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Abstract

Let X be a 1-connected space with free-loop spdde We introduce two spectral sequences converging to-
wards H*(AX; Z/p) and H*((AX),1; Z/p). The E>-terms are certain non-Abelian-derived functors applied to
H*(X;7/p). WhenH*(X; Z/p) is a polynomial algebra, the spectral sequences collapse for more or less trivial
reasons. X is a sphere it is a surprising fact that the spectral sequences collapse-far
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Let X be a space and letX denote its free-loop space. The circle graupcts on4X by rotation of
loops. The associated homotopy orbit spacég,t is sometimes called the string space.

For a manifoldX, the free-loop space has numerous geometric applications. The most basic one is
via the Morse theory approach to the study of geodesic curves[tA]. But later the free-loop space
has also been used to study diffeomorphisms. The main connection is through Waldhausen’s algebraic
K-theory of spaces, the so-callagheory[23]. One of the more refined versions of this connection relates
pseudo-isotopies at a prinpego thep-local spectrun? C (X, p).
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One can defin& C (X, p) as the following homotopy pullbadR]:

TC(X, p) —  XX(AX4),

]

T
SEUXT ) L 22X )

where 4, is the map which winds a loop times around itself andrf is the Sl-transfer map. The
spectrun C (X, p) is an approximation to Waldhausem$X ), which in turn gives a hold on the stable
pseudoisomorphism spaceXfEven if the application we have in mind is for differentiable manifolds,
it does not matter t@ C thatX is a manifold, as opposed to just a homotopy type.

There is a third train of thoughts, inspired by analogies with mathematical physics, especially with
quantum field theory and string theory.[B] Sullivan and Chas introduced algebraic structures relating
H.(AX; 7) andH,.(AX;T; Z). These algebraic structures use & a closed manifold. More precisely,
the Thom class of the tangent bundleXgblays an essential role.

The approach of this paper is homotopy theoretical. We start with a homotopystapd try to recover
the modulop cohomology of4X and of the Borel constructionX ;1 by homotopy theoretical spectral
sequences. We return to the construction of these spectral sequences later in the introduction. The mos
essential properties are

e It is derived from a cosimplicial space similar to the cosimplicial space used to define the Adams
spectral sequence foft

e The E; page of the spectral sequence is computed by non-Abelian homological algebra in the sense of
André—Quillen homology.

One competing homotopy theoretical approach to the cohomology of the Borel construction is the
following three-step method. Let us call it the fibration method.

e Compute the cohomology @X using a spectral sequence (Serre or Eilenberg—Moore) belonging to
the fibrationQX — PX — X.

e Compute the cohomology ofX using the previous result and the fibrat@X — AX — X.

e Compute the cohomology of theX;, using the previous result and the fibratioh — 4X,t — BT.

The Eilenberg—Moore spectral sequence can be thought of as the spectral sequence for the cohomology
of a cosimplicial space, just like our spectral sequence. But the particular cosimplicial object is entirely
different from ours. We use a Postnikov decompositioX,afhich is not visible in the Eilenberg—Moore
situation.

We feed two types of information into the machine, which are not used by the fibration approach. Firstly,
we use that one can explicitly compute the cohomology in the case ¥i®an Eilenberg—MacLane
space. Secondly, we use non-Abelian homological algebra to keep track of how the pieces of our resolution
fittogether. In particular, alarge part of the information aboufitteetion on1 X is internal to the machine
of non-Abelian homological algebra. So this part is taken care of already ifiztpage.
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This does not necessarily say that our method is better than the fibration method, however
it does suggest that out method is different. So there might be reasons to use both methods
simultaneously.

One possible drawback of our method is that non-Abelian-derived functors are hard to calculate. We
have little use for a spectral sequence with an incalculablpage.

In order to show that this is not so bad, we do a few comparatively simple computations at the end of this
paper. We show that at least for the sph€teve can solve the non-Abelian homological algebra, and that
the spectral sequence we get seems different from whatever comes out of the fibration method. We find
it quite surprising and encouraging that in this case the spectral sequence conveldif(gli, 1; F2)
collapses. We do not actually prove this collapsing by methods internal to our spectral sequence. We
quote the result which is known from other methods, and check by a counting argument that there is no
room for differentials.

Because of the homotopy theoretical nature of our work, it seems likely that we can use it to study
T C(X) for spacesX with pleasant cohomology. We intend to study this closer, but have not yet done so.

It seems more difficult, but potentially very profitable to compare our computations with the Sullivan—
Chas theory. We have not done this either yet.

What we have dongl], is that we have studied the spectral sequence convergi§teX; F») in the
very special case wheiig* (X; F») is a truncated polynomial algebra on one generator. We can compute
the relevantt, page, and this makes it possible to compute the Steenrod algebra ac#bi 0K ; F2)
whenX is one of the projective space€s”, HP" or the Cayley projective plan€a P2. The results led
us to conjecture a stable splitting.aX for these spaces. We have later proved this splitting by unrelated
methods.

The rest of the introduction is a more detailed description of our method. Consider the cohomology
H*(X; F,) as given. The purpose of this paper is to study the cohomology of the free-loop space and of
its homotopy orbit space.

In some cases, it is relatively easy to compute this cohomology. For instance, supposéstaat
Eilenberg—MacLane space. Then there is a homotopy splitixig~ X x QX. The spac&X is also a
Eilenberg—MacLane space, so that the cohomologyXfs known.

The cohomology of the homotopy orbitsy, 1 is more difficult to compute. However, this is achieved
in [3,20].

The main idea of the present paper is to use these computations to study the case of aXgémeral
essence, this application is done using a Postnikov decompositi®n Ferom our point of view, the
simplest case is wheX is a product of Eilenberg—MacLane spaces, and correspondingly, thekmore
invariants a spac¥ has, the more complicated it appears. In particular, the spheres are very complicated
spaces for this approach.

Formally, we will study two spectral sequences converging towards the conomology groups; )
and H*(AX,7; F,). Both spectral sequences have origin in the Bousfield homology spectral
sequencés].

This is a remarkable spectral sequence that under fortunate circumstances converges to the homology
of the total space of a cosimplicial space.

Let X be a simply connected space. We re-write its Postnikov tower as a cosimplicial space, whose
total space is thp-completion ofX. This cosimplicial space is ttmsimplicial resolutiorRX of X with
R =F,. Given this, we can form two cosimplicial spac¢R X and(4RX), by applying the functors
A(—) andA(—),7 in each codegree. The total space of these new cosimplicial spaces are the completions
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of AX, respectively(1X), . These cosimplicial spaces have associated Bousfield homology spectral
sequencesé“’} and{E"}, respectively.

For 1-connecte it is well known that{ £”} converges strongly towards, (41X F,). We show that
{E"} converges strongly towards. (4X,T; F,) under the additional assumption thd{(X; ) is of
finite type.

For the dual cohomology spectral sequen(:és} and{E,}, we give an interpretation of th&, page.
Theideais thatth& page are given by the cohomology of the respective functors (from spaces to spaces)
applied to the Eilenberg—MacLane spaces. This cohomology can, accord®d220]be written as
certain functor®2, respectivelyf (from algebras with a certain extra structure to algebras), applied to the
cohomology of the Eilenberg—MacLane spaces.

This means that th&, page is the homology of a chain complex, where the chains are given by
these functors applied to the cohomology of Eilenberg—MacLane spaces. Since the cohomology of an
Eilenberg—MacLane space turns out to be a free object, we can compuitiephges as derived functors.

To be precise, they are the non-Abelian derived functae applied toH*(X; ), respectively, the
non-Abelian derived functor of applied toH*(X; [F,). When H*(X; F,) is a polynomial algebra the
higher derived functors vanish so the spectral sequences collapseratjhge.

So far, the results are of a theoretical nature. As a concrete example, we finally study tkec&%e
andp = 2. We develop homological algebra sufficient for computing the releFamages.

For these spaces, there are other methods for compdting X ; F,) and H*(AXyt; Fp).

Comparing oulE2 pages with these results, we show thatXoe S” with n >2 andp = 2 the spectral
sequences collapse at the pages.

We emphasize that this collapsing is not something to be expected a priori. Since spheres have com-
plicated Postnikov systems, from the point of view of our spectral sequences, one would naively expect
that these spectral sequence could have many non-trivial differentials. So maybe the collapsing happens
for a larger class of spaces?

Finally, we want to thank the referee of Bokstedt and Ottd8¢ror suggesting that we look at the
Bousfield spectral sequence in this connection.

2. Cosimplicial spaces with group actions

In this section, the category of simplicial sets is denatednd the category of cosimplicial spaces
c¥.ForA, B e & we let magA, B) = B4 denote the simplicial mapping space. We wate for the
constant cosimplicial space withA)" = A for eachn.

The category. is a model category with weak equivalences, cofibrations and fibrations as described
in[7, Chapter X, Section 4] he fibrations are here defined in terms of matching spaces. By this definition
itis clearthatiff : A — B is a fibration in& thenc(f) : cA — cB is afibration inc..

The category.7 is in fact a simplicial model category in the sense of Qui[H with X ® K € ¢,

XK e c and MaggX, Y) € . defined as follows fok € .« andX,Y € c:

X ® K)(@) =X(2) x K,
XE) (@) = X(@)F,
Map(X, Y), = Hom.o (X ® 4", Y),
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wherea is @ morphism in the simplicial category antl = A[n] € ¥ denotes the standargdsimplex. In
caseK is a simplicial group, this notation potentially clashes with the usual notation for fixed points. In
this paper, we are not going to consider fixed points.

