has enough projectives.
(3) The objectSR(xn) is projective by (1). Since HomR(SR(xn),X) = Xn we have that HomR

(SR(xn),−) commutes with filtered colimits soSR(xn) is small. Finally, for two different morphisms
f, g : X⇒Y there exist anx ∈ X such thatf (x) �= g(x). Hence, the mapSR(xn) → X with xn  → x

wheren= |x| separatesf andg such that we have a set of generators as stated.�

We now turn to the categorysR of simplicial objects inR. The homotopy groups of an objectR in R

is defined as the homology�∗R =H∗(R, �) where� is the differential given by the alternating sums

� =
n∑

i=0

(−1)idi : Rn → Rn−1.

Especially�0(R) = R/(d0 − d1)R and we have a morphism
 : R → �0(R) in sR given by projection
where we view�0(R) as a constant simplicial object.

If f : X → Y is a morphism inR we can form the diagram

X

−−−−−−→ �0X

f

�
��0f

Y

−−−−−−→ �0Y.

One says thatf is surjective on componentsif the map fromX into the pullback(f, 
) : X → Y×�0Y�0X

is a surjection. Note that if�0(f ) is an isomorphism thenf is surjective on components if and only iff is
surjective.

Proposition 5.7. There is a simplicial model category structure onsR as follows:

• f : X → Y is a weak equivalence if�∗f : �∗X → �∗Y is an isomorphism.
• f : X → Y is a fibration if it is surjective on components and an acyclic fibration if it is both a fibration
and a weak equivalence.

• f : X → Y is a cofibration if for any commutative diagram

X −−−−−−→ A

f

�
�p

Y −−−−−−→ B,

(5)

where p is an acyclic fibration, there exist a mapY → A making both triangles commute.

The solution to the arrow diagram(5) is unique up to simplicial homotopy under X and over B.
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Proof. This is a special case of Quillen[21, Chapter II, Section 4, Theorem 4.]. The uniqueness part
follows from[21, Chapter II, Section 2, Proposition 4]. �

Note that the cofibrations are described in an indirect way. The concept of an almost free map make
up for this weakness. See[21, Chapter 2, p. 4.11, Remark 4]and the main source[17, Section 3], [18,
Section 2]or [10].

Definition 5.8. Let �̃ denote the subcategory of the simplicial category� with objects[n]={0,1, . . . , n}
for n�0 and morphisms the order preserving maps which sends 0 to 0. An almost simplicial object in a
categoryC is a functor from̃�

op
to C.

Definition 5.9. A morphismf : X → Y in sR is calledalmost freeif there is an almost simplicial
subvector spaceV ofYsuch that for eachn�0, the natural mapXn ⊗ SR(Vn) → Yn is an isomorphism.

Proposition 5.10. (1)Almost free morphisms are cofibrations insR.
(2)Any morphismA → B may be factored canonically and functorially asA → X → B where the

first map is almost free and the second is an acyclic fibration.
(3)Any cofibration is a retract for an almost free map.

Proof. Similar to the one given in[17]. See also[10]. �

Definition 5.11. A simplicial resolution of an objectA ∈ sR is an acyclic fibrationP → A in sR with
P cofibrant. An almost free resolution ofA is an acyclic fibrationQ → A such thatFp → Q is almost
free.

Note that an almost free resolution is a resolution and that almost free resolutions always exist by the
above proposition.

Theorem5.12.Let X be a spacewithmodp homology of finite type. LetRX be the cosimplicial resolution
of X. ThenH ∗(RX) is an almost free resolution ofH ∗X in each of the categoriesK, F andAlg.

Proof. This is a reformulation of well-known results. We use[11, Chapter VII, Example 4.1]as a ref-
erence. LetRXdenote the simplicialR-module defined by applying the freeR-module functor on each
simplicial degree. Let� : X → RX be the map defined byx  → 1x.

As in [11] one gets a cosimplicial spaceRX with (RX)n = Rn+1X and augmentation� : cX → RX.
Note thatRX is a version of the Bousfield–KanR-resolution ofX [7]. The homologyH∗(�;R)= �∗(R�)
is computed in[11] and taking the dual of this, we find that�∗ induces an isomorphism as follows:

�sH
∗(RX)�

{
H ∗X, s = 0,
0, s >0.

Thus�∗ is surjective and hence a fibration. Furthermore�∗ is a weak equivalence.
In order to show thatFp → H ∗(RX) is almost free, we must find an almost simplicial subvector space

V of H ∗(RX) such thatSR(Vn) → H ∗(RX) is an isomorphism for eachn�0.
As remarked in[11] the cosimplicial mapsdi for i�1 andsi for i�0 for RX are all morphisms

of simplicial R-modules. Thus, it suffices to show thatH ∗(RX)n is a free object inR for eachn�0.
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But it is well known thatRX is homotopy equivalent to a product of Eilenberg–MacLane spaces of
the typeK(Fp,m). The cohomology of such a product is a free object inK and hence also inF
andAlg. �

6. Derived functors

In this sectionR denotes any of the categoriesK, F or Alg. We use the following notation for
non-Abelian-derived functors:

Definition 6.1. The homology of an objectR in sR with coefficients in a functorE : R → Alg is
defined by

H∗(R;E)= �∗E(P ),

whereP → R is a simplicial resolution ofR. By the uniqueness statement in Proposition 5.7 this
homology theory is well defined and functorial inR.

For an objectR ∈ R we also writeR for the corresponding constant simplicial object insR. We are
mainly interested inH∗(R;E) whenR ∈ R. These homology groups have certain properties which we
now describe.

LetE,F andGbe functors fromR toAlg with natural transformationsE → F → G. LetV : Alg →
nFp denote the forgetful functor to gradedFp-vector spaces. If 0→ VE → VF → VG → 0 is short
exact when evaluated on any free object inR then we get a long exact sequence

· · · ← Hi(R;E) ← Hi(R;F) ← Hi(R;G) ← Hi+1(R;E) ← · · · .

The 0th homology group is sometimes given by the following result:

Lemma 6.2. Define the categoryR′ as we defined the categoryR except that we do no longer require
that objects are unital. LetF : R′ → Alg′ be a functor. Assume that for every surjective morphism
f : A → B in R′ the following two conditions hold:

1. F(f ) : F(A) → F(B) is surjective,
2. F(kerf ) → F(A) → F(B) is exact,

thenH0(C;F)�F(C) for all objects C inR.

