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We describe third power associative multiplications � on noncentral Lie ideals
of prime algebras and skew elements of prime algebras with involution provided

� �that x� y � y� x � x, y for all x, y and the prime algebras in question do
not satisfy polynomial identities of low degree. We also obtain necessary and suffi-
cient conditions for these multiplications to be fourth power-associative or flexible.
� 2000 Academic Press

1. INTRODUCTION

In what follows FF is an associative commutative ring with unity 1. Given
elements x, y of an FF-algebra, we set

� �x , y � xy � yx and x� y � xy � yx .

Ž .Let AA be an associative algebra. It is well known that AA is a Lie Jordan
� � ŽFF-algebra with respect to the Lie product , respectively, the Jordan

. Ž .product � . Next, a submodule TT of AA is called a Lie Jordan subalgebra
� � Ž .of AA if TT, TT � TT respectively, TT� TT � TT . Finally, a submodule TT of AA

� �is said to be a Lie ideal of AA if TT, AA � TT.
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Ž .Let TT and SS be Lie Jordan subalgebras of associative FF-algebras AA

and BB, respectively. An FF-module map � : TT � SS is said to be a Lie
Ž . � �� � � � � Ž Ž .� � � .Jordan map if x, y � x , y respectively, x� y � x � y for all
x, y 	 TT.

Let AA be an associative FF-algebra with involution �. We set

� � 4 � � 4SS AA � x 	 AA � x � x and KK AA � x 	 AA � x � �x .Ž . Ž .

Ž . Ž .Clearly KK AA is a Lie subalgebra while SS AA is a Jordan subalgebra of AA.
If TT is a subset of AA, then

� �ZZ TT � t 	 TT � x , t � 0 for all x 	 TT� 4Ž .

� �is the center of TT. Next, we denote by TT, TT the submodule of AA generated
�� � 4 � �by x, y � x, y 	 TT . Note that AA, AA is a Lie ideal of AA.

Given a set SS and a nonnegative integer n, we denote by SS n the nth
Cartesian power of SS . It is understood that SS 0 � �.

We now set in place some further notation. Let AA be an associative
Ž .prime FF-algebra with maximal right ring of quotients QQ � QQ AA andmr mr

Ž . Ž . Ž � �.Martindale extended centroid CC � CC AA see 11, Chap. 2 . Further,
AA � CC AA � CC � QQ is the central closure of AA. It is well known that bothc mr
QQ and CC are FF-algebras, AA is a subalgebra of QQ , and CC is a field. Themr mr
algebra AA is called centrally closed if FF � CC and AA � AA .c

Ž . ŽLet x 	 QQ . By deg x we shall mean the degree of x over CC if x ismr
. Ž .algebraic over CC or � if x is not algebraic over CC . Given a nonempty

subset RR � QQ , we setmr

deg RR � sup deg x � x 	 RR .� 4Ž . Ž .

It follows easily from the structure theory of rings with polynomial identity
Ž .that deg AA � n � � if and only if AA satisfies St , the standard identity2 n

of degree 2n, and AA does not satisfy St . Moreover, AA satisfies St if2 n�2 2 n
Ž .and only if it is a subring of M CC , the n � n matrix ring over then

� �algebraic closure CC of CC 39, 40 .
Ž�. Ž Ž�..Let DD be a not necessary associative FF-algebra. Then DD DD

� � Žstands for DD with multiplication x, y � xy � yx respectively, x� y � xy
.� yx , x, y 	 DD. Recall that DD is called a noncommutati�e Jordan alge-
Ž . 2 Ž 2 .bra if xy x � x yx and

xy x � x yx for all x , y 	 DD 1Ž . Ž . Ž .

� � Ž . �42, Sect. V.3 . An FF-algebra DD satisfying 1 is called flexible. By 42, Sect.
� Ž .V.3 , DD is a noncommutative Jordan algebra if and only if it satisfies 1
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Ž .i.e., is flexible and one of the following conditions:

x 2 y x � x 2 yx for all x , y 	 DD,Ž .Ž .
x 2 xy � x x 2 y for all x , y 	 DD,Ž . Ž .

2Ž .
yx x 2 � yx 2 x for all x , y 	 DD,Ž . Ž .

DDŽ�. is a commutative Jordan algebra.Ž .

� � Ž .Following 1 the algebra DD is called Lie-admissible Jordan-admissible if
Ž�. Ž Ž�. .DD is a Lie algebra respectively, DD is a Jordan algebra . Further, let

AA be an associative algebra over FF with additional multiplication �:
AA 2 � AA. Then the multiplication �: AA 2 � AA is called Lie-compatible
Ž . Ž .Jordan-compatible if AA, �, � is an FF-algebra and there exists an

� � Žinvertible element c 	 FF such that x� y � y� x � c x, y respectively,
. 2x� y � y� x � cx� y for all x, y 	 AA. Clearly, if �: AA � AA is a Lie-com-

Ž . Ž .patible Jordan-compatible multiplication on AA, then the algebra AA, �, �
Ž .is Lie-admissible respectively, Jordan-admissible . If LL is a Lie algebra

with additional multiplication �: LL 2 � LL , then the multiplication � is
Ž .called Lie-compatible if LL , �, � is an FF-algebra and there exists an

� �invertible element c 	 FF such that x� y � y� x � c x, y for all x, y 	 LL .
Ž . Ž .Next, the algebra DD is called third-power associati�e if xx x � x xx for

all x 	 DD. It is called fourth power-associati�e if

xx xx � xx x x � x xx x � x x xx � x xx xŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .
for all x 	 DD.