Let 4 be the cosimplicial space which in codegreequalsA”. We write 4" for the simplicialm-
skeleton and put!™! = 4. By Bousfield and Karj7, Chapter X, Section 4.3)e have thau!™! is a
cofibrant cosimplicial space for eacki@: < oo.

The total space of a cosimplicial spaXes defined as ToX = Map(4, X). If X is not fibrant, the total
space might not give you the “right” homotopy type. In this case, we have to choose a fibrant replacement
Z of X, that is a weekly equivalent, fibrant cosimplicial space, and d@mnX = TotZ.

When the cosimplicial space has a group action one can choose an equivariant fibrant replacement in
the following sense:

Lemma 2.1. Let G be a simplicial group an& a cosimplicial Gspace. Assume that” is a fibrant
simplicial set for each > 0. Then there is a cosimplicial GpaceE (X) such that bottE (X) andE (X)/ G
are fibrant cosimplicial spaces and such that the following diagram commutes

EGxX =5 EX)

[

EGxgX ——s EX)/G.

Here the vertical maps are the obvious quotient mapsl the horizontal maps are weak equivalences.
The mapE (X) — E(X)/G is the pullback of the principal G-fibratiooEG — cBG over a fibration
E(X)/G — CcBG.

Proof. By the model category properties we can factor the projection @xsX — CBG as a
compositep o i wherei : EGxgX — Y is a cofibration which is simultaneously a weak equivalence,
andp : Y — cBG is afibrationBGis a fibrant space by Goerss and Jardirle Lemma .3.5.50cBG
is a fibrant cosimplicial space. Thiysis fibrant.

We form the codegree wise pullbackof cEG — cBG overp.

EX)/G —» Y 2, cBG.

The principalG-action (in the sense of M&L6]) of G on EG gives a principalG-action onE (X)" for
eachn and an isomorphism of cosimplicial spadegX)/G =Y as written in the diagram. By Bousfield
[5, Lemma 7.1]jt follows that=” is a fibration saE (X) is fibrant.

By the pullback property we can lift the mafo a mapEG x X — E(X). This constructs the missing
map in the statement of the lemma. In each codegree (1) is a map of fibratior®®aad we conclude
that the lifting is also a weak equivalencel]
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Theorem 2.2. LetX be a fibrant cosimplicial space and G a simplicial group. Théhis a cosimplicial
G-space and we can form its equivariant fibrant replaceni&@t®). There is a natural map of fibrations
of simplicial sets for each m with<m < oo:

(Tot, X)¢ — EGxg(Tot, X)¢ —s BG

-]

Tot, (E(X%)) — Tot,(E(X%)/G) — Tot,(cBG).

The first and middle vertical maps are weak equivalences and the right vertical map is an isomorphisms
of simplicial sets

Proof. SinceX is fibrant eachX” is fibrant such thatX )" = (X")Y is fibrant by May[16, Theorem
6.9.] Hence we can fornk (X9).

By May [16, Definition 20.3 and Theorem 20,5¥e have that the top vertical line in the diagram
is a fiber bundle. By Bousfield and K4, Chapter X, Section 5M7 and the fact that"! € ¢
is cofibrant we see that ip : A — B is a fibration inc% then Tot,(p) : Tot, A — Tot, B
is a fibration in%. In particular Tog, X is fibrant sinceX is fibrant and by May[16, Theorem 6.9]
we have that(Tot,, X)¢ is fibrant. Thus the top vertical line is a Kan fiber bundle and hence a fi-
bration by May[16, Lemma 11.9] The lower vertical line is Tgf of a fibration and hence a
fibration.

There is a commutative diagram as follows:

(Tot, X)¢ — EGxg(Tot, X)¢ —» BG

= S/ va :Jv

Tot,(X%) — Tot,(EGxgX% —s Tot,(cBG)

~

~

Tot, (E(X%) — Tot,(E(X%)/G) —- Tot,(cBG).

The isomorphisn(Tot,, X)° ~Tot,, (X%) is one of the axiomatic isomorphisms in a simplicial model
category. We examine it closer in order to defifyje A cosimplicial space is a diagram i and the
axiomatic isomorphism comes from the corresponding isomorphism in the simplicial model category
For A, B, C € & this isomorphism is the composite
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The following commutative diagram shows th&tis equivariant with respect to actions of the
monoidC¢:

cC % (AB)C o (AB)C

CC x AB*C i2x1 (B x C)BXC « ABXC o ABxC

CC % ACXB i1x1 (C % B)C><B % ACXB o AC><B

COx (A DL (OB (a0)B L (408,
For Z € % the action ofG on the mapping space® is defined by

ad(p)yx1

G x 76 GG xz6 _°2, 76,

wheread (1) denotes the adjoint of the prodyct G x G — G. So takingC = G in the above we see
thatF is G-equivariant such that we have a map

IxGF : EGxg(AB)Y = EGxg(A%)5.

The composite

EG x (A9 L (EG x AG)B __, (EGxgA%)B

factors throughE G x 6 (A%)? and we compose with:dg; F to get a map
EGxg(AB)Y — (EGxgA%)E.

The morphismy,, in the theorem is codegree wise given by this map.

The lower part of the diagram is induced by (1). The fundteyX : c¢# — ¢ whereK € &
preserves fibrations as one sees from the right lifting property by taking adjoints. M&nisefibrant
sinceX is fibrant. By Bousfield and Kafv, Chapter X, Section 5.2)e get a weak equivalence when
applying To}, to a weak equivalence between fibrant cosimplicial spaces. Thus, the left vertical map is
a weak equivalence. The result follows

3. Bousfield homology spectral sequences

Let X be a fibrant cosimplicial space and etbe an Abelian group. If5], Bousfield constructs a
spectral sequend&’” (X; A)} with the homology of the total spadé,(TotX; A) as expected target.
The precise convergence statement is as follows. Recall that there is a tower of fibrations

.o — Tot, X — Tot,,_1 X — -+ — Totp X
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with inverse limit TotX. Hence for each >0 there is a tower map
P (X) : {H, (TotX; A)} >0 = {Ha(TOL, X; A}, >0,

where the domain tower is constant. L&t X denote the cosimplicial simplicial Abelian group with
(A®X))'=A QX" whereA ® S =®,csA for a setS Bousfield forms the double normalized complex
and letT (A ® X) denote its total complex. It is filtered by subcomple¥¥5T (A ® X) and the quotient
complexT (A ® X)/F" 1T (A ® X) is denotedl}, (A ® X). A comparison map is defined

@, (X) : {Hy,(Toty, X; A)}m>O —> {HpTn(A® X)}m20
and the following result is proved:

Lemma3.1. {E"(X; A)} converges strongly t&, (Tot X; A) if and only if the tower mag,,(X) o P, (X)
is a pro-isomorphism for each n

If @,(X) is a pro-isomorphism for eaghthenX is called arA-pro-convergent cosimplicial space and
{E"(X; A)} is called pro-convergent.

We are interested in two special cases of this spectral sequende =&}, be the field orp elements
wherep is a fixed prime. For a spacéwe letRX denote the cosimplicial resolution &fin the sense
of Bousfield and Kar{7]. Note that(RX)" = R"t1X. The free-loop space oX is by definition the
simplicial mapping spacdX = mapT, X) where we takel = BZ. By applyingA codegree wise we
get a cosimplicial spacgéR X . We can also form th& homotopy orbit space codegree wise and get the
cosimplicial spacéARX), . We are interested in the Bousfield homology spectral sequences for these
two spaces. As a corollary of Bousfidlg, Proposition 9.7{ve have

Proposition 3.2. If X is a 1-connected and fibrant space théh(ARX) and &,(ARX) are pro-
isomorphisms for each n and the spectral sequerég(ARX;F,)} converges strongly to
H*(A(X;,\); Fp)=H(AX; Tp).

4. Strong convergence

In this section, we discuss convergence of the Bousfield homology spectral sequence associated with
(ARX),t whereR = F,, the field onp elements. We us&, coefficients everywhere unless stated
otherwise.

Proposition 4.1. If X is a 1-connected space thetX and AX ;1 are nilpotent spaces. In fact we have
n1(AX)—respectivelyr1(AX,)—central series as follows for eachy 1:

T (AX) 2 m; (QX) 20, 2)
i (AXpT) 2 7 (4X) 2 m;(QX) 2 0. (3

Proof. (2) The fibrationQX — AX — X splits by the constant loop inclusici — 4X.So we
havern; (1X)=n; (2X) & n; (X) for i > 1. Since the action of the fundamental group is natural there is a
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commutative diagram

11(2X) x ;(RX) — w(2X)

N

1(AX) X m(AX) —s  m(AX)

N

(X)X w(X)  —  m(X).

We haver1(AX)=~n1(2X) sinceX is simply connected. Furthety (2X) acts trivially onzw; (QX)
sinceQX is an H-space. From the upper square we see that the filtration £2)4)-stable and that
the action ong; (2X) is trivial. Sincern1(X) = 0 the lower square shows that the action on the quotient
7 (AX)/m; (QX) is trivial.