Proof. LetP → C be a simplicial resolution ofC. From the normalized chain complexN∗F(P ) we see
thatH0(C;F)= F(P0)/F (d1)(kerF(d0)).

The mapsd0, d1 : P1 → P0 are surjective by the simplicial identities. Leti : kerd0 → P1 denote the
inclusion. By Condition 2 we have that kerF(d0)= F(i)(F (kerd0)). Thus

F(d1)(kerF(d0))= F(d1) ◦ F(i)(F (kerd0)).
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There is a commutative diagram

kerd0
d ′1−−−−−−→ d1(kerd0)

i

�
� j

P1
d1−−−−−−→ P0,

whered ′1 denotes the restriction ofd1 andj is the inclusion. By this diagramF(d1)◦F(i)=F(j)◦F(d ′1).
FurthermoreF(d ′1)(F (kerd0))= F(d1(kerd0)) by Condition 1. So we have

F(d1)(kerF(d0))= F(j) ◦ F(d ′1)(F (kerd0))= F(j)(F (d1(kerd0)))

andH0(C;F)= F(P0)/F (j)(F (d1(kerd0))).

Using Conditions 1 and 2 on the projection mapP0→P0/d1(kerd0) we see thatH0(C;F)�
F(P0/d1(kerd0))�F(C). �

The following result can sometimes be used to compute derived functors of pushouts. We denote the
pushout of a diagramA′ ← A → A′′ in sR or R byA′⊗AA

′′.

Proposition 6.3. LetE : R → Alg be a functor.
(1) If there is a natural isomorphismE(A′ ⊗A′′)�E(A′)⊗E(A′′) for objectsA′, A′′ in R then there

is an isomorphism

H∗(B ′ ⊗ B ′′;E)�H∗(B ′;E)⊗H∗(B ′′;E) for B ′, B ′′ ∈ R.

(2)Assume that there is a natural isomorphism

E(A′⊗AA
′′)�E(A′)⊗E(A)E(A′′)

for diagramsA′ ← A → A′′ in R. Assume further thatB ′ ← B → B ′′ is a diagram inR such that
TorBi (B

′, B ′′)= 0 for i >0.Then there is a first quadrant spectral sequence as follows:

E2
i,j = TorH∗(B;E)

i (H∗(B ′;E),H∗(B ′′;E))j ⇒ Hi+j (B
′⊗BB

′′;E).

Proof. Let P → B be a simplicial resolution ofB. By the factorization axiom we get a diagram

P ′ � P � P ′′

Q∼ Q∼ Q∼

B ′ ←− B −→ B ′′,
where the vertical maps are acyclic fibrations and the upper horizontal maps are cofibrations as indicated.
SinceFp → P is a cofibration and cofibrations are stable under composition we see thatP ′ → B ′ and
P ′′ → B ′′ are simplicial resolutions.

Now form the map of pushoutsf : P ′⊗PP
′′ → B ′⊗BB

′′ and consider the corresponding map of
derived tensor products in the sense of Quillen[21, Chapter II, Section 6]:

Lf : P ′⊗PP
′′ = P ′⊗L

PP
′′ → B ′⊗L

BB
′′.
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By Quillen [21, Chapter II, Section 6, Theorem 6], there are second quadrant spectral sequences

Tor�∗Pi (�∗P ′, �∗P ′′)j ⇒ �i+j (P
′⊗PP

′′),

Tor�∗Bi (�∗B ′, �∗B ′′)j ⇒ �i+j (B
′⊗L

BB
′′).

The above diagram gives a map of spectral sequences which is an isomorphism at theE2-terms. HenceLf is
a weak equivalence. By the Corollary following Quillen’s Theorem 6 we have thatB ′⊗L

BB
′′ → B ′⊗BB

′′
is a weak equivalence. Thusf is itself a weak equivalence.

Sincef is surjective it is a fibration. Since the pushout of a cofibration is a cofibrationP ′ → P ′⊗PP
′′

is a cofibration and thus the domain off is cofibrant. Sof is a simplicial resolution.
For the proof of (1) takeB=Fp and applyEcodegree wise. The result follows by the Eilenberg–Zilber

theorem. For the proof of (2) applyE codegree wise. The result follows by Quillen’s Theorem 6.�

If one knows that the higher derived functors vanish on a certain class of objects, they can be used to
compute derived functors by the following result.

Theorem 6.4. LetE : R → Alg be a functor and letA ∈ R. Assume thatQ�̃A is an acyclic fibration
in sR and that

Hi(Qj ;E)=
{
E(Qj) i = 0,
0 i >0.

ThenH∗(A;E)��∗E(Q).

Proof. We have shown thatsR is a simplicial model category. SossR is a simplicial model category by
the Reedy structure[11, Chapter VII, Section 2.13]. A fibration inssR is especially a level fibration and a
cofibration is especially a level cofibration by Goerss and Jardine[11, Chapter VII, Section 2.6]. A weak
equivalence is a level weak equivalence by definition.

We use a dot to denote a simplicial direction in the following. LetcQ•• denote the object inssR defined
by (cQ)ij =Qj for all i. LetP•• be a resolution ofcQ•• i.e. (Fp)••�P••�̃cQ••.

We have that(Fp)•�Pi•�̃Q• for eachi by the above. By composition with the acyclic fibrationQ•�̃A

we see thatPi• is a resolution ofA.
So the horizontal homotopy ofE(P••) is given by�hjE(Pi•)=Hj(A;E). We apply vertical homotopy

on this and obtain

�vi �
h
jE(P••)�

{
Hj(A;E) i = 0
0 i >0.

We also have thatP•j is a resolution ofQj for eachj. So�vi E(P•j )�Hi(Qj ;E) which equalsE(Qj)

for i = 0 and equals 0 fori >0. We apply horizontal homotopy on this and obtain

�hj�
v
i E(P••)�

{
�jE(Q•) i = 0,
0 i >0.

Thus both spectral sequences associated withE(P••) collapse and the result follows.�
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7. TheE2 terms seen as derived functors

In [3,19,20]we introduced a functor� : F → Alg as follows:

Definition 7.1. �(R) is the quotient of the free graded commutative and unitalR-algebra on generators
{dx|x ∈ R} of degree|dx| = |x| − 1, modulo the ideal generated by the elements

d(x + y)− dx − dy, d(xy)− d(x)y − (−1)|x|xd(y),
d(	x)− (dx)p, d(
	x).