Finally, DD is called power-associati�e if the subalgebra of DD generated by
any element is associative. If FF is a field of characteristic 0, then DD is

Žpower-associative if and only if it is third and fourth power-associative see
� �.1; 36, Lemma 1.11 . If DD is third-power associative, then it is fourth
power-associative if and only if

x� x � x � x � x� x � x� x � 0 for all x 	 DD 3Ž . Ž . Ž . Ž .Ž .

� �by 36, Lemma 1.10 .
Ž .The study of Lie-admissible Jordan-admissible algebras was initiated

� �by Albert 1 in 1949. These algebras arise naturally in various areas of
Ž � �.mathematics and physics for further details see 13, 14, 24, 30, 36, 41 .

Ž �They have been studied by a number of authors see for example 1, 13, 14,
�. � �15, 16, 24, 26, 27, 29, 34�38 . Albert 1 posed a problem of investigating

the structure of flexible power-associative Lie-admissible algebras DD such
that DDŽ�. are semisimple Lie algebras. Since then, one of the main
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directions in studying Lie-admissible algebras has been the problem of
classification of Lie-admissible structures on given class of Lie algebras.

� �In 1962 Laufer and Tomber 29 classified finite dimensional flexible
power-associative Lie-admissible algebras DD over algebraically closed fields
of characteristic 0 such that DDŽ�. are semisimple, thus solving Albert’s

� �problem for algebras over such fields. Myung 34, 36 obtained a descrip-
tion of finite dimensional flexible power-associative Lie-admissible alge-
bras DD over algebraically closed fields of positive characteristic provided
that DDŽ�. are classical Lie algebras or generalized Witt algebras. Benkart

� � � �and Osborn 15 and Myung and Okubo 38 independently classified finite
dimensional Lie-admissible flexible algebras DD over algebraically closed
fields of characteristic 0 such that DDŽ�. are semisimple. Further, Benkart

� �and Osborn 16 described power-associative products on matrices while
� �Benkart 14 classified third power-associative Lie-admissible algebras DD

Ž�. � �such that DD are semisimple. Recently Myung 37 described third
power-associative Lie-admissible algebras associated with the Virasoro

� �algebras while Jeong et al. 24 classified third power-associative Lie-ad-
missible algebras DD such that DDŽ�. are affine Kac�Moody algebras.

Let AA and BB be two associative FF-algebras and let � : AA � BB be a Lie
isomorphism. Define a new multiplication �: AA 2 � AA by the rule x� y �
Ž � � .��1

x y , x, y 	 AA. It is easy to see that � is a Lie-compatible third
power-associative multiplication. Therefore the problem of classifying Lie
isomorphisms of associative algebras is an important particular case of the
classification of all Lie-compatible third power-associative multiplication
on associative algebras. Now it is not surprising that the methods devel-

Žoped for the solution of the first problem i.e., the Lie isomorphism
.problem are applicable to the solution of the second one in the context of

Ž .associative algebras. Setting B x, y � x� y, one immediately gets
� Ž . �B x, x , x � 0 for all x 	 AA, an important functional identity investi-

� �gated by Bresar in 18 in prime rings with connection with the Lieˇ
isomorphism problem. Note that, earlier, studying third power-associative
Lie-compatible multiplications on matrix algebras over fields, Benkart and

� �Osborn 16 actually solved the same functional identity in this class of
algebras, though their results were not stated in such a form.

Our approach to the study of Lie-compatible multiplications is based on
� �recent results in the theory of functional identities obtained in 7, 10 and

� � � �especially in 8, 9 . The reader is referred to 7, 8, 10 for the historical
account of this newly developed theory.

The following four theorems are motivated by the aforesaid results on
Lie-admissible algebras.

1THEOREM 1.1. Let FF be a commutati�e ring with 1 and , let LL be a2

prime Lie FF-algebra, and let � be a class of Lie FF-algebras RR satisfying one
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of the following two conditions:

Ž . Ž .i There exists a prime FF-algebra AA � AA RR with extended centroid CC

Ž .and with central closure AA such that deg AA 
 5, RR is a noncentral Liec
Ž .ideal of the algebra AA, CC � CC RR � 0, and CC RR � CC is not a subring of AA .c

Ž . Ž .ii There exists a prime FF-algebra AA � AA RR with in�olution � of the
Ž .first kind, with extended centroid CC and with deg AA 
 10 such that RR �

Ž .KK AA .

Let �: LL 2 � LL be a Lie-compatible multiplication on LL and let TT be the
extended centroid of the Lie algebra LL . Suppose that the Lie algebra LL is a
subdirect product of algebras from the class �. Then TT is a field and we ha�e:

Ž . 2a The multiplication �: LL � LL is third power-associati�e if and only
if there exist an in�ertible element t 	 FF and an FF-linear map �: LL � TT such
that

1 � �xy � t x , y � � x y � � y x for all x , y 	 LL . 4� 4Ž . Ž . Ž .2

Ž . Ž . Ž .b The algebra LL , �, � is flexible if and only if 4 is fulfilled and
Ž� �.� LL , LL � 0.

