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We describe third power associative multiplications * on noncentral Lie ideals
of prime algebras and skew elements of prime algebras with involution provided
that x*y —y=x =[x,y] for all x,y and the prime algebras in question do
not satisfy polynomial identities of low degree. We also obtain necessary and suffi-
cient conditions for these multiplications to be fourth power-associative or flexible.
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1. INTRODUCTION

In what follows .7 is an associative commutative ring with unity 1. Given
elements x, y of an F-algebra, we set

[x,y]=xy—yx and  xeoy=2xy+yx.

Let & be an associative algebra. It is well known that .« is a Lie (Jordan)
F-algebra with respect to the Lie product [ , ] (respectively, the Jordan
product ). Next, a submodule 9 of & is called a Lie (Jordan) subalgebra
of & if [7,9] C.J (respectively, o7 €.7). Finally, a submodule 7 of &/
is said to be a Lie ideal of « if [7, %] CI.
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Let  and . be Lie (Jordan) subalgebras of associative F-algebras &/
and &, respectively. An F-module map «: I —.% is said to be a Lie
(Jordan) map if [x, y]* = [x*, y*] (respectively, (x o y)* = x% o y*) for all
X,y €.

Let &/ be an associative F-algebra with involution *. We set

AAH) ={x e |x* =x} and (&) = {x ed|x* = —x}.

Clearly #(%) is a Lie subalgebra while (&) is a Jordan subalgebra of ..
If 7 is a subset of ./, then

2(9) ={teT|[x,t] =0forall x €7}

is the center of 7. Next, we denote by [.7,.7] the submodule of ./ generated
by {[x, y]|x, y € F}. Note that [/, /] is a Lie ideal of «.

Given a set . and a nonnegative integer n, we denote by %" the nth
Cartesian power of .#. It is understood that .#° = (.

We now set in place some further notation. Let &/ be an associative
prime F-algebra with maximal right ring of quotients @, = @, (&) and
Martindale (extended) centroid & = #(«) (see [11, Chap. 2]). Further,
o, =CA +F C @, is the central closure of &. It is well known that both
@, and & are F-algebras, & is a subalgebra of & ., and # is a field. The
algebra &/ is called centrally closed if ¥ = & and & =.,.

Let x € @,,.. By deg(x) we shall mean the degree of x over & (if x is
algebraic over &) or o« (if x is not algebraic over #). Given a nonempty
subset #Z C @, we set

deg(#) = sup{deg(x) |x € #}.

It follows easily from the structure theory of rings with polynomial identity
that deg(.%) = n < o if and only if .o satisfies St,,, the standard identity
of degree 2n, and & does not satisfy St,,_,. Moreover, & satisfies St,, if
and only if it is a subring of M (%), the n X n matrix ring over the
algebraic closure ¢ of # [39, 40].

Let 2 be a not necessary associative F-algebra. Then () (1))
stands for & with multiplication [x, y] = xy — yx (respectively, x oy = xy
+ ), x,y €. Recall that & is called a noncommutative Jordan alge-
bra if (xy)x* = x(yx*) and

(xy)x =x(yx) forall x,y €2 (1)

[42, Sect. V.3]. An F-algebra 9 satisfying (1) is called flexible. By [42, Sect.
V.3], & is a noncommutative Jordan algebra if and only if it satisfies (1)
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(i.e., is flexible) and one of the following conditions:

(x*y)x =x*(w) forallx,y €2,

x*(xy) =x(x*y) forallx,y €2,

(2)
(y)x* = (m*)x  forall x,y €9,

g™ is a (commutative) Jordan algebra.

Following [1] the algebra & is called Lie-admissible (Jordan-admissible) if
27 is a Lie algebra (respectively, ) is a Jordan algebra). Further, let
& be an associative algebra over .# with additional multiplication x:
&% > .o/. Then the multiplication #*: &% —.& is called Lie-compatible
(Jordan-compatible) if (&, +, ) is an F-algebra and there exists an
invertible element ¢ €. such that x*y —y=*x = c[x, y] (respectively,
x*y+yxx=cxoy)forall x,y €. Clearly, if *: &> > ./ is a Lie-com-
patible (Jordan-compatible) multiplication on %, then the algebra (&, +, *)
is Lie-admissible (respectively, Jordan-admissible). If & is a Lie algebra
with additional multiplication *: #* —.%, then the multiplication * is
called Lie-compatible if (&, +, ) is an F-algebra and there exists an
invertible element ¢ € ¥ such that x *y —y * x = c[x, y] for all x,y €%,
Next, the algebra Z is called third-power associative if (xx)x = x(xx) for
all x €. It is called fourth power-associative if

(o) (xx) = (()x)x = x(()x) =x(x(xr)) = (x(xx))x

forall x €2.

Finally, & is called power-associative if the subalgebra of & generated by
any element is associative. If % is a field of characteristic 0, then & is
power-associative if and only if it is third and fourth power-associative (see
[1; 36, Lemma 1.11]. If & is third-power associative, then it is fourth
power-associative if and only if

((xex)ox)ox — (xox)o(xex) =0 forall x €Z (3)

by [36, Lemma 1.10].

The study of Lie-admissible (Jordan-admissible) algebras was initiated
by Albert [1] in 1949. These algebras arise naturally in various areas of
mathematics and physics (for further details see [13, 14, 24, 30, 36, 41)).
They have been studied by a number of authors (see for example [1, 13, 14,
15, 16, 24, 26, 27, 29, 34-38]). Albert [1] posed a problem of investigating
the structure of flexible power-associative Lie-admissible algebras & such
that 2(7) are semisimple Lie algebras. Since then, one of the main
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directions in studying Lie-admissible algebras has been the problem of
classification of Lie-admissible structures on given class of Lie algebras.

In 1962 Laufer and Tomber [29] classified finite dimensional flexible
power-associative Lie-admissible algebras & over algebraically closed fields
of characteristic 0 such that 27 are semisimple, thus solving Albert’s
problem for algebras over such fields. Myung [34, 36] obtained a descrip-
tion of finite dimensional flexible power-associative Lie-admissible alge-
bras & over algebraically closed fields of positive characteristic provided
that 27 are classical Lie algebras or generalized Witt algebras. Benkart
and Osborn [15] and Myung and Okubo [38] independently classified finite
dimensional Lie-admissible flexible algebras & over algebraically closed
fields of characteristic 0 such that 27 are semisimple. Further, Benkart
and Osborn [16] described power-associative products on matrices while
Benkart [14] classified third power-associative Lie-admissible algebras &
such that 9() are semisimple. Recently Myung [37] described third
power-associative Lie-admissible algebras associated with the Virasoro
algebras while Jeong et al. [24] classified third power-associative Lie-ad-
missible algebras & such that 27 are affine Kac—Moody algebras.

Let & and % be two associative F-algebras and let «: &/ —.% be a Lie
isomorphism. Define a new multiplication *: .%/> — .o/ by the rule x x y =
(x*y®)*', x,y €& It is easy to see that * is a Lie-compatible third
power-associative multiplication. Therefore the problem of classifying Lie
isomorphisms of associative algebras is an important particular case of the
classification of all Lie-compatible third power-associative multiplication
on associative algebras. Now it is not surprising that the methods devel-
oped for the solution of the first problem (i.e., the Lie isomorphism
problem) are applicable to the solution of the second one in the context of
associative algebras. Setting B(x, y) = x*y, one immediately gets
[B(x,x),x] =0 for all x €&/, an important functional identity investi-
gated by BreSar in [18] in prime rings with connection with the Lie
isomorphism problem. Note that, earlier, studying third power-associative
Lie-compatible multiplications on matrix algebras over fields, Benkart and
Osborn [16] actually solved the same functional identity in this class of
algebras, though their results were not stated in such a form.