(3) The fibrationMX — AX,t — BT splits by a map constructed from a constant loop.Sofdr we
haver; (AX;T1) =7 (AX)®n; (BT). Especiallyt1(AX), 1) =71(AX). By naturality there is a commutative
diagram

11(AX) X m; (AX) — mi(4X)

1 (AXp1) X 1 (AXp7)  —> Wi (AXpT)

n1(BT) x m;(BT) —  w(BT).

From the upper square we see that the inclusj@n X, 1) 2 =; (41X) is n1(AXy7)-stable. The lower
square shows that the action on the quotigtl X ;1) /=; (AX) is trivial. The rest of the sequence (3) has
the desired properties since (2) isd4X)-central series. [

Proposition 4.2. If X is al-connected space then the cosimplicial spA¢2R X) /T is R-pro-convergent

Proof. This is a consequence of Bousfi¢tg Section 3.3]Via the weak equivalences from Lemma 2.1
we can use the filtrations from Proposition 4.1 in each codegree. Then the quotients BiE), =; (RX)
andr;11(RX). Hence, it suffices to show that wherg 0 the following holds for alkz >0:

" tyin(CBT) =0, n"mpn(RX)=0, n"mpint1(RX)=0. 4

Clearlyn™ 74+, (CBT)=0unlessn+n=2 andr®"n>(cBT)=0 since the differentials in the complex
np(CBT) are alternating zeros and ones.

By the proof of 6.1 in[7, Chapter |, and Proposition 6.3 in Chapter, ¥je following holds for any
spaceY: If H;(Y; R) =0 fori <k thenn/=;(RY) =0 fori <k + j. So the last two groups in (4) are also
zero. O
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Lemma4.3. Let X be al-connected space witH, X of finite typeThenR X is 1-connected andl, Ry X
is of finite type for eacBh<s < oo.

Proof. By Bousfield and Karj7, Chapter I, Section 6.:Me have thaiR;X is 1-connected for each

Recall thatR(Y) is weakly equivalent t¢ ;- 0K(H (Y), n) for any space’. So if H,Y is of finite type
thenH,R(Y) is also of finite type and; R(Y) = H;Y is finite for each. Hencer; (RX)™) is finite for

eachi, m. From Shipley{22, Lemma 2.6we see that; (R, X) is finite for eachi, s. By the Postnikov
tower for Ry X we conclude thaH, R, X is of finite type for eacls. O

Lemmad.4. Let--- — C,(2) — C«(1) — C.(0) be a sequence of maps of chain complexes. If for all
n and m the groug,, (;m) is finite then there is an isomorphisi, (lim C,(m)) = lim H,,(C.(m)) for
all n.

Proof. This is a consequence of the frsequence which can be found in, §15, Appendix A.5.] O

Proposition 4.5. Let G be a simplicial group such th&f, (BG) is finite for all n. Let{Z,,} be a tower
of G-spaces and pll,, =lim Z,,. Assume thatH,(Zoo)},, >0 = {H«(Zm)} >0 IS a pro-isomorphism
and thatH, (Z,,) is finite for all integers:, m. Then{ H.((Zoo) ) }m>0 = {H«((Zn)nc) =0 1S @lso a
pro-isomorphism

Proof. We have Leray—Serre spectral sequences fomn@ co as follows:
E*(m) = Ho(BG; Hu(Zn)) = He((Zm)ng)-

The tower map{Efj(oo)}m>0 — {Efj(m)}m>0 is a pro-isomorphism for ali andj by the pro-
isomorphism in the assumption, &5 ; (c0) = lim EZ; (m). By the assumptions on the homologyRss

andz,,, the groupsE2 (m) withm < oo are allfinite so by Lemma4.4we haEé (00)x lim E j(m). By
mductlonE’ (oo)_llm Er (m)foreach and since we have only finite flltratloﬂ§°(oo) ~ I|m EOo (m).
SlnceEoo(m) is finite for aIIz J, mitfollows that{ E°(c0)},,~ 0 — {E*(m)},,>oisapro- |somorph|sm
The result follows by the five lemnia, Chapter lll, Section 2.7] O

Theorem 4.6. If X is al-connected fibrant space witl, (X; F,) of finite typethen the Bousfield spectral
sequencgE’ (ARX,T; F,)} converges strongly tH*(A(XIQ)H; Fp)=Hyu(AXpT; Fp).

Proof. Let Y = ARX. The spectral sequence abuts to the homology of the total space of a fibrant
replacement o ;. We choose the fibrant replacemdntY)/T from Lemma 2.1. The total space of

this fibrant replacement is weakly equivalent/t()XIA,)H by Theorem 2.2. Thus, the spectral sequence
converges to the stated result if it converges. (A Leray—Serre spectral sequence argument shows that we
can remove th@-completion inside the homology group.)

We have shown in Proposition 4.2 that the spectral sequence is pro-convergent. Hence, it suffices to
show thatP, (E(Y)/T) or equivalentlyP, (YT) is a pro-isomorphism. By the Eilenberg—Moore spectral
sequence and Lemma 4.3 we see tHa(Tot; Y) =~ H. (AR X) is of finite type for each &s < co. By
Propositions 4.5 and 3.2 the result follows.]

We now change to cohomology. The dual of Proposition 3.2 and Theorem 4.6 is as follows:
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Theorem 4.7.If X is a 1-connected and fibrant space witt, X of finite type then we have strongly
convergent Bousfield cohomology spectral sequences

E, = H*(AX), E;™" = (mu H* (ARX)),

E, = H*(AX);1), E;™" = (muH*(ARX);7))".

We are going to give a description of ti#s-terms as certain non-Abelian derived functors evaluated
at H*X. In the next section we set up categories relevant for this purpose.

5. The categoryZ and the simplicial model categorys.#

For a fixed primep we let.«# denote the mog Steenrod algebra and” the category of unstable
«/-algebras. The category of non-negatively graded ufiiahlgebras with the property that® is a
p-Boolean algebra (i.ec = x? for all x € A%) is denotedw/g. In [19,20], we defined a category with
forgetful functors#” — # — .«/lg as follows:

Definition 5.1. An object in# consists of an objed in .«z/g which is equipped with afi ,-linear map
J.: A — A with the following properties:

o |/x|=p(x| —1) + 1lforallx € A.
e /x =x when|x| =1 and ifpis odd andx| is even therix = 0.
o A(xy)=A(x)y? +xPAi(y) forall x,y € A.

FurthermoreA is equipped with arft,-linear mapp : A — A with the following properties:

e |fx|=|x|+ 1forallx € A.
e fop=0andif|x| =0thenpx =0.
o fxy) =px)y + (D xp(y) forallx, y € A.

If p =2 we require thag = 0. A morphismf : A — A’ in # is an algebra homomorphism such that
fOx) =2 f(x)and f(fx) = B’ f (x).

Remark 5.2. For an objeck € .# the map’ : K — K is defined byix = S¢"*=*x whenp =2 and
Jx = PI¥I=D/2x whenpis odd andx| is odd. The mayg is the Bockstein operation wheris odd.

There is an obvious product oa. There is also a coproduct. For two objeétand A’ in # the
coproductA ® A’ is the tensor product of the underlying objectsiitg equipped with map$ * /' and
B = p as follows:

Ax 2l (x ®@y)=2ax) @y’ +xP QX (y),
Bxfx®@y) =)@y + (—DMx® ().

In appendices (19,20 we showed that is complete and cocomplete. It is well known thétand
/lg also possess these properties.

In the following # denotes any one of the categorigs 7 or .«#ig. LetnF, denote the category of
non-negatively grade#,-vector spaces. The free functsy; : nfF, — 2 is by definition the left adjoint
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of the forgetful functoz — nF,. If Xis a non-negatively graded set we pyt(X) = S»(F, ® X) where
F, ® X is the free graded ,-vector space with basks In particular we have free objec§s; (x,) on one
generator, of degreen.

Remark 5.3. Note thatS# (V) = S.,(V) where

V=veo @ iv+>2 p=2,
V=V @ ﬁv*2l ) @ ,Bv)ul (ﬁveven,*EZ @ VOdd,*ZZ)’ P> 2
i >1,ve{0,1}

In the following, we us¢21, Chapter Il, Section 4, Theoremtd]see that the categosy of simplicial
objects in# is a simplicial model category. The arguments are standard but we have included them
anyhow.

We start by verifying tha# has enough projectives. Recall that a morphmX — Y in a category
7 is called areffective epimorphisni for any objectT and morphismx : X — T there is a unique
p:Y — T with f o f = « providedo satisfies the necessary condition that u = o o v whenever
u,v:S=X are maps such thgtou = f o v [21, Chapter I, Section 4, proof of Proposition 2]

Proposition 5.4. Let f be an effective epimorphism in a categaryThen f is an epimorphism. Further-
more if f can be factored ag =i o p where i is a monomorphism then i is an isomorphism

Proof. Assume thatis an effective epimorphism. Lets be two parallel arrows such that f =so f.
Then fora =r o f we havep o f = o both for =r andf = s. So by uniqueness=s. Thusf is an
epimorphism.

Assume thatf =i o p wherei is a monomorphism. If o u = f o v for two parallel arrows:, v then
iopou=iopovandpou=powvsincei isamonomorphism. Hence there exists an afreuch that
p=jof.Now,iojo f=iop= f whichimpliesthai o j =id sincef is an epimorphism. Furthermore
iojoi=idoi=iwhichimpliesthatj oi =id sincei is a monomorphism. O]

Proposition 5.5. Amorphism irz is an effective epimorphism if and only ifitis a surjection on underlying
graded sets

Proof. Any morphismf : X — Y may be factored a¥ — f(X) — Y where the last map is clearly a
monomorphism. So by the previous proposition we see that an effective epimorphism is surjective.