Ž . � � Ž .c If LL , LL � LL , then the algebra LL , �, � is flexible if and only if
� �there exists an in�ertible element t 	 FF such that xy � t x, y for all x, y 	 LL .

� �It follows easily from 2 that a free Lie algebra LL over a field generated
by an infinite set is a subdirect product of Lie algebras belonging to
families B , C , and D , l � 1, 2, . . . . Therefore the above theorem isl l l
applicable to LL and in particular a third power-associative multiplication

Ž .on LL must be given as in 4 .

Ž .THEOREM 1.2. Let FF be a field with char FF � 2, let RR be a Lie
subalgebra of a centrally closed prime FF-algebra AA, and let �: RR2 � RR be a
Lie-compatible multiplication on RR. Suppose that one of the following two
conditions is satisfied:

Ž . Ž .i RR is a noncentral Lie ideal of AA, deg AA 
 5, FF � RR � 0, and
RR � FF is not a subalgebra of AA.

Ž . Ž .ii deg AA 
 10, the algebra AA has an in�olution � of the first kind,
Ž .and RR � KK AA .

Then we ha�e:

Ž .a The multiplication � is third power-associati�e if and only if there
exist an in�ertible element t 	 FF and an FF-linear map �: RR � FF such that

1 � �x� y � t x , y � � x y � � y x for all x , y 	 RR. 5� 4Ž . Ž . Ž .2
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� �Ž . Ž .If 5 is fulfilled, then RR, �, is a Jordan algebra, where x y � x� y � y� x
Ž .for all x, y 	 RR. In particular, 5 implies the power-associati�ity of �.

Ž . Ž . Ž .b The algebra RR, �, � is flexible if and only if 5 is fulfilled and
Ž� �. Ž .� RR, RR � 0. If the algebra RR, �, � is flexible, then it is a noncommuta-

ti�e Jordan algebra.
Ž . � � Ž .c If RR, RR � RR, then the algebra RR, �, � is flexible if and only if

� �there exists an in�ertible element t 	 FF such that x� y � t x, y for all
x, y 	 RR.

Ž .THEOREM 1.3. Let FF be a field with char FF � 2, let AA be a centrally
Ž .closed prime FF-algebra with unity 1 and with deg AA 
 3, and let �:

AA 2 � AA be a Lie-compatible multiplication on AA. Then the multiplication �
is third power-associati�e if and only if there exist a nonzero element t 	 FF, an
element � 	 FF, an FF-linear map �: AA � FF, and a symmetric FF-bilinear map
� : AA 2 � FF such that

1 � �x� y � t x , y � � x� y � � x y � � y x � � x , y� 4Ž . Ž . Ž .2

for all x , y 	 AA. 6Ž .

Further, we ha�e:

Ž . Ž . Ž .a Suppose that deg AA 
 4. Then the algebra AA, �, � is flexible if
Ž .and only if 6 is fulfilled and

� � � �� x , y � 0 � � x , x , y for all x , y 	 AA. 7Ž .Ž . Ž .

Ž . Ž . Ž .b Suppose that deg AA 
 5, 6 is fulfilled, and � � 0. Then we
ha�e:

Ž .i Assume that the multiplication � is fourth power-associati�e.
Then

� x� y � � x � y � � x , y 2� � � 1 � 0 for all x , y 	 AA.� 4Ž . Ž . Ž . Ž . Ž .
8Ž .

�
2Define a multiplication : AA � AA as

�x y � x� y � y� x � � x� y � � x y � � y x � � x , y , x , y 	 AA,Ž . Ž . Ž .
1	 Ž .and let the map 	 : AA � AA be gi�en by the rule x � � x � � x , x 	 AA.2

�Ž . Ž .Then 	 is a homomorphism of algebras AA, �, and AA, �, � . If in
Ž . 2addition AA, �, � is flexible and the multiplication �: AA � AA is gi�en by

1 t� � � 4the rule x � y � x, y � x� y , x, y 	 AA, then 	 is a homomorphism of2 �

Ž . Ž .algebras AA, �, � and AA, �, � .
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Ž . Ž .ii Assume that 2� � � 1 � 0. Then the multiplication � is
Ž . Ž .fourth power-associati�e if and only if 8 is fulfilled. If 8 is fulfilled, then 	

�Ž . Ž .is an isomorphism of algebras AA, �, and AA, �, � . If in addition
Ž . Ž .AA, �, � is flexible, then 	 is an isomorphism of algebras AA, �, � and
Ž .AA, �, � .

Ž .iii If AA is a simple algebra and the multiplication � is fourth
Ž .power-associati�e, then 2� � � 1 � 0.

Ž .iv Suppose that the multiplication � is fourth power-associati�e
Ž . Ž .and 2� � � 1 � 0. Then II � ker � is an ideal of AA such that II � FF � 0

Ž . Žand AA � II � FF. Further, FF � ker 	 and is an ideal of the algebra AA, �,
�. and 	 induces an isomorphism of the corresponding factor algebra and
Ž . Ž . Ž .II, �, � . Finally, if in addition AA, �, � is flexible, then FF � ker 	 is an

Ž .ideal of the algebra AA, �, � and 	 induces an isomorphism of the corre-
Ž .sponding factor algebra and II, �, � .