Our approach to the study of Lie-compatible multiplications is based on
recent results in the theory of functional identities obtained in [7, 10] and
especially in [8, 9]. The reader is referred to [7, 8, 10] for the historical
account of this newly developed theory.

The following four theorems are motivated by the aforesaid results on
Lie-admissible algebras.

THEOREM 1.1. Let & be a commutative ring with 1 and %, let Z be a
prime Lie F-algebra, and let Q) be a class of Lie F-algebras % satisfying one
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of the following two conditions:

(1)  There exists a prime F-algebra &/ = /(F) with extended centroid &
and with central closure </, such that deg(«/) > 5, % is a noncentral Lie
ideal of the algebra &/, € N (FF#) = 0, and €F + € is not a subring of .

(ii) There exists a prime F-algebra & = o/ (F) with involution # of the
first kind, with extended centroid % and with deg(%) > 10 such that % =
H(A).

Let -: ¥* > be a Lie-compatible multiplication on % and let T be the
extended centroid of the Lie algebra <. Suppose that the Lie algebra &£ is a
subdirect product of algebras from the class Q. Then J is a field and we have:

(@) The multiplication -: Z* — Z is third power-associative if and only
if there exist an invertible element t € & and an F-linear map p: £ — 9 such
that

xy = 3{t[x,y] + p(x)y + w(y)x}  forallx,y 2. (4)

(b) The algebra (Z, +,-) is flexible if and only if (4) is fulfilled and
wlZ, 2D = 0.

(© If [Z Z] =2, then the algebra (&, +, ") is flexible if and only if
there exists an invertible element t € F such that xy = t[x, y] forallx,y € Z.

It follows easily from [2] that a free Lie algebra - over a field generated
by an infinite set is a subdirect product of Lie algebras belonging to
families B,, C,, and D,, I =1,2,.... Therefore the above theorem is
applicable to % and in particular a third power-associative multiplication
on . must be given as in (4).

THEOREM 1.2. Let F be a field with char(¥) # 2, let # be a Lie
subalgebra of a centrally closed prime F-algebra 7, and let *: R* —> % be a
Lie-compatible multiplication on . Suppose that one of the following two
conditions is satisfied:

(1) % is a noncentral Lie ideal of &7, deg(&) = 5, FN%# =0, and
Z + F is not a subalgebra of &.

(i) deg(w) = 10, the algebra & has an involution # of the first kind,
and F = ).

Then we have:

(a) The multiplication * is third power-associative if and only if there
exist an invertible element t € & and an F-linear map w: & — F such that

xxy=3{t[x,y] + pw(x)y + u(y)x} forallx,y €. (5
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If (5) is fulfilled, then (%, +,+) is a Jordan algebra, where xey = x %y + y * x
forall x,y € %. In particular, (5) implies the power-associativity of *.

(b) The algebra (%, +, =) is flexible if and only if (5) is fulfilled and
w(#, Z] = 0. If the algebra (#, +, *) is flexible, then it is a noncommuta-
tive Jordan algebra.

© If %, #] =%, then the algebra (#, +, *) is flexible if and only if
there exists an invertible element t € F such that x =y = t[x, y] for all
X,y EZ.

THEOREM 1.3. Let F be a field with char(¥) # 2, let &/ be a centrally
closed prime F-algebra with unity 1 and with deg(«/) > 3, and let *:
% > o be a Lie-compatible multiplication on /. Then the multiplication *
is third power-associative if and only if there exist a nonzero element t € F, an
element \ € F, an F-linear map w: & — F, and a symmetric F-bilinear map
T %% - F such that

xxy=3{tfx,y]+ Axey + u(x)y + u(y)x + 7(x, )}
forallx,y €sz. (6)

Further, we have:
(@) Suppose that deg(«/) > 4. Then the algebra (o7, +, ) is flexible if
and only if (6) is fulfilled and

w([x,y]) =0=7(x,[x,y]) forallx,y €. (7)
(b)  Suppose that deg(%) = 5, (6) is fulfilled, and X # 0. Then we

have:

(1)  Assume that the multiplication * is fourth power-associative.
Then

p(xey) + p(x)p(y) + 7(x, )21 + u(1)} =0 forallx,y €.
(8)

Define a multiplication «: &/* — ./ as
xey=xxy+ysx=»Arey+pu(x)y+pu(y)x+7(x,y), x,y€,

and let the map B: &/ — .o/ be given by the rule x? = \x + u(x), x €.
Then B is a homomorphism of algebras (&, +,) and (&, +,°). If in
addition (<7, +, =) is flexible and the multiplication <: «/* — .o/ is given by
the rule x Oy = 3{[x,yl + x oy}, x, y €, then B is a homomorphism of
algebras (7, +, =) and (7, +, ).
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(i)  Assume that 2) + u(1) # 0. Then the multiplication * is
fourth power-associative if and only if (8) is fulfilled. If (8) is fulfilled, then B
is an isomorphism of algebras (&, +,¢) and (&, +,°). If in addition
(&, +, =) is flexible, then B is an isomorphism of algebras (&7, +, ) and
(7, +, ).

(i) If & is a simple algebra and the multiplication * is fourth
power-associative, then 2\ + u(1) # 0.

(iv) Suppose that the multiplication = is fourth power-associative
and 2\ + w(1) = 0. Then .7 = ker( w) is an ideal of & such that # NF = 0
and & = .7 + . Further, & = ker( 8) and is an ideal of the algebra (&7, +,
) and B induces an isomorphism of the corresponding factor algebra and
(7, +, ©). Finally, if in addition (&7, +, *) is flexible, then & = ker( 8) is an
ideal of the algebra (7, +, *) and B induces an isomorphism of the corre-
sponding factor algebra and (7, +, ).

We remark that the theorem generalizes results of Benkart and Osborn
[16] obtained for matrix algebras over fields. Further, the fourth power-as-
sociativity of the multiplication - given by the rule

xey=xxy+yxx=pu(x)y+ p(y)x+7(x,y)

was characterized in [16] (see also [36, Theorem 2.14]). In view of (3), a
characterization of the fourth power-associativity of the multiplication * in
the case A = 0 follows from their result (see Theorem 1.3(b)).

THEOREM 1.4. Let F be a field with char(¥) + 2, let &/ be a centrally
closed prime F-algebra with unity 1 and with deg(&) > 4, let K be a Lie
ideal of the algebra &7 such that # N F =0and Z +F =, let m: & > F
be the canonical projection of the direct sum Z + F of vector spaces # and
F onto F, and let =: B> >R be a Lie-compatible multiplication on .
Then the multiplication * is third power-associative if and only if there exist a
nonzero element t € F, an element A € &, and an F-linear map p. £ - F
such that

xxy=3{t[x,y] + Axey + u(x)y + p(y)x — A(x°y)"}
forallx,y €%, (9)

where x o y = xy + yx. Further, assume that deg(s/) = 5. Then:
(@) The algebra (%, +, =) is flexible if and only if (9) is fulfilled and
w(l %, #]) = 0.

(b)  Suppose that (9) is fulfilled and A = 0. Then the multiplication *
is power-associative.
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(¢) Suppose that (#, +, =) is flexible and | #, ] = R. Then u = 0.
Further, if deg(«/) > 6, the multiplication = is fourth power-associative if
and only if either A = 0 or Z is an ideal of the algebra &/. If the multiplica-
tion * is fourth power-associative, then it is power-associative.