There is a differentiald : �(R) → �(R) given byd(x)= dx for x ∈ R.

Note that forp = 2 the Bockstein is trivial so here the functor� is the same as the functor which we
originally denoted�	.

It was shown that there is a lift to a functor� : K → K and that this lift is nothing but Lannes’
division functor(− : H ∗(T))K. In particular there is a morphism�(H ∗X) → H ∗(�X) for any spaceX
which is an isomorphism whenH ∗X is a free object inK.

An other functor� : F → Alg was also introduced in[3,19,20]as follows:

Definition 7.2. Let p = 2 and letA be an object inF. TheF2-algebra�(A) is the quotient of the free
graded commutativeF2-algebra on generators

�(x), q(y), �(z), u for x, y, z ∈ A

of degrees|�(x)| = 2|x|, |q(x)| = 2|x| − 1, |�(x)| = |x| − 1 and|u| = 2, by the ideal generated by the
elements

�(a + b)+ �(a)+ �(b),
�(a + b)+ �(a)+ �(b),
q(a + b)+ q(a)+ q(b)+ �(ab),
�(xy)�(z)+ �(yz)�(x)+ �(zx)�(y),
�(xy)+ �(x)�(y)+ uq(x)q(y),
q(xy)+ q(x)�(y)+ �(x)q(y),

�(x)2 + �(	x),

q(x)2 + �(	x)+ �(x2	x),

�(x)�(y)+ �(xy2),
�(x)q(y)+ �(x	y)+ �(xy)�(y),
�(x)u,
�(1)u+ u,

wherea, b, x, y, z are homogeneous elements inAwith |a| = |b|.
Definition 7.3. Let p be an odd prime and letA be an object inF. TheFp-algebra�(A) is the quotient
of the free graded commutativeFp-algebra on generators

�(x), q(y), �(z), u for x, y, z ∈ A
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of degrees|�(x)| = p|x| − �(x)(p − 1), |q(y)| = p|y| − 1− �(y)(p − 3), |�(z)| = |z| − 1 and|u| = 2
by the ideal generated by the elements

�(a + b)− �(a)− �(b)+ �(a)

p−2∑
i=0

(−1)i�(a)i�(b)p−2−i�(ab),

�(a + b)− �(a)− �(b),

q(a + b)− q(a)− q(b)+ �̂(a)

p−1∑
i=1

(−1)i
1

i
�(aibp−i),

(−1)�(x)�̂(z)�(x)�(yz)+ (−1)�(y)�̂(x)�(y)�(zx)+ (−1)�(z)�̂(y)�(z)�(xy),

�(xy)− (−up−1)�(x)�(y)�(x)�(y),

q(xy)− (−up−1)�(x)�(y)(u�(y)q(x)�(y)+ (−u)�(x)�(x)q(y)),

q(x)p − up−1q(	x)− �(
	x),

�(x)�(y)− �(xyp)− �(x	y)+ �(xy)�(y)p−1,

�(x)q(y)− �(xyp−1)�(y)− �(x
	y),
�(x)u,
�(1)u− u,
q(
	x),
�(xp),

wherea, b, x, y, z ∈ A with |a| = |b|. Furthermore,�(x) = 1 for |x| odd,�(x) = 0 for |x| even and
�̂(x)= 1− �(x).

The functor� also lifts to an endofunctor onK and there is a natural morphism�(H ∗X) → H ∗(�XhT)

which is an isomorphism ifH ∗X is a free object inK. For details on this see[3,19,20].
Via Theorem 5.12, we can now restate Theorem 4.7 in an appropriate form.

Theorem 7.4. If X is a 1-connected and fibrant space withH∗X of finite type then we have strongly
convergent Bousfield cohomology spectral sequencesÊr ⇒ H ∗(�X) andEr ⇒ H ∗(�XhT) with the
followingE2 terms:

Ê
−m,t
2 �Hm(H

∗(X);�)t and E
−m,t
2 �Hm(H

∗(X); �)t .
We now introduce other functors in order to study the derived functors of�. Recall that the functorsL

and�̃ from F to Alg are defined byL(R)= �(R)/(u) and�̃(R)=L(R)/(�(x)|x ∈ R).

Proposition 7.5. For each objectR ∈ F there are isomorphisms as follows:H0(R;�)��(R),H0(R; �̃)
��̃(R) andH0(R;L)�L(R).

Proof. We use Lemma 6.2 to prove this. By their definitions we may consider�, �̃ andL as functors
from F′ to Alg′.
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Let A be an object inF′ and letI ⊆ A be an ideal. We must verify Conditions 1 and 2 in Lemma
6.2 for these functors wheref : A → A/I is the natural projection. We do this for the functorL. The
verification for the other functors is similar but easier.

The mapL(f ) is surjective with kernel

J = (�(x)− �(y), q(x)− q(y), �(x)− �(y)|x − y ∈ I ) ⊆ L(A),

soL(A)/J�L(A/I). We must check thatL(I )= J .
The inclusionL(I ) ⊆ J holds since�(0)= q(0)= �(0)= 0.
For the inclusionL(I ) ⊇ J assume first thatp=2. Since� andqare additive we have that�(x)−�(y)

and�(x)− �(y) lie in L(I ). Furtherq(x)− q(y)= q(x − y)+ �(xy) but�(xy)= �(x(y − x)) so also
q(x)− q(y) ∈ L(I ). Thus the inclusion holds.

Forp odd� is additive,� is additive on elements of even degree andq is additive on elements of odd
degree. For|x| = |y| odd we have

�(x)− �(y)= �(x − y)+
p−2∑
i=0

�(x)i�(y)p−2−i�(xy)

and again�(x(y − x))= �(xy) such that this lies inL(I ). For |x| = |y| even we have

q(x)− q(y)= q(x − y)− �


p−1∑

i=1

1

i
xiyp−i




so it suffices to see thaty − x divides the sum inside the�(−). The following equation inFp[x, y] shows
that this is the case:

xy(y − x)

p−3∑
k=0

akx
kyp−3−k =

p−1∑
i=1

1

i
xiyp−i whereak =

k∑
j=0

1

j + 1
.