We remark that the theorem generalizes results of Benkart and Osborn
� �16 obtained for matrix algebras over fields. Further, the fourth power-as-

�sociativity of the multiplication given by the rule

�x y � x� y � y� x � � x y � � y x � � x , yŽ . Ž . Ž .

� � Ž � �. Ž .was characterized in 16 see also 36, Theorem 2.14 . In view of 3 , a
characterization of the fourth power-associativity of the multiplication � in

Ž Ž ..the case � � 0 follows from their result see Theorem 1.3 b .

Ž .THEOREM 1.4. Let FF be a field with char FF � 2, let AA be a centrally
Ž .closed prime FF-algebra with unity 1 and with deg AA 
 4, let RR be a Lie

ideal of the algebra AA such that RR � FF � 0 and RR � FF � AA, let 
 : AA � FF

be the canonical projection of the direct sum RR � FF of �ector spaces RR and
FF onto FF, and let �: RR2 � RR be a Lie-compatible multiplication on RR.
Then the multiplication � is third power-associati�e if and only if there exist a
nonzero element t 	 FF, an element � 	 FF, and an FF-linear map �: RR � FF

such that


1 � �x� y � t x , y � � x� y � � x y � � y x � � x� yŽ . Ž . Ž .� 42

for all x , y 	 RR, 9Ž .

Ž .where x� y � xy � yx. Further, assume that deg AA 
 5. Then:

Ž . Ž . Ž .a The algebra RR, �, � is flexible if and only if 9 is fulfilled and
Ž� �.� RR, RR � 0.

Ž . Ž .b Suppose that 9 is fulfilled and � � 0. Then the multiplication �
is power-associati�e.
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Ž . Ž . � �c Suppose that RR, �, � is flexible and RR, RR � RR. Then � � 0.
Ž .Further, if deg AA 
 6, the multiplication � is fourth power-associati�e if

and only if either � � 0 or RR is an ideal of the algebra AA. If the multiplica-
tion � is fourth power-associati�e, then it is power-associati�e.

Ž . Ž . Ž .d Suppose that deg AA 
 6, 9 is fulfilled, � � 0, and the map 	 :
1	 Ž .RR � AA is gi�en by the rule x � � x � � x , x 	 RR. We ha�e:2

Ž .i Assume that the multiplication � is fourth power-associati�e.
�

	Ž . Ž .Then 	 is an isomorphism of algebras RR, �, and RR , �, � , where



�x y � x� y � y� x � � x� y � � x y � � y x � � x� yŽ . Ž . Ž .
and RR	 is an ideal of the algebra AA such that RR	 � FF � 0 and RR	 � FF � AA.

Ž . Ž 	 .2 	If in addition RR, �, � is flexible and the multiplication �: RR � RR is
gi�en by the rule

1 t
	� �x� y � x , y � x� y for all x , y 	 RR ,½ 52 �

Ž . Ž 	 .then 	 is an isomorphism of algebras RR, �, � and RR , �, � .
�

	Ž . Ž . Ž .ii If 	 is an isomorphism of algebras RR, �, and RR , �, � ,
then the multiplication � is fourth power-associati�e.

Ž . Ž . Ž 	iii If 	 is an isomorphism of algebras RR, �, � and RR , �,
. Ž .� , then the multiplication � is power-associati�e and RR, �, � is a

noncommutati�e Jordan algebra.
Ž . Ž . Ž .e If AA is a simple algebra with deg AA 
 6 and 9 is fulfilled, then

the multiplication � is fourth power-associati�e if and only if � � 0.

�The study of Jordan maps of associative rings goes back to Ancochea 3,
� � � � � � �4 , Kaplansky 25 , Hua 21 , and Jacobson and Rickart 23 . In 1956

� �Herstein 20 described surjective Jordan maps onto prime rings of charac-
� � Ž .teristic not 2 and 3. Smiley 45 removed the restriction char AA � 3.

� � � �Further results were obtained by Baxter and Martindale 6 , Bresar 17 ,ˇ
� � � � � �Lagutina 28 , Martindale 31, 32 , and McCrimmon 33 . The following

theorem is motivated by the aforesaid results.

THEOREM 1.5. Let AA be a prime ring with maximal right ring of quotients
Ž .QQ and with Martindale symmetric ring of quotients QQ � QQ AA , let RR be amr s s

Jordan subring of QQ , let DD be a flexible ring, and let � : DD � RR be anmr
Ž .� � �epimorphism of additi�e groups such that x� y � x � y for all x, y 	 DD.

Ž .Suppose char AA � 2. We ha�e:

Ž . Ž .a If RR � AA and deg AA 
 4, then there exists an element t 	 CC such
that

� � � � �xy � tx y � 1 � t y x for all x , y 	 DD.Ž . Ž .
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If in addition DD is associati�e, then t � 0, 1.
Ž . Ž .b If AA is a prime ring with in�olution � and with deg AA 
 10, and

Ž . Ž . �
SS QQ � RR � SS AA , then there exists an element t 	 CC such that t � t � 1s

� �� � � �xy � tx y � t y x for all x , y 	 DD.Ž .