(d) Suppose that deg(&) = 6, (9) is fulfilled, A # 0, and the map B:
R — o is given by the rule x? = Ax + Fu(x), x € %. We have:

(1)  Assume that the multiplication * is fourth power-associative.
Then B is an isomorphism of algebras (%, +,+) and (%P, +, °), where

xey=xxy+ysx=Aroy+u(x)y+u(y)x —AMxey)”
and %#* is an ideal of the algebra & such that #% N.F = 0 and #P + F =/.
If in addition (%, +, =) is flexible and the multiplication <: (#P)* — ZP is
given by the rule

1

t
x<>y=3{x[x,y]+x°y} forallx,y € #*,

then B is an isomorphism of algebras (%, +, =) and (%#*, +,O).

(i) If B is an isomorphism of algebras (%, + ,+) and (%*?, +, o),
then the multiplication * is fourth power-associative.

(iii) If B is an isomorphism of algebras (%, +, ) and (%P, +,
), then the multiplication * is power-associative and (%, +,*) is a
noncommutative Jordan algebra.

(e) If & is a simple algebra with deg(%) > 6 and (9) is fulfilled, then
the multiplication * is fourth power-associative if and only if A = 0.

The study of Jordan maps of associative rings goes back to Ancochea [3,
4], Kaplansky [25], Hua [21], and Jacobson and Rickart [23]. In 1956
Herstein [20] described surjective Jordan maps onto prime rings of charac-
teristic not 2 and 3. Smiley [45] removed the restriction char() # 3.
Further results were obtained by Baxter and Martindale [6], BreSar [17],
Lagutina [28], Martindale [31, 32], and McCrimmon [33]. The following
theorem is motivated by the aforesaid results.

THEOREM 1.5. Let &/ be a prime ring with maximal right ring of quotients
@, and with Martindale symmetric ring of quotients @, = @), let &# be a
Jordan subring of @..., let & be a flexible ring, and let a: @ — R be an
epimorphism of additive groups such that (x o y)* =x*oy® forallx,y €9.
Suppose char(«/) # 2. We have:

(@) If # o and deg(7) = 4, then there exists an element t € € such
that

()" =+ (1 —t)yx® forallx,y €.
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If in addition & is associative, then t = 0, 1.

(b) If &7 is a prime ring with involution * and with deg(.%/) > 10, and
AE) DR 2 AX), then there exists an element t € € such that t + t* = 1

()" =ty + t¥yx® forallx,y €.

The paper is organized as follows. All the necessary results and defini-
tions from [8, 9] are listed in the second section. In the third section we
prove Theorem 1.5 and discuss its applications to noncommutative Jordan
algebras. The last section is devoted to the proof of Theorems 1.1-1.4.

2. PRELIMINARY RESULTS

For the sake of completeness we now state a few results from [8, 9] upon
which our paper is based on. We first set in place some notation. In what
follows .7 is the set of all nonnegative integers, .#* =#\{0}, & is a
commutative ring with unity, & is an F-algebra with 1 and with center &,
and #* is the group of invertible elements of the ring #. Next, & is a
nonempty subset of &, . is a nonempty set, and «: . — % is a surjective
map. Given n €4* and s,,s,,...,5, €%, we set 5§, = (54, ,,...,5,) €
" where %" is the nth Cartesian power of %. Further, let m €./*, let
1 <i<m,andlet E: " ' > @ be a map (it is understood that E is a
constant belonging to & whenever m = 1). We define a map E': " —> @
by the rule

E'(X,) =E'(X1,%5,003%) = E(X{yeees Xy 1y Xi e Xp)

for all %, €. Nowlet m > 2,1 <i<j<m,and F: " % > @. We
define a map F'/: ™ — @ by the rule

FU(X,) = F(X0s e X5 Xy s X Xy e Xy)
for all X, €., and set F/' = F".,
Let .7, 7 c{1,2,...,m}and E, F: "' - @, i €.7, j € 7. Consider
functional identities on % of the following form:

Y E(%,)x+ ¥ oxF/(%,) =0  forall %, e#”, (10)
ies jes

Y E{(%,)x, + X x;Fi(%,) €& foralx, e®z™. (1)
ies jes



684 BEIDAR AND CHEBOTAR

Next, consider the following condition: there exist maps
P R > @, i€ers, jeg, i+],
N F 5%, lesug,

such that

Ezl()_cm) = Z x]pzl]]()_cm) + Ai()_cm)’
Jjes,
J#i

F/(x,) = — H(X,,)x; — A(%,
J( ) ie;f,pj( ) j( ) (12)
i#]
€S, &S,

A=0 iflesng

It is understood that all the p;’s are equal to 0 if m = 1.
Given d e*, following [8, Definition 1] the subset % of € is called
d-free if the following conditions are satisfied:
(i) Forall m €es* and .7, 7 {1,2,...,m} with max{|.7], |7} < d,
we have that (10) implies (12).
(i) For all m €#* and .7, _7£ c{1,2,..., m} with max{|.7|, |7} < d
— 1, we have that (11) implies (12).

Assume for a while that & is a prime ring with maximal right ring of
quotients & = @,,.(«) and with Martindale centroid # (see [11, Chap. 2]).
According to [8, Theorems 2.4 and 2.20] a subset %Z of @ is d-free
provided that one of the following conditions is fulfilled:

# =4 and deg( &) = d; (13)
& is a noncentral Lie ideal of .7 and deg(.%/) > d + 1; (14)
& has an involution, deg(%/) > 2d + 2, and # € {Z(¥),A(¥)}. (15)

THEOREM 2.1 [8, Theorem 2.8]. Let d €™ and let B CH C & be
subsets. Suppose that ZB is d-free. Then Z is a d-free subset of @ as well.

Let {x, x,,..., x,,} be noncommuting variables, let M =x; x; - x;,
k < m, be a multilinear monomial of degree k in the {xil, xiz,...,xik} -
{xy, x5,...,x,} and let 5§, €.". We set

M(5,) =st, 88 st eaq.

12 "y Lk
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Next, let A: " % - & be a map. Then we denote by AM the map
" — @ given by the rule

(AM)(5,,) = A(sj,8;,5--58, IM(5,) €@,

where {j, joy-- s Jpoit = 11,2, ..., mN\li}, iy,...,0,} and j; <j, < -+ <
Jm—x- The map AM is called a multilinear quasi-monomial of degree < m
with the coefficient A of the monomial M. If A # 0, then we shall say that
AM is a multilinear quasi-monomial of degree m. A sum g(%,) = LA, M,
of multilinear quasi-monomials A;M; of degree < m (where M; # M, for
i #j)is called a multilinear quasi-polynomial of degree < m and each A;
is called the coefficients of the monomial M, in ¢q. Finally, the coefficient
of the monomial 1 in g is called the constant term of q.

The following result is particular case of [9, Theorems 1.1] while the next
two ones are particular cases of [9, Theorems 1.2].

THEOREM 2.2. Let % be a nonempty subset of @, let . be a set, let «:
& — R be a surjective map of sets, and let q be a multilinear quasi-polynomial
of degree < m such that q(5,,) = 0 for all 5,, € ™. Suppose that either the
constant term of q is equal to 0 and % is an m-free subset of @, or X% is an
(m + 1-free subset of @. Then the coefficients of all the monomials in q are
equal to 0.

