Note

Cycle Double Covers of Graphs with Hamilton Paths

Luis A. Goddyn*

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Communicated by U. S. R. Murty

Received October 29, 1987

A k-cycle double cover of a graph G is a collection \(\mathcal{Z} \) of at most k eulerian subgraphs of G such that every edge of G is an edge of exactly two subgraphs in \(\mathcal{Z} \). Presented is a short proof of the following theorem due to Tarsi (J. Combin. Theory Ser. B 41 (1986), 332–340): Every bridgeless graph containing a Hamilton path has a 6-cycle double cover.

All graphs are finite in this note. To be consistent with usage in matroid theory, a cycle in a graph is any subgraph in which every vertex has even degree. A circuit is a minimal nonempty cycle. Thus, a cycle is an edge-disjoint union of circuits. A chord of a circuit is an edge which is not in the circuit, but has both of its endpoints in the circuit. A bridge is any edge whose removal increases the number of components in the graph. A graph is cubic if it is regular of degree three. Other than this we use standard graph-theoretic terms. A k-cycle double cover (k-CDC) of a graph G is a collection \(\mathcal{Z} \) of at most k cycles in G (repetitions allowed) such that every edge of G belongs to exactly two of the cycles in \(\mathcal{Z} \).

The cycle double cover conjecture, first formulated in [5, 6], can be stated as:

Conjecture 1. Every bridgeless graph has a k – CDC for some k.

A stronger form of this conjecture was formulated by U. A. Celmins in his thesis [2].

Conjecture 2. Every bridgeless graph has a 5-CDC.

A good survey on the status of these and related conjectures appears in [3]. Here we present a short proof of the following result of Tarsi [4] in connection with Conjecture 2.

* Support from NSERC is gratefully acknowledged.

253
THEOREM 3. Every bridgeless graph with a Hamilton path has a 6-CDC.

To prove this we use the following theorem proved by Bondy and Locke [1, Theorem 1].

THEOREM 4. If P is a path in a 3-connected cubic graph G, then there exists a subgraph H with $P \subseteq H \subseteq G$ such that H has a 3-CDC consisting of three circuits.

Proof of Theorem 3. By standard reductions (see, for example, [2, 3] or [4]) we can assume that G is a 3-connected cubic graph with a Hamilton path P. Apply Theorem 4 to obtain H, $P \subseteq H \subseteq G$, and a 3-CDC, $\mathcal{Z} = \{C_1, C_2, C_3\}$, of H, where each C_i is a circuit. Because H is a spanning subgraph of G, each endpoint of any edge e in $E(G) - E(H)$ is contained in exactly two of the three circuits in \mathcal{Z}. Thus e is a chord of at least one of the three circuits in \mathcal{Z}, and $E(G) - E(H)$ has a partition $F_1 \cup F_2 \cup F_3$ such that each edge in F_i is a chord of C_i.

For each $i = 1, 2, 3$ such that $F_i \neq \emptyset$ do the following: Let K_i be the unique cubic graph homeomorphic to $C_i \cup F_i$. As the image of C_i under this homeomorphism is a Hamilton circuit in K_i of even length, K_i has a 3-edge coloring $E_1 \cup E_2 \cup E_3$ in which $E_1 \cup E_2$ is the image of C_i. Let A_i and B_i be the two cycles in G corresponding to the cycles in K_i induced by $E_1 \cup E_2$ and $E_2 \cup E_3$, respectively. Replace C_i in \mathcal{Z} by the pair of cycles $\{A_i, B_i\}$. Now every edge in F_i is an edge of both A_i and B_i, and every edge in C_i is an edge of exactly one of A_i and B_i.

The resulting set of at most six cycles is a 6-CDC of G.

ACKNOWLEDGMENT

I thank J. A. Bondy for directing me toward Theorem 4.

REFERENCES