The paper is organized as follows. All the necessary results and defini-
� �tions from 8, 9 are listed in the second section. In the third section we

prove Theorem 1.5 and discuss its applications to noncommutative Jordan
algebras. The last section is devoted to the proof of Theorems 1.1�1.4.

2. PRELIMINARY RESULTS

� �For the sake of completeness we now state a few results from 8, 9 upon
which our paper is based on. We first set in place some notation. In what

� � 4follows NN is the set of all nonnegative integers, NN � NN 
 0 , FF is a
commutative ring with unity, QQ is an FF-algebra with 1 and with center CC,
and CC

� is the group of invertible elements of the ring CC. Next, RR is a
nonempty subset of QQ, SS is a nonempty set, and � : SS � RR is a surjective

� Ž .map. Given n 	 NN and s , s , . . . , s 	 SS , we set s � s , s , . . . , s 	1 2 n n 1 2 n
SS n where SS n is the nth Cartesian power of SS . Further, let m 	 NN

� , let
m� 1 Ž1 � i � m, and let E: SS � QQ be a map it is understood that E is a

. i mconstant belonging to QQ whenever m � 1 . We define a map E : SS � QQ

by the rule

i iE x � E x , x , . . . , x � E x , . . . , x , x , . . . , xŽ . Ž .Ž .m 1 2 m 1 i�1 i�1 m

m m�2for all x 	 SS . Now let m 
 2, 1 � i � j � m, and F: SS � QQ. Wem
define a map F i j: SS m � QQ by the rule

i jF x � F x , . . . , x , x , . . . , x , x , . . . , xŽ .Ž .m 1 i�1 i�1 j�1 j�1 m

ji i jfor all x 	 SS and set F � F .m m
� 4 m� 1Let II, JJ � 1, 2, . . . , m and E , F : RR � QQ, i 	 II, j 	 JJ. Consideri j

functional identities on RR of the following form:

i j mE x x � x F x � 0 for all x 	 RR , 10Ž .Ž . Ž .Ý Ýi m i j j m m
i	 II j	 JJ

i j mE x x � x F x 	 CC for all x 	 RR . 11Ž .Ž . Ž .Ý Ýi m i j j m m
i	 II j	 JJ
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Next, consider the following condition: there exist maps

p : RRm� 2 � QQ , i 	 II , j 	 JJ, i � j,i j

� : RRm� 1 � CC , l 	 II � JJ,l

such that

i i j iE x � x p x � � x ,Ž . Ž . Ž .Ýi m j i j m i m
j	 JJ,

j�i

j i j jF x � � p x x � � xŽ . Ž . Ž .Ýj m i j m i j m
i	 II ,
i�j

12Ž .

i 	 II , j 	 JJ,

� � 0 if l � II � JJ.l

It is understood that all the p ’s are equal to 0 if m � 1.i j
� � �Given d 	 NN , following 8, Definition 1 the subset RR of QQ is called

d-free if the following conditions are satisfied:

Ž . � � 4 � � � � �4i For all m 	 NN and II, JJ � 1, 2, . . . , m with max II , JJ � d,
Ž . Ž .we have that 10 implies 12 .

Ž . � � 4 � � � � �4ii For all m 	 NN and II, JJ � 1, 2, . . . , m with max II , JJ � d
Ž . Ž .� 1, we have that 11 implies 12 .

Assume for a while that AA is a prime ring with maximal right ring of
Ž . Ž � �.quotients QQ � QQ AA and with Martindale centroid CC see 11, Chap. 2 .mr

� �According to 8, Theorems 2.4 and 2.20 a subset RR of QQ is d-free
provided that one of the following conditions is fulfilled:

RR � AA and deg AA 
 d ; 13Ž . Ž .
RR is a noncentral Lie ideal of AA and deg AA 
 d � 1; 14Ž . Ž .

AA has an involution, deg AA 
 2 d � 2, and RR 	 KK AA , SS AA . 15� 4Ž . Ž . Ž . Ž .

� � �THEOREM 2.1 8, Theorem 2.8 . Let d 	 NN and let BB � RR � QQ be
subsets. Suppose that BB is d-free. Then RR is a d-free subset of QQ as well.

� 4Let x , x , . . . , x be noncommuting variables, let M � x x ��� x ,1 2 m i i i1 2 k

� 4k � m, be a multilinear monomial of degree k in the x , x , . . . , x �i i i1 2 km� 4x , x , . . . , x and let s 	 SS . We set1 2 m m

� � �M s � s , s ��� s 	 QQ.Ž .m i i i1 2 k



LIE-ADMISSIBLE ALGEBRAS 685

Next, let �: SS m� k � CC be a map. Then we denote by �M the map
SS m � QQ given by the rule

�M s � � s , s , . . . , s M s 	 QQ ,Ž . Ž .Ž . Ž .m j j j m1 2 m�k

� 4 � 4 � 4where j , j , . . . , j � 1, 2, . . . , m 
 i , i , . . . , i and j � j � ��� �1 2 m�k 1 2 k 1 2
j . The map �M is called a multilinear quasi-monomial of degree � mm� k
with the coefficient � of the monomial M. If � � 0, then we shall say that

Ž .�M is a multilinear quasi-monomial of degree m. A sum q x � Ý� Mm i i
Žof multilinear quasi-monomials � M of degree � m where M � M fori i i j

.i � j is called a multilinear quasi-polynomial of degree � m and each �i
is called the coefficients of the monomial M in q. Finally, the coefficienti
of the monomial 1 in q is called the constant term of q.