THEOREM 2.3. Let &% be a submodule of the F-module @, let . be an
Fmodule, let a: & —>F be an epimorphism of F-modules, and let B:
F? = @ be a bilinear map. Suppose that either % is a 4-free subset of @ and

[B(s1,52),85] + [B(s3,83), 7] + [B(s3,51),85] €%
forall 5, € 77,
or Z is a 3-free subset of @ and
[B(s1,52), 58] + [B(s2,83), 7] + [B(53,51),85] =0
forall5, € 7°.

Then B(5,) is a multilinear quasi-polynomial of degree < 2 and the coeffi-
cients of all the monomials in B are F-multilinear maps.

THEOREM 2.4. Let Z# be a submodule of the F-module @, let . be an
Fmodule, let a: ¥ —>F be an epimorphism of F-modules, and let B:
F* > @ be a bilinear map such that

[BCx,u), [0%y*]] + [B(x,0), [u, y*]] + [B(y,u), [0, x*]]
+[B(y,v), [u, x*]] =0



686 BEIDAR AND CHEBOTAR

forallx,y,u,v €. Suppose that % is a 4-free subset of @. Then B(x, y) is
a multilinear quasi-polynomial of degree < 2 and the coefficients of all the
monomials in B are F-multilinear maps.

3. JORDAN-ADMISSIBLE ALGEBRAS

We begin our discussion of Jordan-compatible multiplications with the
following result which is inspired by [19, Theorem 3.3].

THEOREM 3.1. Let & be a not necessary associative ring, let % be a
4-free subset of @, let a: D — K be a surjective map of sets, and let c € F
be an invertible element such that

(xoy) =cxoy*  forallx,y €9. (16)
Further, let B: 2° — @ be a map such that B(x,y) = —B(y, x) and
B(x,yoz) =cB(x,y)oz*+ cB(x,z)oy®  forallx,y,z €9.

Suppose that 5 € Z. Then there exists an element A € @ such that B(x, y) =
ANxe, y] forallx,y €9.

Proof.  Since B(x,y) = —B(y, x), it is easy to see that
B(xey,z) =cx*°B(y,z) + ¢y*e B(x,z2) forall x,y,z €9.
On one hand, we have that
B(xeoy,uov) =cB(x,ucv)oy*+cB(y,ucv)ex®
=c*{B(x,u)ov*+ B(x,v)ou®}oy*
+ c*{B(y,u)ev*+ B(y,v)ou}ox* (17)
for all x, y,u,v €2. On the other hand,
B(xoy,ucv) =cB(xey,u)ov*+cB(xey,v)ou®
=c}{B(x,u)oy*+ B(y,u)ex*}ov®
+ c*{B(x,0)ey*+ B(y,v)ox*}ou® (18)

for all x,y,u,v €2. Since (acb)ed —(a>d)eb =[a,[b,d]] for all
a,b,d € @, subtracting (18) from (17) we get

[B(x,u),[v*,y]] + [B(x,v),[u®,y“]] + [B(y,u),[v*, x"]]
+[B(y>U)’[ua’xa]] =0
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for all x,y,u,v €. As % is 4-free, Theorem 2.4 yields that there exist
elements A, A\, € € and maps u, u,: Z — % and v: Z° — & such that

B(x,y) = Mxey* 4+ L,y + uy(x)y® + po(y)x®* + v(x,y)
forall x,y €9.

Recalling that B(x, y) = —B(y, x) for all x,y €2, we infer from Theo-
rem 2.2 that A, = —A,, u; = —pu,y, and v(x,y) = —v(y,x) forall x,y
. Setting A = A; and u = u,, we see that

B(x,y) = A[x*, y*] + n(x)y® — u(y)x* + v(x,y)
forall x,y €. (19)

Substituting y o z for y in (19) and making use of (16), we get

o{ALx®, y ] + w(x)y® — p(y)x® + v(x,y)}ez"
+ef{A[x% 2] + w(x)z* — w(2)x* + v(x,z)} ey
=cB(x,y)ez*+ cB(x,z)ey*=B(x,y°z)
= Ac[x®,y7 e z7] + cp(x)y®o 2 — p(y o 2)x" + v(x,y°2)
and so Theorem 2.2 implies in particular that u = 0 and » = 0. The proof
is thereby complete.

COROLLARY 3.2. Let & be a prime ring with maximal right ring of
quotients @,,., with Martindale centroid &, and with a Jordan subring %. Let

mr >

B: #* —> @ be a biadditive map such that B(x,y) = —B(y, x) and
B(x,yoz) =B(x,y)ez+B(x,z)°y  forallx,y,z €.

Suppose that char() # 2 and either # = and deg(%) = 4, or & is a
prime ring with involution, % = A/), and deg(s/) > 10. Then there exists
an element A € & such that B(x,y) = Ax, y] forall x,y € «.

Proof. By (13) and (15), & is a 4-free subset of @,,. The result now
follows from Lemma 3.1 (with a = id,, and ¢ = 1).

PROPOSITION 3.3.  Let & be a flexible F-algebra, let # be a 4-free Jordan
subalgebra of @, let «: & — R be an epimorphism of F-modules, and let
¢ € F be an invertible element such that (x o y)* = cx® o y® forallx,y €92.
Suppose 5 € %. Then there exists an element t € € such that

()" =ctx®y® + c(1 —t)y*x®  forallx,y €9.
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Proof. By [36, Lemma 1.5],
[xey,z] =[y,z]ex+ [x,z]cy forallx,y,z€e2. (20)

Define a function B: 9% —> @ by the rule B(x,y) =[x, y]* for all
x,y €9. Clearly B(x,y) = —B(y, x) for all x,y €2. Applying a to both
hands of (20), we get

B(xey,z) =cB(y,z)ox*+cB(x,z)ey* foralx,y,z€9.

Therefore all the conditions of Lemma 3.1 are fulfilled and so there exists
an element a € @ such that B(x,y) =a[x® y*] for all x,y €2. Since
2xy =xe°y + [x, y], we see that

(xy)a=ctx"‘y"‘+c(1 —t)y“x* forall x,y €9,

where ¢ = (ac™! + 1) /2. The proof is now complete.

PROPOSITION 3.4.  Let % be a 4-free Jordan F-subalgebra of @ and let *:
F XK — R be a Jordan-compatible multiplication on % such that (%, +, %)
is a flexible F-algebra. Suppose that 3 € %. Then there exist an invertible
element c €  and an element t € & such that

xxy=ctxy +c(l —t)yx forallx,y €Z.

Proof.  Since * is Jordan-compatible, there exists an invertible element
c €% such that x*y +ysxx=cxoy for all x,y €%. The result now
follows from Proposition 3.3 with a = id .

THEOREM 3.5. Let & be a prime F-algebra with maximal right ring of
quotients @, and with extended centroid €. Let % be a Jordan F-subalgebra
of @, andlet *: B XK — K be a Jordan-compatible multiplication on %
such that (%, +, =) is flexible. Suppose that char(«/) # 2 and either # 2.
and deg(&/) = 4, or & is a prime algebra with involution, # 2 A(«), and
deg(w) > 10. Then there exist an invertible element ¢ € F and an element
t € € such that

xxy=cty +c(l —t)yx  forallx,y €Z.

Moreover, (%, +, *) is a noncommutative Jordan F-algebra.

Proof. Tt follows from both (13) and (15) together with Theorem 2.1
that % is a 4-free subset of @, (). The first part of the theorem follows
now from Proposition 3.4. The last statement is verified easily.