Assume thatf : X — Y is a surjection and let : X — T be a map which satisfigdou = o v
wheneverf ou = f o v. For a givenxy € ker f letn = |x| and definat, v : Sp(x,) = X by u(x,) = x
andv(x,) = 0. Thenx € kerp so we have kef C kerf. Nowa : Y — T with a(f(a)) = f(a) is well
defined and hago f =p. O

Recall that if21] an objectP in a categoryz is calledprojectiveif Homp (P, —) sends any effective
epimorphism to an surjection of hom-sets.

Proposition 5.6. The following statements hold in the categety

1. S»(V) is projective for any object V inFF,.
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2. 2 has enough projectives
3. {Sz(x,)|n>0} is a set of small projective generators

Proof. (1) By taking adjoints and applying the previous proposition we seeSth@l) is projective. (2)
LetU : # — nF, denote the forgetful functor and l&be an objectim?. The adjoint; : S5 (U (X)) — X
of idy(x) is surjective and hence an epimorphism. Thulsas enough projectives.

(3) The objectSx(x,) is projective by (1). Since Hog(S»(x,), X) = X" we have that Hom
(Sz(x,), —) commutes with filtered colimits s84(x;,) is small. Finally, for two different morphisms
f, g : X =Y there exist anr € X such thatf(x) # g(x). Hence, the magx(x,) — X with x,, — x
wheren = |x| separatefandg such that we have a set of generators as stated.

We now turn to the category of simplicial objects inz. The homotopy groups of an objeRtn #
is defined as the homology. R = H, (R, 0) whered is the differential given by the alternating sums

n
0=> (-1'd; : Ry > Ry_1.
i=0
Especiallyng(R) = R/(do — d1) R and we have a morphism: R — ng(R) in s given by projection
where we viewrg(R) as a constant simplicial object.
If f:X — Y isamorphism inz we can form the diagram

X —° 5 mX
fJ lﬂof
Y —°% o noY.

One says thdtis surjective on componenifsthe map fromXinto the pullback( f, ¢) : X — Y XzymoX
is a surjection. Note that ifg( /) is an isomorphism thehis surjective on components if and onlyf is
surjective.

Proposition 5.7. There is a simplicial model category structure o# as follows

e f:X — Yisaweak equivalenceif, f : n,X — =Y is an isomorphism

e f: X — Yisafibrationifitis surjective on components and an acyclic fibration if it is both a fibration
and a weak equivalence

e f: X — Y isacofibration if for any commutative diagram

X — s A

fJ lp (5)
Y — 5 B,

where p is an acyclic fibratigrthere exist a mafy — A making both triangles commute

The solution to the arrow diagraifb) is unique up to simplicial homotopy under X and over B
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Proof. This is a special case of Quillg21, Chapter Il, Section 4, Theorem 41he uniqueness part
follows from[21, Chapter Il, Section 2, Proposition. 4]0

Note that the cofibrations are described in an indirect way. The concept of an almost free map make
up for this weakness. S¢R1, Chapter 2, p. 4.11, Remark dhd the main sourcd 7, Section 3][18,
Section 2]or [10].

Definition 5.8. Let 4 denote the subcategory of the simplicial categowith objectsin]={0, 1, . . ., n}
for n>0 and morphisms the order preserving maps which sends 0 to 0. An almost simplicial object in a
category? is a functor fromd” to %.

Definition 5.9. A morphismf : X — Y in s# is calledalmost freeif there is an almost simplicial
subvector spac¥ of Y such that for each >0, the natural max, ® S»(V,) — Y, is an isomorphism.

Proposition 5.10. (1) Almost free morphisms are cofibrationssis.

(2) Any morphismA — B may be factored canonically and functorially as— X — B where the
first map is almost free and the second is an acyclic fibration

(3) Any cofibration is a retract for an almost free map

Proof. Similar to the one given ifiL7]. See als¢10]. O

Definition 5.11. A simplicial resolution of an objecA € s is an acyclic fibrationP — A in s# with
P cofibrant. An almost free resolution éfis an acyclic fibrationD — A such thatr, — Q is almost
free.

Note that an almost free resolution is a resolution and that almost free resolutions always exist by the
above proposition.

Theorem 5.12. Let X be a space with mod p homology of finite typeRXtbe the cosimplicial resolution
of X. ThenH*(RX) is an almost free resolution df *X in each of the categorieg”, # and.«Ig.

Proof. This is a reformulation of well-known results. We Udd, Chapter VII, Example 4.13s a ref-
erence. LeRXdenote the simpliciaR-module defined by applying the fré&module functor on each
simplicial degree. Let : X — RX be the map defined by +— 1x.

As in [11] one gets a cosimplicial spaeX with (RX)" = R"T1X and augmentation: cX — RX.
Note thatR X is a version of the Bousfield—KdRresolution ofX [7]. The homologyH, (; R) = n4(Rn)
is computed iff11] and taking the dual of this, we find thgt induces an isomorphism as follows:

H*X, s=0,

s H*(RX) = {O s> 0.

Thusy™ is surjective and hence a fibration. Furthermgrés a weak equivalence.

In order to show thak, — H*(RX) is almost free, we must find an almost simplicial subvector space
V of H*(RX) such thatS»(V,) - H*(RX) is an isomorphism for each> 0.

As remarked in11] the cosimplicial mapsi’ for i >1 ands’ for i >0 for RX are all morphisms
of simplicial R-modules. Thus, it suffices to show th&t'(RX)" is a free object inz for eachn > 0.
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But it is well known thatRX is homotopy equivalent to a product of Eilenberg—MacLane spaces of
the type K (F,, m). The cohomology of such a product is a free object#nand hence also i
and.«zlg. O

6. Derived functors

In this section# denotes any of the categories, # or .«/Ig. We use the following notation for
non-Abelian-derived functors:

Definition 6.1. The homology of an objedR in s# with coefficients in a functoE : 2 — .«lg is
defined by

Hy(R; E) =nE(P),

where P — R is a simplicial resolution oR. By the uniqueness statement in Proposition 5.7 this
homology theory is well defined and functorialRa

For an objectR € # we also writeR for the corresponding constant simplicial objeck . We are
mainly interested irH,(R; E) whenR € #. These homology groups have certain properties which we
now describe.

LetE, F andG be functors fron# to .«z1g with natural transformations — F — G.LetV : «/lg —
nfF, denote the forgetful functor to gradég-vector spaces. If 0> VE — VF — VG — 0 is short
exact when evaluated on any free objec#ithen we get a long exact sequence

< H{(R; E) < Hi(R; F) < H;{(R; G) < Hi11(R; E) < ---.
The 0th homology group is sometimes given by the following result:

Lemma 6.2. Define the category?’ as we defined the categasy except that we do no longer require
that objects are unital. LeF : #' — .«7lg’ be a functor. Assume that for every surjective morphism
f : A — Bin %' the following two conditions hold

1. F(f): F(A) — F(B) is surjective
2. F(ker f) - F(A) — F(B) is exact

thenHy(C; F) =~ F(C) for all objects C in%.

Proof. Let P — C be a simplicial resolution df. From the normalized chain complék F (P) we see
that Ho(C; F) = F(Pp)/F (d1)(ker F (dp)).

The mapsly, d1 : P1 — Pg are surjective by the simplicial identities. Liet kerdg — P; denote the
inclusion. By Condition 2 we have that k€idg) = F (i) (F (kerdp)). Thus

F(d1)(ker F(dp)) = F(d1) o F(i)(F (kerdp)).
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There is a commutative diagram

d/
kerd —* - di(kerdp)
d1
P SN Po,

whered; denotes the restriction df andj is the inclusion. By this diagramfi(dy) o F (i) = F(j) o F(dy).
FurthermoreF (d}) (F (kerdp)) = F(d1(kerdp)) by Condition 1. So we have

F(d1)(ker F(do)) = F(j) o F(dy)(F (kerdo)) = F(j)(F (di(kerdo)))

andHo(C; F) = F(Po)/ F(j)(F (di(kerdp))).

Using Conditions 1 and 2 on the projection m&y— Po/d1(kerdg) we see thatHy(C; F) =
F(Po/d1(kerdp))=F(C). O

The following result can sometimes be used to compute derived functors of pushouts. We denote the
pushout of a diagram’ < A — A”inszor2by A/Q4A".

Proposition 6.3. LetE : # — .</l1g be a functor

(1) If there is a natural isomorphisfi(A’ ® A”)~E(A") ® E(A”) for objectsA’, A” in % then there
is an isomorphism

H.(B'® B"; EY~H,(B'; E)y ® H.(B"; E) for B, B € .
(2) Assume that there is a natural isomorphism
E(A/®AA//) ~ E(A/)®E(A) E(A//)

for diagramsA’ < A — A” in 2. Assume further thaB’ <~ B — B’ is a diagram in# such that
Tor®(B’, B”) = 0for i > 0. Then there is a first quadrant spectral sequence as follows

EZ; =Tor™ "B (H,(B'. E), H.(B": E)); = Hiy;(B'®3B"; E).

Proof. Let P — B be a simplicial resolution dB. By the factorization axiom we get a diagram
P/ — P NN P//

I~ I~ i~
B «— B — B,

where the vertical maps are acyclic fibrations and the upper horizontal maps are cofibrations as indicated.
SinceF, — P is a cofibration and cofibrations are stable under composition we seg'that B’ and
P” — B’ are simplicial resolutions.