The equation holds since by Euler’s sum formula
∑p−1

n=1 n= 0 modulop. �

Definition 7.6. Let Z,B,H : F → Alg denote the functors given by

Z(R)= ker(d), B(R)= im(d), H(R)=Z(R)/B(R),

whered is the differential on�(R).

Recall from[3,19,20]that there are natural transformations of functors� : �̃ → H andQ : L → Z.
It was shown that ifA ∈ F is a free object, or its underlying algebra is polynomial, then�A andQA are
isomorphisms. We can now give a nice interpretation of the functorL, which was originally defined by
generators and complicated relations.

Theorem 7.7. For anyR ∈ F one hasL(R)�H0(R;Z).

Proof. The induced mapQ∗ : H∗(R;L) → H∗(R;Z) is an isomorphism sinceQ is an isomorphism
on free objects. The 0th derived functor ofL was computed in Proposition 7.5.�
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For any functorE : F → Alg we have thatHi(A;F)= 0 for i >0 whenA is a free object since we
can use the trivial almost free resolution to compute the derived functors. For polynomial algebras we
also have nice results.

Theorem 7.8. Assume that the underlying algebra ofA ∈ F is a polynomial algebra. Then one has
Hi(A;�)= 0,Hi(A; �̃)= 0,Hi(A;L)= 0 andHi(A; �)= 0 for eachi >0.

Proof. We first prove the statements for� and �̃. Let � : Alg → Alg denote the usual de Rham
complex functor. Pick an almost free resolutionP ∈ sF of A. The forgetful functorU : F → Alg

takes free objects to free objects. So we can applyU to P and get an almost free resolution ofU(A) in
sAlg. Thus there is an isomorphism

HF
i (A;�U)�H

Alg
i (U(A);�)

and the last group is trivial fori >0 sinceU(A) is a free object inAlg.
There is a linear map�U(A) → �(A); x0dx1 . . . dxn  → x0dx1 . . . dxn. The map is not multiplicative

and it does not commute with the de Rham differential, but it is an isomorphism of graded vector spaces.
ThusHi(A;�) is additively isomorphic toHi(A;�U) which is trivial for i >0. A similar isomorphism
gives the result for the functor̃�.

Next we consider the functorL. The short exact sequence 0→ Z → � → B → 0 gives a long exact
sequence of derived functors. By the above this sequence breaks up into the exact sequence

0 → H1(A;B) → H0(A;Z) → H0(A;�) → H0(A;B) → 0

together with the isomorphismsHi(A;Z)�Hi+1(A;B) for i�1.
There is also a short exact sequence 0→ B → Z → H → 0 with corresponding long exact

sequence of derived functors. Since� is an isomorphism on free objects we have a natural isomorphism
�∗ : H∗(−; �̃)�H∗(−;H). By the above vanishing result forH∗(A; �̃) the long exact sequence breaks
up into the short exact sequence

0 → H0(A;B) → H0(A;Z) → H0(A;H) → 0

and the isomorphismsHi(A;B)�Hi(A;Z) for i�1.
Using Proposition 7.5 and Theorem 7.7 we can rewrite the exact sequences involving 0th derived

functors as

0 → H1(A;B) → L(A) → �(A) → H0(A;B) → 0,

0 → H0(A;B) → L(A) → H(A) → 0.

SinceQ : L(A) → Z(A) is an isomorphism we see thatH1(A;B) = 0. By the isomorphisms
H1(A;B)�H1(A;Z)�H2(A;B)� . . . we conclude thatHi(A;Z) is trivial for i >0. ButH∗(−;L)

is isomorphic toH∗(−;Z) so we are done.
Finally we consider the functor�. By definition ofL the sequence 0→ u� → � → L → 0 is short

exact. From the corresponding long exact sequence of derived functors we find thatHi(A; u�)�Hi(A; �)
for i >0. By TheoremA.3 from the appendix and Proposition 4.4 from[20] there is a short exact sequence

0 → uj+1�(B) → uj�(B) → uj ⊗ �̃(B) → 0, j >0, (6)
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whenB is a free object inF or when the underlying algebra ofB is a polynomial algebra. The cor-
responding long exact sequence of derived functors shows thatHi(A; uj�)�Hi(A; uj+1�) so we have
Hi(A; �)�Hi(A; uj�) for all j�0. But (uj�)k = 0 for k <2j soHi(A; uj�)k = 0 for k <2j and the
result follows. �

Proposition 7.9. If the underlying algebra of an objectA ∈ F is a polynomial algebra, then
H0(A; �)��(A).

Proof. The short exact sequence 0→ u� → � → L → 0 gives a short exact sequence of 0th derived
functors sinceH1(A;L) = 0. Furthermore, there is a natural mapH0(−;F) → F for any functor
F : F → Alg. So we have a commutative diagram with exact rows as follows:

0 −−→ H0(A; u�) −−→ H0(A; �) −−→ H0(A;L) −−→ 0�
�

�
0 −−→ u�(A) −−→ �(A) −−→ L(A) −−→ 0.

The right vertical map is an isomorphism so it suffices to show that the left vertical map is also an
isomorphism.

SinceH1(A; �̃)= 0 the short exact sequence (6) gives a commutative diagram as follows forj >0:

0 −→ H0(A; uj+1�) −→ H0(A; uj�) −→ H0(A; uj ⊗ �̃) −→ 0�
�

�
0 −→ uj+1�(A) −→ uj�(A) −→ uj ⊗ �̃(A) −→ 0,

where the right vertical map is an isomorphism. Fix a degreen. Forj+1>n/2 the mapH0(A; uj+1�)n →
(uj+1�(A))n is an isomorphism since both domain and target space are zero. The result follows by
induction. �

Corollary 7.10. Let X be a1-connected space such thatH∗X is of finite type andH ∗X is a polyno-
mial algebra. Then then the spectral sequences of Theorem7.4 collapses at theE2 terms. So there are
isomorphisms

H∗(H ∗(X);�)∗�H ∗(�X) and H∗(H ∗(X); �)∗�H ∗((�X)hT).

8. The derived functors of an exterior algebra

In the rest of this paper we takep = 2. Let � = �(�) ∈ F be an exterior algebra on one generator
of degree|�|�2. Note that	� = 0 for dimensional reasons. We intend to compute the higher derived
functors of the various functors we have been considering for this algebra.