Probably the above theorem can also be obtained from results of
Skosyrskii [43, 44].
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PROPOSITION 3.6. Let & be an associative ring, let % be a 4-free Jordan
subring of @, and let oa: & — % be a surjective Jordan homomorphism.
Suppose that 3 € €. Then % is a subring of @ and « is either a homomor-
phism of rings, or an antihomomorphism of rings.

Proof. Since every associative ring is flexible, by Proposition 3.3 there
exists an element ¢t € & such that

(xy)“=,:x“y“+(1—t)y“x" forall x,y €9.

Finally, the identity {(xy)z}* = {x(yz)}* together with Theorem 2.2 implies
that #(1 —¢) = 0 and whence ¢ = 0,1. Thus « is a homomorphism (if
t = 1) or antithomomorphism of rings (if ¢ = 0). The proof is now com-
plete.

Proof of Theorem 1.5. If % D& and deg(«) > 4, then & is a 4-free
subset of @, by (13) and so % is 4-free by Theorem 2.1. If &/ is a prime
ring with involution and with deg(«) > 10, and % 2. A(%), then A ) is
a 4-free subset of @, by (15) and whence % is also 4-free by Theorem 2.1.
Therefore in both cases % is a 4-free subset of &, and so by Proposition
3.3 there exists an element ¢t € & such that

(xy)“=zxay“+(1—t)y“x“ forall x,y €9.

Now assume that &/ is a prime ring with involution * and % = AY).
Since

@ ay* o a oy a
ooy + (1—t)yx* = ()" = {(0)"} =rfy x*+ (1 —*)x°y

for all x,y €7, Theorem 2.2 yields that in particular t* = 1 — ¢ and so
t + t* = 1. Finally, assume that & is an associative ring. Then the identity
{(x)z}* = {x(y2)}* together with Theorem 2.2 implies that ¢(1 —¢) =0
and whence ¢ = 0, 1. The proof is now complete.

We conclude our discussion of Jordan-compatible multiplications with
the following useful technical result.

LEMMA 3.7. Let & be a ring such that (x o x)e(xox) = {(xox)o x}ox
forall x €9, let & be a 5-free subset of @, let a: D — F be an additive
surjective map of sets, let T: 2° — & be a symmetric additive map, let w:
9 — & be an additive map, let A € % be an invertible element, and let the
map B: Z — @ be given by the rule x? = \x* + u(x). Suppose that 5 € &
and

(xoy)P =xPoyf+ r(x,y) foralx,y €.
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Then 7= 0.

Proof. Since (x o x)e(xox) = {(x°x)ex}ox for all x €2, we have

0=[(xox)e(xox) = {(xox)ox}ox]”
={xPoxP+ 7(x,x)}e{xPoxP + 7(x,x)} + 7(xox,x°x)
—{{xPoxf + 7(x,x)}oxP + 7(xox,x)}oxP — 7({xox}oux,x)
= 4r(x, x){xF} — 4r(x%, x)xP + 27(x, x)" + 47 (2%, x?)
— 7({xeox}ox,x) (21)

for all x €9. Substituting Ax* + u(x) for x P, we see that the coefficient
of (x*)? in (21) is equal to 4A%r(x, x). Both (21) and Theorem 2.2 now
imply that 27(x,y) = 7(x, y) + 7(y, x) = 0. The proof is thereby com-
plete.

4. LIE-ADMISSIBLE ALGEBRAS

We start our discussion with the following general result.

PROPOSITION 4.1. Let @ be a (not necessary associative) F-algebra, let B
be an F-submodule of @, let a: @ — B be an epimorphism of F-modules,
let €2 9 XD — & be an F-bilinear map, and let t € € be an invertible
element such that

[x,y]" =t[x%, y*] + e(x,y) forallx,y €.

Suppose that 5 € &, D is a third power-associative algebra, and either % is a
4-free subset of @ or F is a 3-free subset of @ and € = 0. We have:

(@) There exist an element A € €, an F-linear map p: I — %, and a
symmetric F-bilinear map t: * — & such that

(xoy)a =Ax%oy* + w(x)y* + w(y)x* + 7(x,y) forallx,y €.
(22)

(b) If # is A-free and D is a flexible algebra, then

22e(x,y) = —u([x,y])  and
e(x?,y) = p(x)e(x,y) + 7(x,[x,y])

forallx,y €.
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(¢) Suppose that & is 5-free, D is a fourth power-associative algebra,
and A is invertible. Then

su(xey) = su(x)u(y) + Ar(x,y) =0 forallx,y €7 (23)

Moreover, if the map B: 9 — B, = BE +  is given by the rule x P = A\x* +
Tu(x), x €9, then

(xoy)P =xPoyP  forallx,y €2.

Finally, if & is flexible, then
8 t
[x,y]" = X[Xﬁ,yﬁ] forallx,y €.

Proof. (a) Define a map B: & X2 — & by the rule B(x, y) = (x° y)°,
x,y €2. Clearly B is an S~bilinear map. Since & is third power-associa-
tive, [x, x] = 0. Linearizing, we see that

[xey,z] + [yez,x] +[zox,y] =0 forall x,y,z €.
Applying o to both hands of the equation, we get
[B(x,y),2°] + [B(y,2),x°] + [B(z,x),y°] €%
forall x,y,z €9.

Moreover, the left hand of the above equation is equal to 0 provided that
€ = 0. Now Theorem 2.3 implies that there exists elements a,b € &,
F-linear maps u, v: & — %, and an S-bilinear map 7: ¥ X — % such
that

(x oy)a =B(x,y) =ax*y* + by*x* + pu(x)y* + v(y)x*+ 7(x,y)
forall x,y €9.
Recalling that B(x, y) = B(y, x) for all x,y €9, we infer from Theorem

2.2 that a = b, p=v, and 7(x,y) = 7(y,x) for all x,y €. Setting
A =a, we get

(xoy) =B(x,y) = Ax®ey® + u(x)y® + u(y)x* + 7(x,y)
forall x,y €2

and so (a) is proved.
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(b) By [36, Lemma 1.5], [xox,y]=2xc°[x,y] for all x,y €.
Therefore (22) implies that

%[)\x“ ox®+2u(x)x, y*] + e(x%,y)
1
- leery] = (xely])”
=tAx%e[x% y*] + 2Xe(x, y)x* + tpu(x)[x* y*]
+ u(x)e(x,y) + p([x, yD)x* + r(x,[x, y])
and whence

{2xe(x,y) + p([x,y])}x* — e(x?,y) + pn(x)e(x,y)
+ 7(x,[x,y]) =0

for all x,y € 2. It now follows from Theorem 2.2 that in particular
2Xe(x,y) = —u([x,y])  and
e(x*,y) = w(x)e(x,y) + 7(x,[x,y]) forallx,y €z

(see also [8, Corollary 2.11)).
() Let B: @ — %, be as in the proposition. Set

a(x,y) = sm(xey) = sm(x)u(y) + Ar(x,y)

for all x,y €2. It is easy to see that (xoy)# =xPoyP + o(x,y) for all
X,y €9. Since Z is third and fourth power-associative, (3) implies that
(xex)o(xox)={(xox)ox}ox forall x €. It now follows from Lemma
3.7 that o = 0. Next, assume that & is flexible. Then by (b), 2Ae(x, y) =
—u(x, y] for all x,y €2 and so

ey = Aley]" + Sullxy])
1
= Lx% y ]+ Ae(x,y) + Su(lx, y])
=[x, y*] = %[xﬂ,yﬁ].