� �The following result is particular case of 9, Theorems 1.1 while the next
� �two ones are particular cases of 9, Theorems 1.2 .

THEOREM 2.2. Let RR be a nonempty subset of QQ, let SS be a set, let � :
SS � RR be a surjecti�e map of sets, and let q be a multilinear quasi-polynomial

mŽ .of degree � m such that q s � 0 for all s 	 SS . Suppose that either them m
constant term of q is equal to 0 and RR is an m-free subset of QQ, or RR is an
Ž .m � 1 -free subset of QQ. Then the coefficients of all the monomials in q are
equal to 0.

THEOREM 2.3. Let RR be a submodule of the FF-module QQ, let SS be an
FF-module, let � : SS � RR be an epimorphism of FF-modules, and let B:
SS 2 � QQ be a bilinear map. Suppose that either RR is a 4-free subset of QQ and

� � �B s , s , s � B s , s , s � B s , s , s 	 CCŽ . Ž . Ž .1 2 3 2 3 1 3 1 2

3for all s 	 SS ,3

or RR is a 3-free subset of QQ and

� � �B s , s , s � B s , s , s � B s , s , s � 0Ž . Ž . Ž .1 2 3 2 3 1 3 1 2

3for all s 	 SS .3

Ž .Then B s is a multilinear quasi-polynomial of degree � 2 and the coeffi-2
cients of all the monomials in B are FF-multilinear maps.

THEOREM 2.4. Let RR be a submodule of the FF-module QQ, let SS be an
FF-module, let � : SS � RR be an epimorphism of FF-modules, and let B:
SS 2 � QQ be a bilinear map such that

� � � � � �� � � � � �B x , u , � , y � B x , � , u , y � B y , u , � , xŽ . Ž . Ž .
� �� �� B y , � , u , x � 0Ž .
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Ž .for all x, y, u, � 	 SS . Suppose that RR is a 4-free subset of QQ. Then B x, y is
a multilinear quasi-polynomial of degree � 2 and the coefficients of all the
monomials in B are FF-multilinear maps.

3. JORDAN-ADMISSIBLE ALGEBRAS

We begin our discussion of Jordan-compatible multiplications with the
� �following result which is inspired by 19, Theorem 3.3 .

THEOREM 3.1. Let DD be a not necessary associati�e ring, let RR be a
4-free subset of QQ, let � : DD � RR be a surjecti�e map of sets, and let c 	 FF

be an in�ertible element such that

� � �x� y � cx � y for all x , y 	 DD. 16Ž . Ž .
2 Ž . Ž .Further, let B: DD � QQ be a map such that B x, y � �B y, x and

B x , y� z � cB x , y � z � � cB x , z � y � for all x , y , z 	 DD.Ž . Ž . Ž .
1 Ž .Suppose that 	 CC. Then there exists an element � 	 CC such that B x, y �2

� � � �� x , y for all x, y 	 DD.

Ž . Ž .Proof. Since B x, y � �B y, x , it is easy to see that

B x� y , z � cx � � B y , z � cy � � B x , z for all x , y , z 	 DD.Ž . Ž . Ž .

On one hand, we have that

B x� y , u�� � cB x , u�� � y � � cB y , u�� � x �Ž . Ž . Ž .
� c2 B x , u �� � � B x , � �u� � y �� 4Ž . Ž .

� c2 B y , u �� � � B y , � �u� � x � 17� 4Ž . Ž . Ž .

for all x, y, u, � 	 DD. On the other hand,

B x� y , u�� � cB x� y , u �� � � cB x� y , � �u�Ž . Ž . Ž .
� c2 B x , u � y � � B y , u � x � �� �� 4Ž . Ž .

� c2 B x , � � y � � B y , � � x � �u� 18� 4Ž . Ž . Ž .

Ž . Ž . � � ��for all x, y, u, � 	 DD. Since a� b � d � a� d � b � a, b, d for all
Ž . Ž .a, b, d 	 QQ, subtracting 18 from 17 we get

� � � � � �� � � � � �B x , u , � , y � B x , � , u , y � B y , u , � , xŽ . Ž . Ž .
� �� �� B y , � , u , x � 0Ž .
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for all x, y, u, � 	 DD. As RR is 4-free, Theorem 2.4 yields that there exist
elements � , � 	 CC and maps � , � : DD � CC and � : DD2 � CC such that1 2 1 2

B x , y � � x � y � � � y � x � � � x y � � � y x � � � x , yŽ . Ž . Ž . Ž .1 2 1 2

for all x , y 	 DD.