Proposition 8.1. There are isomorphisms

H∗(�;�)��(�)⊗ �[�], H∗(�; �̃)��̃(�)⊗ �[�̃].
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The inner degrees are|�i(�)|= i(2|�|−1), |�i(�̃)|= i(4|�|−1) and the grading of the homology groups
are given by

Hi(�;�)��(�)⊗ �i(�), Hi(�; �̃)��̃(�)⊗ �i(�̃).

Proof. The algebra� is the pushout ofF2 ← F2[y] → F2[x] wherey  → x2. Put	x = 0 and	y = 0. By
Proposition 6.3 we find

Hi(�;E)�TorE(F2[y])
i (F2, E(F2[x])) for E = �, �̃.

The result follows by standard computations.�

In order to compute derived functors of the other functors we need an explicit simplicial resolution of
�. By Theorems 6.4, 7.8, Propositions 7.5 and 7.9 we may use an almost free resolution of� in sAlg

and equip it with	 = 0.

Proposition 8.2. There is an almost free resolutionR• ∈ sAlg of the algebra� with Rn = F2[x, y1,

y2, . . . , yn] for n�0.The structure mapsdi : Rn → Rn−1 andsi : Rn → Rn+1 are given by

si(x)= x,

si(yj )=
{
yj j�i,

yj+1 j > i,

di(x)= x,

di(yj )=



x2 i = 0, j = 1,
yj−1 i < j, j >1,
yj i�j, j <n,

0 i = n, j = n.

The degrees of the generators are|x| = |�| and|yi | = 2|�| for all i .
Proof. We first give a description of the simplicial set�1• = Hom�(−, [1]) suited for our purpose.

Define the elementsyj ∈ �1
n for n�0 and 0�j�n+ 1 byyj (i)= 0 if i < j andyj (i)= 1 if i�j . We

have�1
n = {y0, . . . , yn+1}. The structure maps are as follows:

diyj =
{
yj−1 i < j

yj i�j
and siyj =

{
yj+1 i < j,

yj i�j.

Let F2[−] denote the functor which takes a graded set to the polynomial algebra generated by that set.
Let F2[�1•, ∗] denote the pushout ofF2 ← F2[a] → F2[�1•] whereF2 andF2[a] are constant simplicial
algebras. In degreen the maps are as follows:a  → 0 ∈ F2 and a  → yn+1 ∈ F2[�1•]. Note that
F2[�1•] 
 F2[∗] by the simplicial contraction of�1•. The spectral sequence[21, Chapter II, Section 7,
Theorem 6]gives that�i(F2[�1•, ∗])�F2 for i = 0 and 0 otherwise.

DefineR• as the pushout ofF2[x] ← F2[z] → F2[�1•, ∗] where in degreen the maps arez  → x2 and
z  → y0. For this pushout Quillen’s spectral sequence gives that

�i(R•)�TorF2[z]
i (F2, F2[x])=

{
� i = 0,
0 i >0.
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ThusR• has the right homotopy groups. FurtherRn is as stated and the structure maps are as stated. Note
thatR• is almost free. The degrees are correct since the structure maps must be degree preserving.�

Lemma 8.3. Hn(�;�) has the followingF2-basis:

dy1 . . . dyn, xdy1 . . . dyn, dxdy1 . . . dyn, xdxdy1 . . . dyn.

Proof. Using the formulas in Proposition 8.2 it is easy to check that the four given classes are in the
kernel ofdi for all i. To check linear independency, we introduce two gradings of�.

Firstly, the wedge grading on�(Rn) is defined as the number of wedge factors, i.e. the number ofd’s
in a homogeneous element. Secondly, the polynomial grading is defined as follows: Givex grading 1,yj
grading 2 and eachdxor dyj grading 0 and extend multiplicatively. Note that the mapsdi preserve both
gradings. We write�q,t (Rn) for the elements in�(Rn) of wedge degreeqand polynomial degreet. Thus,
there is a direct sum decomposition

Hn(�;�)=
⊕
q,t �0

Hn(�;�q,t ).

The classes we consider sit in different bigradings, so we only have to check that they individually do
not represent the trivial class.

We have the following bases for�n,0(Rn+1), �n,0(Rn) and�n,0(Rn−1) respectively:

{dy1 . . . d̂yj . . . dyn+1} ∪ {dxdy1 . . . d̂yj . . . d̂yk . . . dyn+1},
{dxdy1 . . . d̂yj . . . dyn} ∪ {dy1 . . . dyn},
{dxdy1 . . . dyn−1}.

We use the normalized complex consisting of∩i>0 ker(di)with differentiald0 to compute the homology.
For this normalized complex we have the respective bases∅, {dy1 . . . dyn}, {dxdy1 . . . dyn−1}. Taking
homology and using that�n,0(Rn−2)=0 we see that the classesdxdy1 · · · dyn−1 anddy1 . . . dyn do not
represent zero.

Similarly, xdxdy1 . . . dyn−1 andxdy1 . . . dyn do not represent zero. Keeping track of degrees and
dimensions, the result follows.�

Lemma 8.4. Hn(�;H) has anF2-basis as follows:

y1 . . . yndy1 . . . dyn, x
2y1 . . . yndy1 . . . dyn,

xdxy1 . . . yndy1 . . . dyn, x
3dxy1 . . . yndy1 . . . dyn.

Proof. This follows from Lemma 8.3 and the Cartier isomorphism.�

Corollary 8.5. The long exact sequence associated toB → Z → H splits into short exact sequences
when evaluated at�

0 → H∗(�;B) → H∗(�;Z) → H∗(�;H) → 0.

Proof. The generators from Lemma 8.4 are visibly in the image ofHn(�;Z) → Hn(�;H). �
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Definition 8.6. Let �i,j ∈ �(Rj ) denote the following elements:

�i,j = y1y2 . . . yidy1dy2 . . . dyj for i, j >0,

�0,j = dy1dy2 . . . dyj for j >0 and �0,0 = 1.

These elements are actually inZ(Rj ) if i�j , and inB(Rj ) in casei < j . They are even in the
normalized chain complex, so they define classes inH∗(�;Z), respectively,H∗(�;B).