The proof is now complete.
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THEOREM 4.2. Let Z be a Lie subalgebra of the F-algebra @, let ¥ be a
Lie F-algebra, let o: & — K be a surjective homomorphism of Lie algebras,
and let -1 ¥* > be a Lie-compatible multiplication on . Suppose that
1€ %, R is a 3-free subset of @, and the multiplication -: > — % is third
power-associative. We have:

(a) There exist an invertible element t € F, an element A € €, an
Flinear map w: & — €, and a symmetric F-bilinear map t: £* —> @ such
that

() = 3{t[x*, y ] + Ax@oy + p(x)y* + p(y)x* + 7(x,y)}

forallx,y € &Z.
(b) If in addition Z# is 4-free and (&, +,-) is flexible, then

u([x,y]) =0=r1(x,[x,y])  forallx,y €.

(c) If in addition % is 5-free, the multiplication -: > — Z is fourth
power-associative, A is invertible, and the map B: £ > %, =RE + & is
given by the rule x P = Ax* + Lu(x), x €2, then

su(xey) = su(x)u(y) + Ar(x,y) =0 forallx,y €%

and (xoy)P =xPoyP forall x,y €. Finally, if in addition (Z, +,-) is
flexible, then

t
[x,y]B= X[Xﬁ,yﬁ] forallx,y € Z.

Proof. By assumption there exists an invertible element ¢ € % such
that xy —yx =[x, y] and so (xy —w)* =t[x% y*] for all x,y €Z.
Clearly xy = X(x oy + f[x,y]D for all x,y €Z. The result now follows
from Proposition 4.1 with e = 0, & = (&, +,-) and & =%.

Given a (not necessary associative) F-algebra &, we denote by M*(2)
(M(2)) the subalgebra of the F-algebra End(,2) generated by all left
and right multiplications (respectively, by M*(Z) and id,,). The algebra
M*(2) (M(2)) is called the multiplication ideal (respectively, the multipli-
cation algebra) of . 1t is well known that < is a left unital module over
M(2) and M*(2) is an ideal of M(2) (see [47]. Given p € M(Z) and
x €9, we denote by p - x their product.

The concept of the extended centroid of a nonassociative semiprime ring
was introduced by Baxter and Martindale [5]. A different approach to the
definition of the extended centroid and the central closure of such rings
was found by Wisbauer [46]. The reader is referred to [5, 46, 47] for the
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definition and basic properties of the extended centroid and central
closure of semiprime rings. Let & be a (not necessary associative)
semiprime F-algebra with extended centroid 9. By [47, 32.1], 9 is a
commutative von Neumann regular self-injective S-algebra. Moreover .7 is
a field provided that & is a prime algebra. Given a nonempty subset
& C, there exists a uniquely determined idempotent E(%) €.9 such
that

(7P ={ceT|c¥=0} = (1 -E(X)T

(see [12, 33.3; 47, 32.3(3)]. Further, let .7, be the ideal of the algebra &
generated by the subset % and let # be an ideal of & such that
FNS,=0 and 7, + 7 is an essential ideal of &. Then E(¥) is a
projection of the left M(2)-module .7, ®_7 onto .7, (see [47, 32.3(3); 12,
33.3]). That is to say,

E(y)(fy +f) =J5. (24)

Given c e 7, we set (¢: D) ={d €D | cd €2}. Clearly (¢ : @) is an ideal
of 9. Moreover, (c: ) is an essential ideal of & by [47, 32.1(3)].
We continue with the following general observation.

PROPOSITION 4.3. Let & be a nonassociative F-algebra, let {9, |i € 7}
be a family of nonassociative prime F-algebras, let 7;: & —,, i €.7, be
surjective homomorphisms of F-algebras, let = €(Z) be the extended
centroid of D, let 7 = €(2,),i € .7, let n e V*, let a,, a,,...,a, €D, and
let

TO={AeT|(r:2) ¢ker(m)}, i€

Suppose that N, , ker(w,) = 0. Then J is a commutative von Neumann
regular self-injective ring and we have:

(a) Suppose that a™ € L}_\Faf for alli €% Then a, € ¥}_1\7a,.

(b) Foreveryi€. 7,79 isa subalgebra of the F-algebra I and there
exists a homomorphism of F-algebras B;: 7V — T such that (A\x)™ = A\Pix™i
for all A €TV and x € (\: D). Further, if x €7 with x™ # 0, then
E(x) €D gnd E(x)? = 1.

(¢) Let # be an essential ideal of 2, let a,b € T with a7 U b ,f CD,
and let A7) ={i €777 # 0}. Then N;c 5, ker(m) = 0. If aP = bF:
forall i € A %), then a = b.

Proof. Clearly & is a semiprime ring and so .7 is a commutative von
Neumann regular self-injective ring.

(a) Suppose that a, & YiZ17a,. By [47, 32.2(7)] there exists p €
M(2) such that a =p-a,+0and p-a, =0forall k =1,2,...,n — 1.
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If M*(2)-a =0, then Sa is an ideal of & with (%a)*> = 0 which is
impossible. Therefore p’'-a # 0 for some p’ € M*(2). Set g = p'p. Then
qeEM*(2), q-a,+#0,and g-a, =0 for all k=1,2,...,n — 1. By as-
sumption there exists i €.7 such that (g -a,)™ # 0. Clearly 7, induces a
surjective homomorphism of F-algebras y: M*(2) - M*(Z;) such that
(f-x)"i=fY-x"i forall fe M*(Z)and x €2. Set g = ¢” and b, = a/,
k=1,2,...,n. Then b, = X{ZA\.b, for some A, €J; by our assumption.
Therefore

n—1 n—1
O¢(Q'an)7i=g'bn: ZAk(g'bk)= ZAk(q'ak)m=0’
k=1 k=1

a contradiction. Therefore (a) is proved.

®) Let A, A, €99 and u,v €F. Set #=(A:2)N(A,: D).
Since ker(sr;) is a prime ideal of the algebra & and (A,:2), (A,: 2) ¢
ker(mr;), we conclude that % ¢ ker(ar;). Clearly % is an essential ideal of
2 and (uA; + vA,)% C 9. Therefore ui, + vA, €7 and so 7 is an
F-submodule of 7.

Let €D, Set £F=(A:92), m=m;, B =9, and ¥ =,¢". We
define a map f,: % — % by the rule f,(x) = {Ax™ }", x €% We claim
that f, is a well-defined map. Indeed, let a € 7 N ker(7) and let &=
M(2) - (Aa). Clearly # is a nonzero ideal of the algebra & and 7Z¥ =
A M(D) - a) C ker(ar). Since £ # 0 and % is a prime ring, we
conclude that ™ = 0 and so Aa € ker(ar). Therefore f, is well defined.
Obviously f, is homomorphism of M(%)-modules and so there exists a
uniquely defined element ¢, €.9; such that f,(x) =c,x for all x €%
Define amap B = B;: 7 — 7, by the rule A# = ¢,. Clearly (Ax)™ = A\Px™
forall A €9 and x € (A: 2).