Ž . Ž .Recalling that B x, y � �B y, x for all x, y 	 DD, we infer from Theo-
Ž . Ž .rem 2.2 that � � �� , � � �� , and � x, y � �� y, x for all x, y 	1 2 1 2

DD. Setting � � � and � � � , we see that1 1

� � � � � �B x , y � � x , y � � x y � � y x � � x , yŽ . Ž . Ž . Ž .
for all x , y 	 DD. 19Ž .

Ž . Ž .Substituting y� z for y in 19 and making use of 16 , we get

� � � � � � �c � x , y � � x y � � y x � � x , y � z� 4Ž . Ž . Ž .
� � � � � � �� c � x , z � � x z � � z x � � x , z � y� 4Ž . Ž . Ž .

� cB x , y � z � � cB x , z � y � � B x , y� zŽ . Ž . Ž .
� � � � � � � �� �c x , y � z � c� x y � z � � y� z x � � x , y� zŽ . Ž . Ž .

and so Theorem 2.2 implies in particular that � � 0 and � � 0. The proof
is thereby complete.

COROLLARY 3.2. Let AA be a prime ring with maximal right ring of
quotients QQ , with Martindale centroid CC, and with a Jordan subring RR. Letmr

2 Ž . Ž .B: RR � QQ be a biadditi�e map such that B x, y � �B y, x and

B x , y� z � B x , y � z � B x , z � y for all x , y , z 	 RR.Ž . Ž . Ž .

Ž . Ž .Suppose that char AA � 2 and either RR � AA and deg AA 
 4, or AA is a
Ž . Ž .prime ring with in�olution, RR � SS AA , and deg AA 
 10. Then there exists

Ž . � �an element � 	 CC such that B x, y � � x, y for all x, y 	 AA.

Ž . Ž .Proof. By 13 and 15 , RR is a 4-free subset of QQ . The result nowmr
Ž .follows from Lemma 3.1 with � � id and c � 1 .RR

PROPOSITION 3.3. Let DD be a flexible FF-algebra, let RR be a 4-free Jordan
subalgebra of QQ, let � : DD � RR be an epimorphism of FF-modules, and let

Ž .� � �c 	 FF be an in�ertible element such that x� y � cx � y for all x, y 	 DD.
1Suppose 	 CC. Then there exists an element t 	 CC such that2

� � � � �xy � ctx y � c 1 � t y x for all x , y 	 DD.Ž . Ž .
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� �Proof. By 36, Lemma 1.5 ,

� � � � � �x� y , z � y , z � x � x , z � y for all x , y , z 	 DD. 20Ž .
2 Ž . � ��Define a function B: DD � QQ by the rule B x, y � x, y for all

Ž . Ž .x, y 	 DD. Clearly B x, y � �B y, x for all x, y 	 DD. Applying � to both
Ž .hands of 20 , we get

B x� y , z � cB y , z � x � � cB x , z � y � for all x , y , z 	 DD.Ž . Ž . Ž .

Therefore all the conditions of Lemma 3.1 are fulfilled and so there exists
Ž . � � � �an element a 	 CC such that B x, y � a x , y for all x, y 	 DD. Since

� �2 xy � x� y � x, y , we see that

� � � � �xy � ctx y � c 1 � t y x for all x , y 	 DD,Ž . Ž .

Ž �1 .where t � ac � 1 �2. The proof is now complete.

PROPOSITION 3.4. Let RR be a 4-free Jordan FF-subalgebra of QQ and let �:
Ž .RR � RR � RR be a Jordan-compatible multiplication on RR such that RR, �, �

1is a flexible FF-algebra. Suppose that 	 CC. Then there exist an in�ertible2

element c 	 FF and an element t 	 CC such that

x� y � ctxy � c 1 � t yx for all x , y 	 RR.Ž .

Proof. Since � is Jordan-compatible, there exists an invertible element
c 	 FF such that x� y � y� x � cx� y for all x, y 	 RR. The result now
follows from Proposition 3.3 with � � id .RR

THEOREM 3.5. Let AA be a prime FF-algebra with maximal right ring of
quotients QQ and with extended centroid CC. Let RR be a Jordan FF-subalgebramr
of QQ and let �: RR � RR � RR be a Jordan-compatible multiplication on RRmr

Ž . Ž .such that RR, �, � is flexible. Suppose that char AA � 2 and either RR � AA

Ž . Ž .and deg AA 
 4, or AA is a prime algebra with in�olution, RR � SS AA , and
Ž .deg AA 
 10. Then there exist an in�ertible element c 	 FF and an element

t 	 CC such that

x� y � ctxy � c 1 � t yx for all x , y 	 RR.Ž .

Ž .Moreo�er, RR, �, � is a noncommutati�e Jordan FF-algebra.

Ž . Ž .Proof. It follows from both 13 and 15 together with Theorem 2.1
Ž .that RR is a 4-free subset of QQ AA . The first part of the theorem followsmr

now from Proposition 3.4. The last statement is verified easily.

Probably the above theorem can also be obtained from results of
� �Skosyrskii 43, 44 .
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PROPOSITION 3.6. Let DD be an associati�e ring, let RR be a 4-free Jordan
subring of QQ, and let � : DD � RR be a surjecti�e Jordan homomorphism.

1Suppose that 	 CC. Then RR is a subring of QQ and � is either a homomor-2

phism of rings, or an antihomomorphism of rings.