Theorem 8.7. For n�0 the homology groupH2n(�;B) hasF2-basis

{dx�0,2n} ∪ {�2i,2n x2�2i,2n, xdx�2i,2n x3dx�2i,2n|0�i < n}
and the homology groupH2n+1(�;B) hasF2-basis

{�0,2n+1, dx�0,2n+1, xdx�0,2n+1}
∪ {�2i+1,2n+1, x2�2i+1,2n+1, xdx�2i+1,2n+1, x3dx�2i+1,2n+1|0�i < n}.

Similarly, H2n(�;Z) hasF2-basis

{dx�0,2n} ∪ {�2i,2n, x2�2i,2n, xdx�2i,2n, x3dx�2i,2n|0�i�n}
andH2n+1(�;Z) hasF2-basis

{�0,2n+1, dx�0,2n+1, xdx�0,2n+1}
∪ {�2i+1,2n+1, x2�2i+1,2n+1, xdx�2i+1,2n+1, x3dx�2i+1,2n+1|0�i�n}.

Proof. Recall thatHm(�;�)��(�)⊗�0,m andHm(�;H)��̃(�)⊗�m,m. From the splittingHm(�;Z)�
Hm(�;B)⊕ Hm(�;H) together with the computation ofHm(�;H) in Lemma 8.4, it follows that the
statements aboutHm(�;Z) andHm(�;B) are equivalent.

Recall the long exact sequence

Hm+1(�;B)
b−→Hm(�;Z)

i∗−→Hm(�;�)
d∗−→Hm(�;B) (7)

Claim. The image ofd∗ is a one-dimensional vector space,generated by a class,which in the normalized
chain complex is represented bydx�0,m.

Note that three out of four of the generators ofHm(�;�) are annihilated byd∗. So the image of
d∗ is spanned by the single class, represented in the normalized complex bydx�0,m ∈ B(�). This
element actually represents a non-zero homology class, since the mapHm(�;B) → Hm(�;�) induced
by inclusion, send it to the element represented bydxdy1 · · · dym. But this is non-trivial according to
Lemma 8.3, and the claim follows.

We will now prove the theorem by induction onm. We first treat the casem= 0. Here, we see that the
mapd0 : H0(�;�) → H0(�;B) is surjective by the long exact sequence (7), and the statement follows
directly from the claim we just proved.

Assume that the theorem holds form. The long exact sequence (7) gives us a short exact sequence

0 → im(dm+1) → Hm+1(�;B)
b→ ker(im) → 0.
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So, in order to prove the theorem, we have to show thatbmaps the classes given in the statement of the
theoremwith dx�0,m+1 removedto a basis for the kernel ofim.

By induction we have a basis forHm(�;Z). From this we see that the kernel of the mapi2n+1 :
H2n+1(�;Z) → H2n+1(�;�) has basis

{�2i+1,2n+1, x2�2i+1,2n+1, xdx�2i+1,2n+1, x3dx�2i+1,2n+1|0�i�n}
and that the kernel of the mapi2n : H2n(�;Z) → H2n(�;�) has basis

{x2�0,2n, x3dx�0,2n} ∪ {�2i,2n, x2�2i,2n, xdx�2i,2n, x3dx�2i,2n|1�i�n}.
It is convenient now to pass from the normalized to the unnormalized complex.The normalized complex

is a subcomplex of the unnormalized one, and in the notation we do not distinguish between a class in
the subcomplex and its image in the unnormalized one.

Let us first consider the odd case,m=2n+1. The element�2i,2n+2 ∈ B(R2n+2) is a cycle with respect
to the boundary� = ∑

dk. We compute its image under the mapb.
Let �r ∈ �(R2n+2) denote the following element:

�r = y1y2 . . . y2iyrdy1dy2 . . . d̂yr . . . dy2n+2, 2i + 1�r�2n+ 2,

where the hat means that the factor is left out. Put
=∑2n+2
r=2i+2 �r . We haved�r = �2i,2n+2 for eachr, so

that alsod
 = �2i,2n+2. This means thatb(�2i,2n+2) is represented by

�
 =
2n+2∑

r=2i+2

(yr−1 + yr)�2i,2n+1 + y2n+1�2i,2n+1 = �2i+1,2n+1.

Since b is linear with respect to multiplication byx2, xdx, x3dx this gives the desired result for
H2n+2(�;B).

In the even casem= 2n, a similar argument shows thatb(�2i+1,2n+1) is represented by�2i+2,2n.
Checking with the lists of classes above, we see that we are left to prove thatb(�0,2n+1)= x2�0,2n. The

argument is very similar. Let

�r = yrdy1dy2 . . . d̂yr . . . dy2n+1 and 
 = �1 + �2 + · · · + �2n+1.

Thend�r = �0,2n+1 so alsod
r = �0,2n+1. Thusb(�0,2n+1) is represented by�
 = x2�0,2n. �

Proposition 8.8. There are short exact sequences fori�0, t�1 as follows:

0 −→ Hi(�; u�) −→ Hi(�; �) −→ Hi(�;L) −→ 0,

0 −→ Hi(�; ut+1�) −→ Hi(�; ut�) −→ Hi(�; ut �̃) −→ 0.

Proof. The first short exact sequence follows if we can prove that the connecting homomorphism
b : Hi+1(�;L) → Hi(�; u�) is trivial. So consider the diagram

0 −→ u�(Ri+1) −→ �(Ri+1) −→ L(Ri+1) −→ 0�
�

�
0 −→ u�(Ri) −→ �(Ri) −→ L(Ri) −→ 0.
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The elementq(y1) . . . q(yj )�(yj+1) . . . �(yi+1) ∈ �(Ri+1) maps to the element�j,i+1 ∈ L(Ri+1). By
the relations�(a)2 = �(	a), q(a)2 = �(	a) + �(a2	a) and�(a)q(b) = �(a	b) + �(ab)�(b) we see that
this element maps down to zero in�(Ri). So the connecting homomorphismb is trivial.

The proof for the second short exact sequence is similar.�

Corollary 8.9. For eachi�0 there are isomorphisms ofF2-vector spaces

Hi(�; �)�Hi(�;L)⊕

⊕

t �1

ut ⊗Hi(�; �̃)


 �Hi(�;B)⊕ (F2[u] ⊗Hi(�; �̃)).