Now form the map of pushoutg : P'®pP” — B'®pB” and consider the corresponding map of
derived tensor products in the sense of Qui[zh Chapter Il, Section 6]

Lf:P'®pP" =P R5P" - B'®LB".
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By Quillen[21, Chapter Il, Section 6, Theorem, @here are second quadrant spectral sequences
Tor*" (n. P', n, P"); = misj (P'@p P"),
Tor*? (n, B', . B"); = i1 ; (B'®%B").

The above diagram gives a map of spectral sequences which is an isomorphisByatims. Hencéfis
aweak equivalence. By the Corollary following Quillen’s Theorem 6 we havetwl B” — B'®pB"
is a weak equivalence. Thiiss itself a weak equivalence.

Sincef is surjective it is a fibration. Since the pushout of a cofibration is a cofibrdtion P'®pP”
is a cofibration and thus the domainfa$ cofibrant. Sd is a simplicial resolution.

For the proof of (1) také® =, and applyE codegree wise. The result follows by the Eilenberg-Zilber
theorem. For the proof of (2) applycodegree wise. The result follows by Quillen’s Theorem Bl

If one knows that the higher derived functors vanish on a certain class of objects, they can be used to
compute derived functors by the following result.

Theorem 6.4. LetE : # — «/lg be a functor and leA € #. Assume thaQ > A is an acyclic fibration
in s# and that

Hi(Qj;E)Z{g(Qj) =

ThenH,(A; E)~n.E(Q).

Proof. We have shown thatz is a simplicial model category. Se# is a simplicial model category by
the Reedy structurfd.1, Chapter VII, Section 2.13R fibration inss# is especially a level fibration and a
cofibration is especially a level cofibration by Goerss and JafdiheChapter VII, Section 2.6A weak
equivalence is a level weak equivalence by definition.

We use a dot to denote a simplicial direction in the following.d@t, denote the object isns % defined
by (cQ);; = Q; foralli. Let P,, be aresolution of Q,, i.€. (Fp)ee™ Pee—CQ qe-

We have thatF ,),— P;s— Q. for each by the above. By composition with the acyclic fibratiog— A
we see thaP;, is a resolution of\.

So the horizontal homotopy @ (P,.) is given byni?E(P,-.) = H;(A; E). We apply vertical homotopy
on this and obtain

Hj(A;E) i=0

v_h ~
”i”JE(P")={0 i>0.

We also have thak, ; is a resolution o) ; for eachj. Sox} E(P, ;) ~ H;(Q;; E) which equals£(Q )
for i = 0 and equals 0 far> 0. We apply horizontal homotopy on this and obtain

h_v ~ ﬂjE(Q.) i =0,
n./'niE(Pu)Z{o i>0.

Thus both spectral sequences associated Eth,,) collapse and the result follows.[
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7. The E; terms seen as derived functors

In [3,19,20]we introduced a functa@ : # — .«7Ig as follows:

Definition 7.1. Q(R) is the quotient of the free graded commutative and uftalgebra on generators
{dx|x € R} of degreddx| = |x| — 1, modulo the ideal generated by the elements

d(x +y) —dx —dy, d(xy)—dx)y— (—DFxd(y),
d(x) — (dx)?, d(fix).

There is a differentiad : Q(R) — Q(R) given byd(x) =dx for x € R.

Note that forp = 2 the Bockstein is trivial so here the funci@iis the same as the functor which we
originally denoted?;.

It was shown that there is a lift to a funct@r: # —  and that this lift is nothing but Lannes’
division functor(— : H*(T)) . In particular there is a morphist( H*X) — H*(AX) for any spacé&
which is an isomorphism wheH* X is a free object inz".

An other functort : # — .«/Ig was also introduced if8,19,20]as follows:

Definition 7.2. Let p = 2 and letA be an object inZz. TheF»-algebral(A) is the quotient of the free
graded commutativé>-algebra on generators

$(x),q(y), (), uforx,y,ze€ A

of degrees¢(x)| = 2|x], lg(x)| = 2|x| — 1, |6(x)| = |x| — 1 and|u| = 2, by the ideal generated by the
elements
¢(a+b) + ¢(a) + ¢(b),
5(a + b) + é(a) + 5(b),
q(a+b)+q(a)+q(b)+dab),
0(xy)d(z) + 6(yz)o(x) + d(zx)o(y),
d(xy) + d(xX)P(y) +uq(x)q(y),
q(xy) +q(x)p(y) + ¢(x)gq(y),
5(x)% 4 5(Jx),
q(x)% + p(x) + 5(x%ix),
3 () + d(xy?),
0(x)q(y) + 6(x1y) + d(xy)o(y),
o(x)u,
d(Du + u,

wherea, b, x, y, z are homogeneous elementiwith |a| = |b|.

Definition 7.3. Let p be an odd prime and |étbe an object in7. TheF ,-algebral(A) is the quotient
of the free graded commutativg-algebra on generators

¢(x)’ Q()’)’ 5(Z), u fOI‘x, y,Z € A
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of degreeg¢p(x)| = plx| — a(x)(p — 1), lg(M| = plyl = 1= o) (p — 3), [6(2)| = |z] — 1 and|u| =2
by the ideal generated by the elements

p—2

$(a+b) — §(a) — () + a(a) Y (1) d(a) 3(b)’*"5(ab),
i=0

5(a +b) — 8(a) — 5(b),
p—1

q(a+b)—qla) —qb) +6(a) Y (—Dl’%é(a"bp—f).
i=1
(=1 @@ 5(x)3(yz) + (—1)°P7O5(1)3(zx) + (=17 DD 5(2)8(xy),
P(xy) — (—ul 177D g ) (),
q(xy) — (—uP H 7D "W g (x)p(y) + (—1) "V P(x)g (),
q(0)P —uP"1q(x) — p(pix),
3 P(y) — S(xyP) — d(xy) + d(xy)d(»)P 7L,
3()q(y) — d(xy? " Hd(y) — 8(xpy),
o(x)u,
d(Du — u,
q(Bix),
d(x?),

wherea, b, x, y,z € A with |a| = |b|. Furthermoreg(x) = 1 for |x| odd, ¢(x) = O for |x| even and
d(x)=1-—o(x).

The functor also lifts to an endofunctor os” and there is a natural morphigitH*X) — H*(AXpT)
which is an isomorphism iH* X is a free object in#". For details on this s€8,19,20]
Via Theorem 5.12, we can now restate Theorem 4.7 in an appropriate form.

Theorem 7.4.1f X is a 1-connected and fibrant space with. X of finite type then we have strongly
convergent Bousfield cohomology spectral sequefgesy H*(AX) and E, = H*(AX,1) with the
following E> terms

E;"™ ~H,(H*(X); Q' and E,™'=H,(H*(X); )"

We now introduce other functors in order to study the derived functofsiécall that the functors’
andQ from 7 to .«/lg are defined by?(R) = ¢(R)/(u) andQ(R) = Z(R)/(6(x)|x € R).

Proposition 7.5. For each objeck € 7 there are isomorphisms as followdy (R; Q)~Q(R), Hy(R; 5)
~Q(R) and Hy(R; &)= Z(R).

Proof. We use Lemma 6.2 to prove this. By their definitions we may consikier and.# as functors
from 7' to .«/lg’.
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Let A be an object in7’ and letl € A be an ideal. We must verify Conditions 1 and 2 in Lemma
6.2 for these functors wherg : A — A/I is the natural projection. We do this for the functsr The
verification for the other functors is similar but easier.

The mapZ(f) is surjective with kernel

J=(0(x) = d(y), g(x) —q(y), 0(x) —=o(y)|lx —y e I) € L(A),

S0Z(A)/J=%(A/I). We must check tha¥(I) = J.

The inclusionZ (1) C J holds sincep(0) = ¢(0) = §(0) = 0.

For the inclusionZ (I') © J assume first thgt = 2. Sincep andq are additive we have thatx) — (y)
and¢(x) — ¢(y) liein Z(I). Furtherg(x) — g(y) = g(x — y) + d(xy) buté(xy) = d(x(y — x)) so also
q(x) —g(y) € Z(I). Thus the inclusion holds.

For p odd¢ is additive,¢ is additive on elements of even degree gnd additive on elements of odd
degree. Fofx| = |y| odd we have

p—2
$(xX) — p() = d(x — ) + Y 30 8NP Z5(xy)

i=0
and again(x(y — x)) = d(xy) such that this lies i (I). For|x| = |y| even we have

1)—11
_ — _ _ ~i,p—i
q(x) —q(y) =q(x — ) 5(Zi” )

i=1

so it suffices to see that— x divides the sum inside th&—). The following equation irf ,[x, y] shows
that this is the case:

p—3 p—1 1 ' k 1
xy(y —x) Z apxkyP=37k = Z lfx’yp_’ whereay = T
k=0 i=1 =0/

The equation holds since by Euler’'s sum form@j%;lln =0 modulop. O

Definition 7.6. Let 2, 4, # : # — .«/Ig denote the functors given by
Z(R) =ker(d), %(R)=im(d), H#(R)=2Z(R)/%A(R),

whered is the differential om(R).
Recall from[3,19,20]that there are natural transformations of functbrs Q@ — # andQ : ¥ — Z.
It was shown that ifA € & is a free object, or its underlying algebra is polynomial, tllgrand Q 4 are

isomorphisms. We can now give a nice interpretation of the fungtowhich was originally defined by
generators and complicated relations.