Let £,meTD. Set #/=({:2)and V= (n:2D).Since £™ + 0+
and Z is a prime algebra, we conclude that (.Z NA)™ + 0. Let % =.# NA.
We have

CBx™ 4 mPx” = (Lx)" 4+ (qx)" = {({+ m)x}" = (L + m)Pxm

forall x € Z andso{{P + n? — ({ + n)P}%™ = 0. Since #™ is a nonzero
ideal of the prime algebra %, we conclude that (¢ + )P = (P + nP.
Analogously one can show that (f{)? = f{? for all f€.% and [ €TV,
Finally, (7)™ =.#7%™ # 0 because & is prime. Let 7" be the ideal of &
generated by .Z#. Then 7" ¢ ker(w) and {(#7'U 07U {(n7 . We show
that 77" is an essential ideal of &. Indeed, let .7 be a nonzero ideal of 2.
As 9 is semiprime, 0 # (¥ NZ NA)? C# N.% and so 7 is an essential
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ideal of 2. Therefore {n €. and whence " is a subalgebra of 7.
Further,

(&n)Pxm = (fmx)" = [{(nx)]7 = P (mx)" = ¢PnPxm

for all x € 7" and whence [({n)? — ¢PyPl7™ = 0. Thus ({n)? = {PnP.

Finally, let x €2. Let .#, be the ideal of & generated by x and let #
be an ideal of & maximal with respect to the property .#, N_# = 0. Clearly
# +.7 is an essential ideal of & contained in (E(x): 2) by (24). Since
x™# 0, 77 #+ 0 as well and so E(x) € 79, Further,

x7i = (E(x)x)#" = E(x)B"x”"
and whence E(x)# = 1 because .J; is a field.

() Let Z = N,c s ker(m) and let 7'= N, _,\ _» - ker(m,). Then
S C 7 and so 7 is an essential ideal of 9. Since Z N 7'= N, ., ker(r,)
= (0, we conclude that Z = 0.

Suppose that aP = bP for all i €A 7). Set c =a — b. Then ¢ 7 CD
and ¢P = 0 for all i €A #). Assume that ¢ # 0. Then ¢y # 0 for some
y €_7 and so there exists i €A 7) with (cy)™ # 0. But (cy)™ = cPiy™ = 0,
a contradiction. The proof is thereby complete.

Proof of Theorem 1.1. Let {(Z,; m,) | p € £} be a family of Lie algebras
%, € ) together with surjective Lie homomorphisms , : & — %, such
that N, , ker(m,) = 0. Further, let &/, =(%,) and &, be as in Theo-

rem 1.1G) or (i), p €. By (14), (15), each 2, is a 4-free subset of
&0, (7).
Given any nonzero ideal .# of the Lie algebra ., we set
P(7)={pezr|s™ + 0}.
Next, we note that 7 is a field because & is prime, and set P =FF (see
[47, 32.2(D)D. Finally, let 7” and B,:.7 "’ — %, be as in Proposition 4.3.

(a) First suppose that -: ¥* - is third power-associative. We
claim that

Xoy=xy+weEIx +9y for all x,y €Z. (25)

Indeed, by Proposition 4.3(a) it is enough to show that (x o y)™» € &,x™ +
&,y™ for all p €. Since %, is a 4-free subset of @, (%), Theorem
4.2(a) yields that there exist an element A, € &,, an F-linear map v,:
¥ — €,, and a symmetric F-bilinear map 7,: Zr > &, such that
(uov)™ = AuTrev™ 4y (u)o™ + y,(v)u™ + 7,(u,0)

forall u,v € 2.
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Clearly v,(w)v™ + v,(V)u™ € €,%,. Now assume that %, and &, are as
in Theorem 1.1(). If A, # 0, then u™ o v™ € &, %, + &, for all u,v €Z.
Since 7, is surjective, we conclude that %, %, C €,%, + %, and whence
&,%, + &, is a subring of Z,%, + %, a contradiction. Therefore A, = 0
and so Tp(u,u) EE,N (%p%p) =0 for all u,v €%. Hence (x°y)™
&,x™ + &,y™. Finally, assume that %, and &, are as in Theorem 1.1().
It is well known that the involution # can be uniquely extended up to the
involution of the same kind of %, + &, (see [11, Proposition 2.5.4]).
Then A,u™ou™ + 7,(u,v) is a symmetric element of &,/, + &, belong-
ing to &,%, C#(€,9, + ,) and so it is equal to 0. Therefore again
(xey)™ € &,x™ + &,y™ which proves our claim. It also follows from
our discussion that

(uov)™ = v,(u)o™ + v,(v)u™  forall u,v €. (26)

It follows from (25) that x o x € Ix for all x €.Z. Define a map u: & -7
by the rule xox = 2u(x)x, x €.Z. Since J is a field, the map w is well
defined. Clearly u(fx) = fu(x) for all f € F and x €.Z.

Let x €% and £ = (w(x): ZL). Since x° x = 2u(x)x, x €.7. We now
claim that

u(x) = v (x)  forall p € P(5). (27)

Indeed, given p € P(.¥), u(x) € 9" and so it follows from Proposition
4.3(b) that (u(x)x)™ = u(x)P x™. By (26) we have

20,(x)x7 = (x0x) " = (2pa(x) %)™ = 2pa(x) P

and so u(x)P = v,(x).

Now let x,y e and £=(w(x): )N (w(y): Z) N (ulx +y): 2).
Clearly P( %) € P((x): ) N P(u(y): ) N P(ulx + y): 2)).
Given p € P( %), it follows from (27) that

v(x+y) = p,(x) + p(y) = uw(x)" + pu(y)”

{n(x) + u(y)}™

and so u(x +y) = uw(x) + u(y) by Proposition 4.3(c). We conclude that
p: £ — 7 is an Flinear map. We now have

u(x +y)P

2xey=(x+y)o(x+y) —xex—yey
=2p(x +y)(x +y) = 2u(x)x = 2u(y)y = 2u(x)y + 2pu(y)x
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and so xoy = w(x)y + w(y)x for all x,y €Z. Since : ¥> >Z is

Lie-compatible, there exists an invertible element ¢ € % such that xy — yx
1

= t[x, y] for all x,y €. Finally, xy = +{xy — yx + xy + yx} = 3{tlx, y]
+ u(x)y + w(y)x} and so (4) is satisfied.

Conversely, suppose that (4) is fulfilled. Then x* = u(x)x and so
[x%, x] = 0 for all x €.%. Thus .# is third power-associative.

(b) Assume that . is flexible. Then it is third power-associative and
so (4) is fulfilled by (a). Next, let x, y €.%. It follows from Theorem 4.2(b)
that »,([x, y]) = 0 for all p €. Now both (27) and Proposition 4.3(c)
imply that u([x, y]) = 0.

Conversely, assume that w(Z, £] = 0 and (4) is fulfilled. Then

dx(yx) = 2x{t[y, x] + p(x)y + p(y)x}
= t[x, e[y, x] + w(x)y] + tu(x) [y, x] + p(x)’y
+ () u(y)x + p(pu(x)y + p(y)x)x
=[x, [y, x]] + w(x)’y + w(x)u(y)x
+ pu(p(x)y + u(y)x)x  and
4(xy)x =2{t[x,y] + pu(x)y + p(y)x}x
=t[t[x,y] + w(x)y, x] + p(p(x)y + p(y)x)x
+tpu(x)[x, y] + w(x)’y + p(x)p(y)x
= 2[[x, y] x] + w( m(x)y + p(y)x)x + u(x)’y
+ p(x)pu(y)x

because wu([x, y]) = 0. Therefore x(yx) = (xy)x for all x,y €% and
whence the algebra (£, +,-) is flexible. The last statement follows from
both (a) and (b).