Let F : F → Alg be a functor. We define the total degree of a class inHi(R;F)n to ben − i. For
F = �,� this corresponds through the spectral sequences of Theorem 7.4 to the grading of cohomology
groups. We writePF (t) for the Poincaré series corresponding to the total degree ofH∗(�;F)∗.

Theorem 8.10.Let s denote the degree of the class� ∈ �. Then we have the following Poincaré series:

P�(t)= (1+ t s)(1− t s−1)−1,

P�̃(t)= (1+ t2s)(1− t2s−1)−1,

PB(t)= t s−1(1+ t s−1 − t2s−1)(1− t2s−1)−1(1− t2s−2)−1,

P�(t)= (1+ t s−1 − t s+1 + t2s−1)(1− t2)−1(1− t2s−2)−1.

Proof. The first two formulas follow from Proposition 8.1: the total degree of�i(�) is |�i(�)|−i=(2s−2)i
and�(�)= � ⊗ �(d�) so

P�(t)= (1+ t s)(1+ t s−1)(1− t2s−2)−1 = (1+ t s)(1− t s−1)−1.

A similar argument givesP�̃(t).
To determinePB(t) we must count the classes given in Theorem 8.7, according to the total degree.
We divide these classes into three groups. The first group are those of the formdx�0,m. The Poincaré

series of the subspace generated by those classes ist s−1/(1− t2s−2). The second group are those of the
type�0,2n+1 or xdx�0,2n+1. These have Poincaré seriest2s−2(1+ t2s−1)/(1− t4s−4).

The thirdgroupistheremainingclasses.Theyspanafree�̃(�)-module with basisX={�2i,2n, �2i+1,2n+1|
0�i < n,0�n}. We introduce the following operation on the setX: T (�i,n) = �i+1,n+1. This operation
has total degree 4s−2. All generators are obtained by applyingTa non-negative number of times starting
from one of the elements ofY = {�0,2n|n�1}.

The setY has Poincaré seriest4s−4/(1 − t4s−4). So, the Poincaré series of the setX is given by
t4s−4(1− t4s−4)−1(1− t4s−2)−1. We multiply this by(1+ t2s)(1+ t2s−1), make a small reduction, and
obtain the Poincaré series for the third group of classes:

t4s−4(1+ t2s)(1− t2s−1)−1(1− t4s−4)−1.
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To get the Poincaré series ofB, we add the three series obtained so far.

PB(t)= t s−1

1− t2s−2 + t2s−2(1+ t2s−1)

1− t4s−4 + t4s−4(1+ t2s)

(1− t2s−1)(1− t4s−4)
.

The stated formula forPB(t) follows after some reductions.
Finally, Corollary 8.9 gives thatP�(t) = PB(t) + (1− t2)−1P�̃(t) which leads to the stated formula

after some reductions.�

9. The spectral sequences for spheres

Let X be a pointed space,Y = �X it’s reduced suspension. We have established a spectral sequence
converging toH ∗(ET×T�Y ; F2) in general. But in this special case, we are fortunate to have a direct
calculation of the homologyH∗(ET+∧T�Y ; F2). If the homology ofX is of finite type, the (finite)
dimensions of these homology and cohomology groups agree. So if we for the particular spaceX can
check that the Poincaré series of the homology ofH ∗(ET×T�Y ; F2) as computed in[8] agrees with the
Poincaré series of theE2 term of our spectral sequence, we know that our spectral sequence collapses.
(See also[1] for an easier proof of the results in[8]).

Let us now consider the special case of spheresX = Ss−1 andY = Ss . The purpose of this section is
to show that in this case the two Poincaré series actually agree, forcing the spectral sequence to collapse.

Theorem 9.1. The Poincaré series ofH ∗(ET×T�Ss; F2) is

(1+ t s−1 − t s+1 + t2s−1)(1− t2)−1(1− t2s−2)−1.

Proof. We compute a sequence of related Poincaré series. First, letA=H̃ ∗(Ss−1) considered as a graded
vector space. This has Poincaré seriest s−1.

For eachm�1, the cyclic groupCm acts onA⊗m. This is a 1-dimensional vector space overF2. We
now consider the homology groups

H∗(Cm;A⊗m).

We first look at homological dimension 0.H0(Cm,A
⊗m)�A⊗m, so it has Poincaré seriestm(s−1). In

higher homological degrees, there are two cases. Ifm is odd, the groups all vanish, and we get a trivial
Poincaré series. Ifm is even, andi�1, Hi(Cm,A

⊗m)�A⊗m. Since this single group has homological
degreei, its Poincaré series ist i+m(s−1).

Now, recall from Carlsson and Cohen[8, Proposition 9.3], that

H̃∗(ES1+∧S1�Ss)�⊕m�1H∗(Cm;A⊗m).

(Actually, we are correcting a misprint in[8] here. The homology groups on the right-hand side of the
formula should not be reduced).

The Poincaré series of the right hand side contains the sum of the contribution of the homology in
dimension zero. The Poincaré series of this part is

∑
m�1t

m(s−1) = t s−1(1 − t s−1)−1. It also contains
the sums of the contributions of the reduced group homologies. Since this is trivial ifm is even, we can
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as well putm= 2n, and the Poincaré series of the reduced part is∑
i�1

∑
n�1

t i+2n(s−1) = t2(s−1)+1(1− t)−1(1− t2(s−1))−1.

Summing, we get that the Poincaré series forH̃∗(ES1+∧S1�(�X)) is

(ts−1 − t s + t2s−2)(1− t)−1(1− t2s−2)−1.

Finally, we note that there is a short exact sequence of homology groups

0 → H̃∗(BT) → H̃∗(ET×T�Ss) → H̃∗(ET+∧T�Ss) → 0.

This shows that the Poincaré series ofH∗(ET×T�Ss) is

(ts−1 − t s + t2s−2)(1− t)−1(1− t2s−2)−1 + (1− t2)−1.

Bringing on common denominator and adding proves the theorem.�

Proposition 9.2. The Poincaré series ofH ∗(�Ss; F2) is (1+ t s)(1− t s−1)−1 whens�2.