Theorem 7.7. For anyR € # one has?(R) =~ Ho(R; Z).

Proof. The induced ma@, : H.(R; ¥) — H,(R; Z) is an isomorphism sinc® is an isomorphism
on free objects. The Oth derived functor@fwas computed in Proposition 7.50
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For any functorE : # — .«/lg we have that;(A; F) =0 fori > 0 whenAis a free object since we
can use the trivial almost free resolution to compute the derived functors. For polynomial algebras we
also have nice results.

Theorem 7.8. Assume that the underlying algebra #fe 7 is a polynomial algebraThen one has
H;(A; Q) =0,H;(A; Q) =0, H;(A; ¥)=0and H;(A; ¢£) = 0 for eachi > 0.

Proof. We first prove the statements f@rand Q. Let @ : «/lg — /Ig denote the usual de Rham
complex functor. Pick an almost free resolutiBne s7 of A. The forgetful functoV : 7 — 7ig
takes free objects to free objects. So we can ajpplg P and get an almost free resolution@{A) in
s</lg. Thus there is an isomorphism

H7 (A; QU)=~H""¥ (U (A); @)

and the last group is trivial far> 0 sincelU (A) is a free object inzig.

Thereis alinear ma@U (A) — Q(A); xodx1...dx, — xodx1...dx,. The map is not multiplicative
and it does not commute with the de Rham differential, but it is an isomorphism of graded vector spaces.
Thus H; (A; Q) is additively isomorphic ta7; (A; QU) which is trivial fori > 0. A similar isomorphism
gives the result for the functa?.

Next we consider the functar. The short exact sequence9 7 — Q — % — 0 gives a long exact
sequence of derived functors. By the above this sequence breaks up into the exact sequence

0 — Hi(A; #) — Ho(A; %) — Ho(A; Q) — Ho(A; ) — 0

together with the isomorphisni$; (A; )=~ H;.1(A; %) fori>1.

There is also a short exact sequences0 % — 2 — # — 0 with corresponding long exact
sequence of derived functors. Singés an isomorphism on free objects we have a natural isomorphism
&, : H.(—; Q) =~ H,(—; #). By the above vanishing result féf, (A; Q) the long exact sequence breaks
up into the short exact sequence

0— Ho(A; %) — Ho(A; Z) — Ho(A; #) — 0

and the isomorphismA; (A; 4)~ H;(A; &) fori>1.
Using Proposition 7.5 and Theorem 7.7 we can rewrite the exact sequences involving Oth derived
functors as

0— Hi(A: B) - L(A) - Q(A) — Ho(A; B) — 0,
0— Ho(A; %) - ¥ (A) > #(A) — 0.

SinceQ : Z(A) — Z(A) is an isomorphism we see thaf;(A; #) = 0. By the isomorphisms
Hi(A; #)~H1(A; Z)=~H(A; #)=~ ... we conclude thaH; (A; %) is trivial for i > 0. But H,(—; %)
is isomorphic toH, (—; Z) so we are done.

Finally we consider the functdr. By definition of # the sequence 8> u¢ — ¢ — ¥ — 0 is short
exact. From the corresponding long exact sequence of derived functors we fitithat¢) ~ H; (A; £)
fori > 0. By Theorem A.3 from the appendix and Proposition 4.4 fip@j there is a short exact sequence

0— uw*le(B) - u/t(B) - u/ ® 3(B) > 0, j>0, (6)
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whenB is a free object inZ or when the underlying algebra &fis a polynomial algebra. The cor-
responding long exact sequence of derived functors shows#tiat u/¢) ~ H; (A; u/+1¢) so we have
H;(A; €)=~ H;j(A; u/¢) for all j>0. But (u/¢)* =0 for k <2j so H;(A; u/€)* =0 for k < 2j and the
result follows. O

Proposition 7.9. If the underlying algebra of an object € # is a polynomial algebrathen
Ho(A; ) =L(A).

Proof. The short exact sequence® ul — ¢ — ¥ — 0 gives a short exact sequence of Oth derived
functors sinceH;(A; &) = 0. Furthermore, there is a natural méf(—; F) — F for any functor
F .7 — «/lg. So we have a commutative diagram with exact rows as follows:

0 — Ho(A;ul) —» Ho(A;¢) — Ho(A;¥Y) — O

L

0 —  wl(d) — LA — LA — O

The right vertical map is an isomorphism so it suffices to show that the left vertical map is also an
isomorphism.
SinceH1(A; Q) = 0 the short exact sequence (6) gives a commutative diagram as folloys-for

0 — HoA;u/tey — HyA;ult) — HO(A;uj®EZ) — 0

| l l

0 — W) — W) — e — 0,

where the right vertical map is an isomorphism. Fix adegréer j +1 > n/2 the mapHo(A; uwl Tt —
(u/Te(A))" is an isomorphism since both domain and target space are zero. The result follows by
induction. O

Corollary 7.10. Let X be al-connected space such thAL X is of finite type andd*X is a polyno-
mial algebra Then then the spectral sequences of Theafehtollapses at theE, terms So there are
isomorphisms

Hy(H*(X); Q)" =H*(AX) and H.(H*(X); )" =H*((AX)p1).

8. The derived functors of an exterior algebra

In the rest of this paper we take= 2. Let 4 = A(c) € # be an exterior algebra on one generator
of degree|s|>2. Note thatle = O for dimensional reasons. We intend to compute the higher derived
functors of the various functors we have been considering for this algebra.

Proposition 8.1. There are isomorphisms

Hi(A; Q) =Q(A) @ INw], Hi(4; Q)=Q(A) @ ']
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The inner degrees afg; (w)| =i(2|a¢| — 1), |y; (®)| =i(4|s| — 1) and the grading of the homology groups
are given by

Hi(A4; Q) =Q(N) ®@ yi(w),  Hi(A; Q)=Q(A) ®y;(@).

Proof. The algebrat is the pushout of, < Fo[y] — F2[x] wherey — x2. Putix =0 andiy = 0. By
Proposition 6.3 we find

E(Fo
i

H:(A; E)=Tor" 20D (5, E(Fo[x])) for E=10, 0.

The result follows by standard computations.

In order to compute derived functors of the other functors we need an explicit simplicial resolution of
A. By Theorems 6.4, 7.8, Propositions 7.5 and 7.9 we may use an almost free resolutiomso¥/ig
and equip it withi = 0.

Proposition 8.2. There is an almost free resolutia®, € s.«Zlg of the algebraa with R, = F2[x, y1,

v2, ..., yq] forn>0.The structure mapg; : R, — R,—1ands; : R, — R,y are given by
si(x) =x,
_ )y J<i,
S i) = . .
101 {yj+1 j>i
di(x) = x,
x2  i=0, j=1,
o JYi-1 i< j>1
dt(y,/)— Y i>j, j<n,
0 i=n, j=n.

The degrees of the generators ar¢ = |¢| and|y;| = 2|q| for all i..

Proof. We first give a description of the simplicial s¢} = Hom,(—, [1]) suited for our purpose.
Define the elements; A,ll forn>0and <j<n+1byy;(i)=0ifi < jandy;(@i)=1ifi> ;. We

haveA,} ={yo0, ..., yn+1}. The structure maps are as follows:
o) YViFL TS g ey = LY P
dlyj—{yj i}j and Slyj_{yj lZ]

Let F2[—] denote the functor which takes a graded set to the polynomial algebra generated by that set.
Let FZ[A}, x] denote the pushout ¢% <« Fa[a] — [Fz[A}] wherelF2 andFs[a] are constant simplicial
algebras. In degrere the maps are as follows: — 0 € Fp anda — y,+1 € [FZ[A}]. Note that
Fo[42] ~ Fo[x] by the simplicial contraction ofil. The spectral sequeng21, Chapter Il, Section 7,
Theorem 6]gives thatn,-([Fg[A}, x]) = F» for i =0 and O otherwise.

DefineR, as the pushout dfs[x] <« Fo[z] — [FZ[A}, «] where in degree the maps are — x2 and
z + yo. For this pushout Quillen’s spectral sequence gives that

A 1=0,

mmagm&mmzﬁUD:{Oi>o
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ThusR, has the right homotopy groups. Furttigris as stated and the structure maps are as stated. Note
that R, is almost free. The degrees are correct since the structure maps must be degree pregerving.

Lemma 8.3. H,,(4; Q) has the followingro-basis

dyq...dy,, xdyq...dy,, dxdy,...dy,, xdxdy,...dy,.

Proof. Using the formulas in Proposition 8.2 it is easy to check that the four given classes are in the
kernel ofd; for all i. To check linear independency, we introduce two gradings. of

Firstly, the wedge grading of(R,,) is defined as the number of wedge factors, i.e. the numbdis of
in a homogeneous element. Secondly, the polynomial grading is defined as follows:dbaging 1,y ;
grading 2 and eactixor dy ; grading 0 and extend multiplicatively. Note that the mappreserve both
gradings. We writ&2?-' (R,,) for the elements i®(R,) of wedge degreq and polynomial degree Thus,
there is a direct sum decomposition

Hy(4: Q) = D) Ha(4: Q7).
q,t20

The classes we consider sit in different bigradings, so we only have to check that they individually do
not represent the trivial class.
We have the following bases f@*°(R,1), 2°%(R,) and@*°(R,_1) respectively:

{dyy...dyj...dy, 1} Uldxdyy...dy;...dyg...dy, 1},
{dxdy, ... dyj coody,yUldyq..ody,),
{dXdyl PN dyn—l}'

We use the normalized complex consistingiafg ker(d; ) with differentialdg to compute the homology.
For this normalized complex we have the respective b@dsgsy, ...dy,}, {dxdy; ...dy,_1}. Taking
homology and using tha"-%(R,, _») =0 we see that the classésdy; - - - dy,_, anddy; . ..dy, do not
represent zero.