Proof of Theorem 1.2. (a) In view of Theorem 1.1 it is enough to prove
the last statement. To this end, suppose that (5) is satisfied. Then xey =
w(x)y + u(y)x for all x,y € %. Since (&%, +, *) is an F-algebra, (Z%, +,
o) is also an F-algebra. Recalling that w(%#) C .7, we see that

[(xex)ey]ex = 2u(x)(xey)ex = 2u(x)xe(yex)
= (xex)+(y+x)

for all x,y € %. Therefore, (%, +,+) is a Jordan algebra. Let x € % and
let % be the subalgebra of (%, +, =) generated by x. It is easy to see that
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# = Fx and (&, +, *) is an associative algebra. Therefore * is power-as-
sociative.

(b) The result follows from (a), Theorem 1.1(b), and (2). Finally, (c)
follows from Theorem 1.1(c).

LEMMA 4.4. Let & be a field with char(F) # 2, let & be an F-algebra
with unity 1, and let % be a subspace of & such that FN.F =0 and
S+ F = Suppose that x oy €.7 for all x,y €.7, where xoy = xy + yx.
Then .7 is an ideal of the algebra <.

Proof. Let x,ye.# and a €. Then x°(y +a) =xcy + 2ax €7
and so o/ C.# Next, let x, z €2 and y €7 Then on the one hand

[y,[x,2z]] = (xcy)ez—xo(yoz) €F

and so [.7 [, «]] C.#. On the other hand .#<[«, 2] C.#. Therefore
A, ] U [, 7] .7 and whence [ Fo 7, ] C.7 Since (Fo . f)o s/ C
#, we conclude that the ideal _# of &/ generated by .# .7 is contained in
#. We now see that .#/# is the prime radical of the factor algebra .«//#
and so . is an ideal of .

Proof of Theorem 1.3.  Since deg(«) > 3, &/ is a 3-free subset of @, (&)
by (13). Suppose that = is third power-associative. Take ¥ =. and
a = id_,. Then (6) follows from Theorem 4.2(a). Conversely, assume that
(6) is fulfilled. Then x * x = Ax? + u(x)x + 37(x, x). Therefore (x#* x)=*
x —x*(x*x)=t[x*x,x] =0 and whence =* is third power-associative.

Assume that deg(#/) > 4. Then & is a 4-free subset of @, () by (13).

(a) Suppose that the algebra (&, +, *) is flexible. Then it is third
power-associative and so (6) is fulfilled. Next, (7) follows from Theorem
4.2(b). If both (6) and (7) are satisfied, then as in the proof of Theorem 1.2
one may easily check that (&, +, *) is flexible. Thus (a) is proved.

Now suppose that deg(«) > 5, (6) is satisfied, and A # 0. Then & is a
5-free subset of @, ().

@ Set g = (o, +,*), Z =, a =id,, and € = 0. Now the result
follows from Proposition 4.1(c) because by (23) we have

0= p(xey) = m(x)u(y) +2a7(x,y)
= Mp(xoy) + p(x)p(y) + 7(x,y){21 + p(1)}

for all x, y €.%. Moreover, (xey)? =xPoy# for all x,y €. by Proposi-
tion 4.1(c).
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If in addition (&7, +, *) is flexible, then (x =y —y = x)P = +[x#, y#], by
Proposition 4.1(c), and so

p_ 1, p_ 1 i[ B, y8] +xPoyh
(x=y) 2{X*y y#x + xey} S5y Aoy
=xPOyP  forall x,y €.

(i) Let 2A — w(1) # 0. Assume that (8) is fulfilled. Since * is third
power-associative, it is fourth power-associative if and only if the multipli-
cation « is fourth power-associative (see (3)). As (&7, +, ©) is power-associa-
tive, it is enough to show that B is an isomorphism of algebras (&7, +,¢)
and (&, +, ). In view of (i), we have only to show that B is bijective. If
xP =0, then \x = — Ju(x) € 7 and so x €. Therefore, u(x) = w(Dx,

0=xP=ax+ 3u(x) =3{2A + u(1)}x,
and whence x = 0. We see that B is injective. Next, let y € /. Set

L m(y)

T A+ p(D)
Clearly x? =y and so B is bijective.

If in addition (&7, +, *) is flexible, then B is an isomorphism of algebras
(&, +, *) and (&, +,<) by (i) and the above result.

Conversely, suppose that * is fourth-power associative. Then (8) is
fulfilled by (i).

(iv) It follows from (8) that

w(xey) + uw(x)u(y) =0 foral x,y €. (28)

Therefore if x €.7=ker(u) and y €, then xoy €. by (28). Since
w() = =21 # 0, ker(w) N.F = 0and so # N.F = 0. Clearly dim (7 /%)
= 1 and whence & =.# + .. By Lemma 4.4, .7 is an ideal of the algebra
. Obviously ker( B) = . By (i), B is a homomorphism of algebras (&7, +, )
and (&, +, o). Therefore # = ker( 8) is an ideal of the algebra (&, +, ).
We now have &f = (#+.9)P =_7 and the result follows from the first
homomorphism theorem. If in addition (&, +, =) is flexible, then B is a
homomorphism of (&, +, ) into (&, +,<) and so it induces an isomor-
phism of .&//F and (7, +,<). Finally, (iii) follows from (iv).

Proof of Theorem 1.4. First we remark that if deg(.) > 4 (deg(&/) > 5,
deg(«) > 6), then % is a 3-free (respectively, 4-free, 5-free) subset of
@, () by (14).
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Suppose that the multiplication # is third power-associative. Take
¥ =% and a = id ;. By Theorem 4.2(a),

xxy={tlx,y] + Axeoy + p(x)y + u(y)x + 7(x,y)}
forall x,y €%.

Since #[x, y] + w(x)y + u(y)x €%, we conclude that Axoy + 7(x,y) €
Z. Therefore

0={Axey+7(x,y)}" = Mxoy)" + 7(x,y)

and so 7(x,y) = —AMx ° y)™ which proves (9).

Both the converse implication and the statement (a) are proved analo-
gously to that of Theorem 1.3 because 7(x,[x,y]) = —Mxe[x,yD™ =
—Nx2, y]" =0 for all x,y €.%.

(b) Let x e#and {,n € Then ({x)*(nx) = {nu(x)x and so the
subalgebra of (%, +, *) generated by x is equal to x and is associative.
Thus * is power-associative.

(c) Tt follows from (a) that u = 0. Assume that the multiplication =
is fourth power-associative. Put =% and « =id,. It follows from
Theorem 4.2(c) that A*(x o y)™ = —A7(x,y) = 0forall x,y €2.If A = 0,
then there is nothing to prove. Assume that A # 0. Then (x° y)™ = 0 for
all x,y € # and so Z o Z CZ%. It now follows from Lemma 4.4 that % is
an ideal of .

Conversely, if A = 0, then * is power-associative by (b). Suppose that .%#
is an ideal of . and A # 0. Then (x ° y)™ = 0 and so

xxy={t[x,y] + Axoy) forall x,y €%

which is easily verified to be power-associative.
Now suppose that the condition (d) of Theorem 1.4 is satisfied.

(i) It follows from Theorem 4.2(c) that B is a homomorphism of
algebras (%, +,+) and (%P, +, °). Since ker(B) CcFNFZ = 0, we con-
clude that B is an isomorphism. Since Z +.9 =&/, #P +.7 = by the
definition of B. Clearly ## N.% = 0. By Lemma 4.4, %P is an ideal of ..
Finally, if in addition (%, +, %) is flexible, then B is an isomorphism of
algebras (%, +, =) and (%P, +,©) by Theorem 4.2(d).

(ii) Since (#P, +, o) is power-associative, the result follows from

(3.

(iii) The result follows from the obvious fact that (%, +,Q) is
flexible and power-associative. Finally, (e) follows from (i) and (b).
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