Proof. The mod 2 cohomology ring of�Ss is a special case ofTheorem 2.2 of Kuribayashi andYamaguchi
[13] except for the cases = 2. It is, however, shown (Remark 2.6) that the Eilenberg–Moore spectral
sequence also collapses whens = 2 so we can compute the Poincaré series from theE2-term. It has the
following form (see the proof of Theorem 2.2):

E
∗,∗
2 ��(x)⊗ �(x)⊗ �[�],

where the respective bidegrees ofx, x and�i(�) are(0, s), (−1, s) and(−2i,2is) such that the respective
total degrees becomess, s − 1 and 2i(s − 1). Thus the Poincaré series is

(1+ t s)(1+ t s−1)(1− t2(s−1))−1

and the result follows by a small reduction.�

Theorem 9.3. If we letX=Ss with s�2and useF2-coefficients, then the spectral sequences of Theorem
7.4collapses. Thus there are isomorphisms of gradedF2-vector spaces:

H∗(H ∗(Ss);�)∗�H ∗(�Ss) and H∗(H ∗(Ss); �)∗�H ∗((�Ss)hT).

Proof. By Theorems 8.10, 9.1 and Proposition 9.2 the Poincaré series of theE2-terms agree with the
Poincaré series of the targets. So the spectral sequences collapses.�

Appendix. On a filtration of the functor �

In this appendix, we identify the graded object associated with the filtration

�(A) ⊇ u�(A) ⊇ u2�(A) ⊇ . . .

in the case wherep = 2 andA is a polynomial algebra.
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Recall that the functorsL, �̃ : F → Alg are defined byL(A)= �(A)/(u) and�̃(A)=L(A)/I�(A)

whereI�(A) is the ideal(�(x)|x ∈ A) ⊆ L(A).
We want to define a map�(A) → �̃(A)[t] such that the elements�(x), q(x) andu in the domain are

send to the elements�(x), q(x) andt2 in the target. Unfortunately, this cannot be done by a ring map.
But if we pay the penalty of changing the multiplicative structure of the target, we can almost get such a
map.

Definition A.1. �tw(A) is the free graded commutative algebra on generators�(x), q(x) for x ∈ A and
t, of degrees|�(x)| = 2|x|, |q(x)| = 2|x| − 1 and|t | = 1, modulo the relations

q(x + y)= q(x)+ q(y), �(x + y)= �(x)+ �(y),
q(xy)= �(x)q(y)+ �(y)q(x), �(xy)= �(x)�(y),
q(x)2 = �(	x)+ tq(	x).

Clearly,�tw(A)/(t)��̃(A). The ring�tw(A) is just a twisted version of the polynomial ring over�̃(A)
in t in the following case:

Theorem A.2. Assume that the underlying algebra of A is a polynomial algebra. Then the graded ring
Gr∗(�tw(A)) corresponding to the filtration of�tw(A) by powers of t equals̃�(A)[t].
Proof. As an intermediate step, let us consider the ringR(A) which is defined exactly like�tw(A) except
that we do not include the last relationq(x)2 = �(	x)+ tq(	x).

If A is a polynomial algebra on generators{xi |i ∈ I }, thenR(A) is a polynomial ring on generators
�(xi) andq(xi). To obtain�tw(A) from R(A), we have to add the relationsq(p)2 = �(	p) + tq(	p),
wherep is any polynomial in the generatorsxi . Actually, it is sufficient to do this for the generators
themselves, as this relation forp1p2 follows from the relations forp1 andp2. Because, assume those are
satisfied, then we calculate

q(p1p2)
2 = �(p1)

2q(p2)
2 + �(p2)

2q(p1)
2

=�(p1)
2(�(	p2)+ tq(	p2))+ �(p2)

2(�(	p1)+ tq(	p1))

=�(	(p1p2))+ tq(	(p1p2)).

Thus we can write�tw(A) as an algebra

F2[t,�(xi), q(xi)|i ∈ I ]/{q(xi)2 = �(	xi)+ tq(	xi)}.
From this it is clear, that�tw(A) is a freeF2[t,�(xi)|i ∈ I ]-module, with generators

{q(xi1)...q(xin)|ir �= is for r �= s, n�0}.
(The empty product means 1.) It follows thatGr∗(�tw(A)) is a free module overGr∗(F2[t,�(xi)|i ∈ I ])
with the same generators.

So, to finish the proof, we only have to determine the multiplicative structure of�tw(A). The multi-
plicative relations are given by the relations. In the graded ring they areq(xi)

2 = �(	xi). So, we have a
presentation of the graded ring as

F2[t,�(xi), q(xi)|i ∈ I ]/{q(xi)2 = �(	xi)}.
But this is exactlỹ�(A)[t]. �
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Theorem A.3. Let A be an object inF and i�1 an integer. Multiplication with ui defines a natural
surjectiveF2-linear map

ui : �̃(A) → ui�(A)

ui+1�(A)
.

If the underlying algebra of A is a polynomial algebra, then this map is an isomorphism and

Gr∗(�(A))�L(A)⊕
⊕
j �1

uj ⊗ �̃(A).

Proof. Multiplication with ui gives a surjective map�(A) → ui�(A) andui(I�(A)) = 0, ui(u�(A)) =
ui+1�(A) so the map factors through̃�(A).

We define a natural ring mapv : �(A) → �tw(A) by the formulas

v(�(x))= �(x)+ tq(x), v(q(x))= q(x), v(u)= t2, v(�(x))= 0.

To see thatv is well defined, we have to check that the relations in the definition of� goes to 0. This is
trivial for all relations except three which is verified as follows:

v(�(xy))= �(xy)+ tq(xy)= (�(x)+ tq(x))(�(y)+ tq(y))+ t2q(x)q(y)

= v(�(x)�(y)+ uq(x)q(y)),
v(q(xy))= q(xy)= �(x)q(y)+ q(x)�(y)

= (�(x)+ tq(x))q(y)+ (�(y)+ tq(y))q(x)

= v(�(x)q(y)+ q(x)�(y)),

v(q(x)2)= q(x)2 = v(�(	x)+ �(x2	x)).

By the mapvwe get a commutative diagram as follows:

�̃(A) −−−−−−→ �tw(A)/t
2�tw(A)

ui

� t2i

�
ui�(A)/ui+1�(A) −−−−−−→ t2i�tw(A)/t

2i+2�tw(A)

When the underlying algebra ofA is a polynomial algebra, then Theorem A.2 gives that the top and the
right vertical maps are injective. So in this case the left vertical map is also injective.�
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