Similarly, xdxdy ...dy,_1 andxdy, ...dy, do not represent zero. Keeping track of degrees and
dimensions, the result follows.

Lemma 8.4. H,(A; #) has anFy-basis as follows

Yi...yndyq...dy,, x2y1...yndy1...dyn,
xdxyq...yndyq...dy,, xsdxyl...yndyl. .dy,.

Proof. This follows from Lemma 8.3 and the Cartier isomorphism]

Corollary 8.5. The long exact sequence associateddte> 2 — # splits into short exact sequences
when evaluated at

0— H.(A; B) > Ho(A; &) - Hy (A, #) — 0.

Proof. The generators from Lemma 8.4 are visibly in the imagélpfa; ) — H,(A; #). O



M. Bokstedt, I. OttosenTopology 44 (2005) 1181-1212 1205

Definition 8.6. Lety; ; € Q(R;) denote the following elements:

Vij = Y1y2...yidyidy,...dy; fori, j>0,
j0.j =dyidy,...dy; for j>0 and ygo=1.

These elements are actually #i(R;) if i<j, and in#(R;) in casei < j. They are even in the
normalized chain complex, so they define classdg.ii1; Z), respectivelyH, (A; 4).

Theorem 8.7. For n >0 the homology grougs, (4; %) hasF»-basis

{dx70.20) U (21,20 X221 200 XdX7; 2y X3dx72; 2,10<i <)

and the homology groufl2, +1(A; %) hasfFs-basis

{v0.2041> dX70,204+1, XdX70 2,41}
2 3 .
U{y2it1.2041 X V2412041 XAXY2i41 2041, X dX)2i41 2,41|0<i <n}.

Similarly, Ho, (A; Z) hasF,-basis
2 .
{dx70.20} U {12120 X901 200 XAX731 2, X3dx79; 2,|0<i <1}

and Hy,11(A; Z) hasF,-basis

{v0,204+1> dX70, 2041, XdX70, 2941}
2 3 .
U{p2it1.2041 X 2i41.204+1 XAXV2i41 20415 X dXV2i 41 2,4110<i <n}.

Proof. Recallthatt,, (4; Q) =Q(A)®yg,, andH,, (A; ) ;5(A)®ym7m. Fromthe splitting4,,, (4; Z) =
H,, (A; ) & H,,(A; #) together with the computation &f,, (A; #) in Lemma 8.4, it follows that the
statements about,, (4; Z) and H,,(A; %) are equivalent.

Recall the long exact sequence

Hyia(A; ) -5 Hy (4 2) 25 Hy(4: Q) 55 Hy(A: 2) 7)

Claim. Theimage odl, is a one-dimensional vector spagenerated by a clasga/hich in the normalized
chain complex is represented 8y ,,,.

Note that three out of four of the generators Bf; (4; Q) are annihilated byl,. So the image of
d, is spanned by the single class, represented in the normalized compléxypy, € %(A). This
element actually represents a non-zero homology class, since th&p@p 4) — H,,(A4; Q) induced
by inclusion, send it to the element represented/byy; - - - dy,,. But this is non-trivial according to
Lemma 8.3, and the claim follows.

We will now prove the theorem by induction om We first treat the case = 0. Here, we see that the
mapdp : Ho(A; Q) — Ho(A; %) is surjective by the long exact sequence (7), and the statement follows
directly from the claim we just proved.

Assume that the theorem holds for The long exact sequence (7) gives us a short exact sequence

0 — iM(dps1) — Hpi1(A: B) > ker(ip) — 0.
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So, in order to prove the theorem, we have to showllragps the classes given in the statement of the
theoremwith dxy, ,,..1 removedo a basis for the kernel af,.
By induction we have a basis fdf,,(1; 2). From this we see that the kernel of the map;;
Hoyy1(A; &) — Hauyy1(A4; Q) has basis
2 3 .
{v2it1.2041s XV2i42.20410 XAXV2 11 20415 X7AXYi41 2041|0<i <n}
and that the kernel of the may, : Ho,(A; Z) — Ha2,(4; Q) has basis

2 3 2 3 .
{50,205 X7dx70 20} U {y2i 200 X V21,205 XAX7V2i 245 X7dXY5; 2,|1<i <}

Itis convenient now to pass from the normalized to the unnormalized complex. The normalized complex
is a subcomplex of the unnormalized one, and in the notation we do not distinguish between a class in
the subcomplex and its image in the unnormalized one.

Let us first consider the odd cage=2n + 1. The elementy; ,. o € #(R2,+2) is a cycle with respect
to the boundarg = ) dix. We compute its image under the map

Leta, € Q(R2,.12) denote the following element:

o = Y1y2...Y2iyrdy1dy; .. 67); codyouio, 20+ 1<r<2n+ 2,
where the hat means that the factor is left out.;P#th’:giiz . We haveda, = yy; 5, for eachr, so
that alsod f = 7; 2,12- This means thai(y,; 5, ») is represented by

2n+2

OB="Y -1+ ¥)722041+ Y20172i 2041 = V21412041
r=2i+2

Since b is linear with respect to multiplication by?, xdx x3dx this gives the desired result for
Hopy2(A; B).
In the even case = 2n, a similar argument shows thiaty,; 1 2,.1) is represented by, . 5 5,.
Checking with the lists of classes above, we see that we are left to provethat. 1) =x2y0’2n. The
argument is very similar. Let

oty :yra’yldyz...cj)z...dyzn+1 and f=o1+o2+ -+ a241.
Thendo, = yg,2,41 SO alsad f, = 79 2,11- ThUSh (g 2,41) IS represented byp = xzyo’zn. O
Proposition 8.8. There are short exact sequencesifer0, 1 >1 as follows
0 — Hi(A;ul) — Hi(A; 0) — Hi(A; ¥) — O,
0— H;(4; ut+1€) — H;(A;u'l) — H;(4; utﬁ) — 0.
Proof. The first short exact sequence follows if we can prove that the connecting homomorphism
b : Hi11(A; &) — H;(A; ub) is trivial. So consider the diagram
0 — wl(Riv1)) — LRiy1) — ZLRiy1) — O

L

0 — wl(R) — UR) — ZLR) — O
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The element (y1) ... q(y;)0(yj+1) ... 0(yi+1) € €(R;+1) maps to the element ;1 € Z(R;+1). By
the relations’(a)? = 5(1a), ¢(a)? = $(Ja) + d(a%ia) andd(a)q(b) = d(aib) + 5(ab)5(b) we see that
this element maps down to zerodfR;). So the connecting homomorphidnis trivial.

The proof for the second short exact sequence is similar.

Corollary 8.9. For eachi >0 there are isomorphisms 6p-vector spaces

Hi(A4: O =Hi(4: )& | Pu' ® Hi(4: Q) | = H;(A; #) & (Falu] ® Hi (4: Q)).

t>1

Let F : 7 — «/lg be a functor. We define the total degree of a clasFi(R; F)" to ben — i. For
F = ¢, Q this corresponds through the spectral sequences of Theorem 7.4 to the grading of cohomology
groups. We writePr (1) for the Poincaré series corresponding to the total degrég of; F)*.

Theorem 8.10. Lets denote the degree of the clasg A. Then we have the following Poincaré series

P5) =1+ )L —rH

Py(t) = L+ %)L —r>H1,

Py(t) = ts—l(l 451 t25—1)(1 _ tZs—l)—l(l _ t2s—2)—1,
Po(r) = (1+ P s t25—1)(1 . t2)—1(1 . tzs—z)—l_

Proof. The firsttwo formulas follow from Proposition 8.1: the total degreg @b) is |y; (w)|—i=(2s —2)i
andQ(A4) = 4 ® A(do) SO

Ps()=A+A+rHa - l=a+rHa-rHt

A similar argument give®;(z).

To determinePx(¢r) we must count the classes given in Theorem 8.7, according to the total degree.
We divide these classes into three groups. The first group are those of théxfgsm. The Poincare
series of the subspace generated by those clasges i1 — +2~2). The second group are those of the

tyPeyg.2,41 OF Xdx70 2,41. These have Poincaré seriés2(1+ 12~ 1) /(1 — 144,

The thirdgroupisthe remaining classes. They span aftgg-module with basi ={y2; 21 72i+1.20+1l
0<i <n,0<n}. We introduce the following operation on the $€t7'(y; ,) = 7;+1.,+1- This operation
has total degrees4- 2. All generators are obtained by applyifig non-negative number of times starting
from one of the elements of = {yq 5, |n >1}.

The setY has Poincaré serigé~*/(1 — t*~%). So, the Poincaré series of the 3eis given by
541 — %711 — *%-2)~1, We multiply this by(1 + %) (1 + t2~1), make a small reduction, and
obtain the Poincaré series for the third group of classes:

t4S—4(1 + t2s)(1 _ t2s—1)—1(1 _ t4s—4)—l.
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To get the Poincaré series @f we add the three series obtained so far.

Z‘S_l l2s_2(1—|- l2s—l) t4s—4(1+ t2S)

Py(t) = 1_ 252 + 1— th—4 (l _ t2§—1)(1 _ t4s—4)'

The stated formula foP4(¢) follows after some reductions.
Finally, Corollary 8.9 gives thaP, (1) = Py(t) + (1 — tz)_lPﬁ(l‘) which leads to the stated formula
after some reductions.]

9. The spectral sequences for spheres

Let X be a pointed spacé, = XX it's reduced suspension. We have established a spectral sequence
converging toH*(ET x1AY; F2) in general. But in this special case, we are fortunate to have a direct
calculation of the homology,(ET A71AY; F2). If the homology ofX is of finite type, the (finite)
dimensions of these homology and cohomology groups agree. So if we for the particulaXspate
check that the Poincaré series of the homologW 6t E T x 1 AY ; F2) as computed ifB] agrees with the
Poincaré series of the, term of our spectral sequence, we know that our spectral sequence collapses.
(See alsq1] for an easier proof of the results[i@]).

Let us now consider the special case of sphéfes $°~1 andY = $*. The purpose of this section is
to show that in this case the two Poincaré series actually agree, forcing the spectral sequence to collapse

Theorem 9.1. The Poincaré series @i *(ET x1AS*; Fp) is
(1 + ts—l _ tS+l _|_ tZs—l)(l _ t2)_l(l _ t2s—2)—1.

Proof. We compute a sequence of related Poincaré series. Firdt=éi*(5°~1) considered as a graded
vector space. This has Poincaré series.

For eachn > 1, the cyclic groupC,, acts onA®™. This is a 1-dimensional vector space o¥er We
now consider the homology groups

Hy(Cp; A®™).

We first look at homological dimension ®y(C,,, A®™)~A®", so it has Poincaré serie€“~1. In
higher homological degrees, there are two cases.iff odd, the groups all vanish, and we get a trivial
Poincaré series. tis even, and > 1, H;(C,,, A®™)~ A®™"_ Since this single group has homological
degresd, its Poincaré series i§t¢—D,

Now, recall from Carlsson and Cohgy Proposition 9.3]that

Ho(ESTA1AS®) = B> 1Hi (Cons A®™).

(Actually, we are correcting a misprint {8] here. The homology groups on the right-hand side of the
formula should not be reduced).

The Poincaré series of the right hand side contains the sum of the contribution of the homology in
dimension zero. The Poincaré series of this pajs. "¢~ = =11 — r*~1~L. It also contains
the sums of the contributions of the reduced group homologies. Since this is trividd éven, we can
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as well putm = 2n, and the Poincaré series of the reduced part is
Z Z ti+2n(s—l) — t2(5—1)+1(1 _ l,)—l(l _ [2(s—l))—1.

iz1n>1
Summing, we get that the Poincaré series(E S3 A1 A(2X)) is
e A (¢ o B 6 Ep ol
Finally, we note that there is a short exact sequence of homology groups
0 — Hy(BT) - H (ETx7AS*) — H(ETLATAS®) — 0.
This shows that the Poincaré seriedfl ET x74S5%) is
1o 2 A tA— 21— )L,

Bringing on common denominator and adding proves the theor&m.
Proposition 9.2. The Poincaré series i *(AS*; F) is (1 + *)(1 — #*~1)~1 whens > 2.

Proof. The mod 2 cohomology ring ofS* is a special case of Theorem 2.2 of Kuribayashi and Yamaguchi
[13] except for the case = 2. It is, however, shown (Remark 2.6) that the Eilenberg—Moore spectral
sequence also collapses whesa 2 so we can compute the Poincaré series fromieerm. It has the
following form (see the proof of Theorem 2.2):

E3" = A(x) @ AX) @ '],

where the respective bidegreexaf andy; (w) are(0, s), (—1, s) and(—2i, 2is) such that the respective
total degrees becomsss — 1 and 2(s — 1). Thus the Poincaré series is

A+ A+ — 267yt

and the result follows by a small reductiond

Theorem 9.3. If we letX = §* with s > 2 and useF2-coefficientsthen the spectral sequences of Theorem
7.4 collapsesThus there are isomorphisms of gradegdvector spaces

H (H*(S%); Q* =~ H*(AS®) and H (H*(S*); £)* =~ H*((AS*);7).
Proof. By Theorems 8.10, 9.1 and Proposition 9.2 the Poincaré series @ftherms agree with the
Poincaré series of the targets. So the spectral sequences collapses.
Appendix. On a filtration of the functor ¢

In this appendix, we identify the graded object associated with the filtration
€(A) D ul(A) D u?t(A) D ...

in the case wherg = 2 andA is a polynomial algebra.
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Recall that the functors?, Q@ : # — o/lg are defined by?(A) = £(A)/(u) andfz(A) =Z(A)/I5(A)
wherel;(A) is the ideal(o(x)[x € A) € Z(A).

We want to define a maf{A) — Q(A)[¢] such that the elementgx), ¢ (x) andu in the domain are
send to the elementf(x), ¢(x) andr? in the target. Unfortunately, this cannot be done by a ring map.
But if we pay the penalty of changing the multiplicative structure of the target, we can almost get such a
map.

Definition A.1. Quw(A) is the free graded commutative algebra on generators, ¢ (x) for x € A and
t, of degrees¢(x)| = 2|x|, |¢(x)| = 2|x| — 1 and|¢| = 1, modulo the relations

gix +y)=q(x)+q(y), dp(x +y) =)+ P(y),
q(xy) = ¢x)q(y) + (g (x), ¢xy) =d(x)P(y),
q(x)? = p(2x) + 1q (Jx).

Clearly,Quw(A)/(t) = fz(A). The ringQuw(A) is just a twisted version of the polynomial ring O\TB(rA)
in tin the following case:

Theorem A.2. Assume that the underlying algebra of A is a polynomial algebien the graded ring
Gr.(Qw(A)) corresponding to the filtration aby,(A) by powers of t equalQ(A)[z].

Proof. As anintermediate step, let us consider the g ) which is defined exactly lik€y,(A) except
that we do not include the last relatiql(vc)2 = ¢p(ix) + tg(ix).

If A'is a polynomial algebra on generatdss|i € 1}, thenR(A) is a polynomial ring on generators
¢(x;) andg(x;). To obtainQy,(A) from R(A), we have to add the relatiorq$p)2 = ¢(Ap) + tqg(Lp),
wherep is any polynomial in the generatoks. Actually, it is sufficient to do this for the generators
themselves, as this relation fpi p» follows from the relations fop1 andp,. Because, assume those are
satisfied, then we calculate

q(p1p2)? = d(p1)2q(p2)? + d(p2)%q(p1)?

= p(p1)%(P(ip2) + tq(ip2) + ¢(p2)*(d(ip1) + 1q(Ap1))
= ¢(Mp1p2)) + tq(A(p1p2)).

Thus we can write&y,(A) as an algebra
Folt, p(xi). q(xi)li € 11/{q(x;)* = p(ixi) + tq (Jx)}.
From this it is clear, tha®y,(A) is a freeFo[z, ¢(x;)|i € I]-module, with generators
{q(xiy)...q(xi,) iy #is forr # s, n>0}.

(The empty product means 1.) It follows th@k . (2w (A)) is a free module ovelGr . (Fo[t, ¢p(x;)|i € I1)
with the same generators.

So, to finish the proof, we only have to determine the multiplicative structutg,afd). The multi-
plicative relations are given by the relations. In the graded ring they(acfez2 = ¢(ix;). S0, we have a
presentation of the graded ring as

Folt, p(xi), q(x)li € 11/{g(x)? = ¢p(xi)).
But this is exacthy(A)[z]. O
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Theorem A.3. Let A be an object in7 andi>1 an integer Multiplication with x’ defines a natural
surjectiveF,-linear map
u'l(A)
ui+1Z(A).
If the underlying algebra of A is a polynomial algebthen this map is an isomorphism and

Grt(A) =2 & P v ©2A).
jz1

u' s Q(A) —

Proof. Multiplication with »' gives a surjective map(A) — u'£(A) andu’ (I5(A)) =0, u' (ut(A)) =
u't1¢(A) so the map factors through(A).
We define a natural ring map: ¢(A) — Qw(A) by the formulas

V() = ¢p(x) +1q(x), V(@) =qx), vw) =1 v(S(x))=0.

To see that is well defined, we have to check that the relations in the definitichgwfes to 0. This is
trivial for all relations except three which is verified as follows:

V(p(xy)) = p(xy) + 1g(xy) = ($(x) + tg ()N (DY) + tg(¥) + 12 (x)q ()
=v(p(x)P(y) +uq(x)q(y)),
v(g(xy)) =q(xy) = p(x)g(y) + g(x)P(y)
= (¢(x) +tg(x))g(y) + (¢(y) + 1g(y))q(x)
=v(P(x)g(y) +q(x)p(y)),
v(q(x)?) = q(x)* = v(P(x) + d(x%ix)).
By the mapv we get a commutative diagram as follows:

Q(A) s Ow(A)/1P0n(A)

4 4

WA u (A 5 12O (A) /12200 (A)

When the underlying algebra éfis a polynomial algebra, then Theorem A.2 gives that the top and the
right vertical maps are injective. So in this case the left vertical map is also injective.
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