Proof. Since every associative ring is flexible, by Proposition 3.3 there
exists an element t 	 CC such that

� � � � �xy � tx y � 1 � t y x for all x , y 	 DD.Ž . Ž .

�Ž . 4� � Ž .4�Finally, the identity xy z � x yz together with Theorem 2.2 implies
Ž . Žthat t 1 � t � 0 and whence t � 0, 1. Thus � is a homomorphism if
. Ž .t � 1 or antihomomorphism of rings if t � 0 . The proof is now com-

plete.

Ž .Proof of Theorem 1.5. If RR � AA and deg AA 
 4, then AA is a 4-free
Ž .subset of QQ by 13 and so RR is 4-free by Theorem 2.1. If AA is a primemr

Ž . Ž . Ž .ring with involution and with deg AA 
 10, and RR � SS AA , then SS AA is
Ž .a 4-free subset of QQ by 15 and whence RR is also 4-free by Theorem 2.1.mr

Therefore in both cases RR is a 4-free subset of QQ and so by Propositionmr
3.3 there exists an element t 	 CC such that

� � � � �xy � tx y � 1 � t y x for all x , y 	 DD.Ž . Ž .

Ž .Now assume that AA is a prime ring with involution � and RR � SS AA .
Since

�� � � �� � � � � � � �tx y � 1 � t y x � xy � xy � t y x � 1 � t x yŽ . Ž . Ž . Ž .� 4

for all x, y 	 DD, Theorem 2.2 yields that in particular t� � 1 � t and so
t � t� � 1. Finally, assume that DD is an associative ring. Then the identity
�Ž . 4� � Ž .4� Ž .xy z � x yz together with Theorem 2.2 implies that t 1 � t � 0
and whence t � 0, 1. The proof is now complete.

We conclude our discussion of Jordan-compatible multiplications with
the following useful technical result.

Ž . Ž . �Ž . 4LEMMA 3.7. Let DD be a ring such that x� x � x� x � x� x � x � x
for all x 	 DD, let RR be a 5-free subset of QQ, let � : DD � RR be an additi�e
surjecti�e map of sets, let � : DD2 � CC be a symmetric additi�e map, let �:
DD � CC be an additi�e map, let � 	 CC be an in�ertible element, and let the

1	 � Ž .map 	 : DD � QQ be gi�en by the rule x � � x � � x . Suppose that 	 CC2

and

	 	 	x� y � x � y � � x , y for all x , y 	 DD.Ž . Ž .
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Then � � 0.

Ž . Ž . �Ž . 4Proof. Since x� x � x� x � x� x � x � x for all x 	 DD, we have

	0 � x� x � x� x � x� x � x � x� 4Ž . Ž . Ž .

� x 	� x 	 � � x , x � x 	� x 	 � � x , x � � x� x , x� x� 4 � 4Ž . Ž . Ž .
	 	 	 	 � 4� x � x � � x , x � x � � x� x , x � x � � x� x � x , x� 4Ž . Ž .� 4 Ž .

2 2	 2 	 2 2� 4� 4� x , x x � 4� x , x x � 2� x , x � 4� x , xŽ . Ž . Ž . Ž .
� 4� � x� x � x , x 21Ž .Ž .

� Ž . 	for all x 	 DD. Substituting � x � � x for x , we see that the coefficient
Ž � .2 Ž . 2 Ž . Ž .of x in 21 is equal to 4� � x, x . Both 21 and Theorem 2.2 now

Ž . Ž . Ž .imply that 2� x, y � � x, y � � y, x � 0. The proof is thereby com-
plete.

4. LIE-ADMISSIBLE ALGEBRAS

We start our discussion with the following general result.

Ž .PROPOSITION 4.1. Let DD be a not necessary associati�e FF-algebra, let 	
be an FF-submodule of QQ, let � : DD � BB be an epimorphism of FF-modules,
let � : DD � DD � CC be an FF-bilinear map, and let t 	 CC be an in�ertible
element such that

� � �� � � �x , y � t x , y � � x , y for all x , y 	 DD.Ž .
1Suppose that 	 CC, DD is a third power-associati�e algebra, and either BB is a2

4-free subset of QQ or BB is a 3-free subset of QQ and � � 0. We ha�e:

Ž .a There exist an element � 	 CC, an FF-linear map �: DD � CC, and a
symmetric FF-bilinear map � : DD2 � CC such that

� � � � �x� y � � x � y � � x y � � y x � � x , y for all x , y 	 DD.Ž . Ž . Ž . Ž .
22Ž .

Ž .b If BB is 4-free and DD is a flexible algebra, then

� �2�� x , y � �� x , y andŽ . Ž .
2 � �� x , y � � x � x , y � � x , x , yŽ . Ž . Ž .Ž .

for all x, y 	 DD.
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Ž .c Suppose that BB is 5-free, DD is a fourth power-associati�e algebra,
and � is in�ertible. Then

1 1� x� y � � x � y � �� x , y � 0 for all x , y 	 DD 23Ž . Ž . Ž . Ž . Ž .2 2

Moreo�er, if the map 	 : DD � BB � BBCC � CC is gi�en by the rule x 	 � � x � �c
1 Ž .� x , x 	 DD, then2

	 	 	x� y � x � y for all x , y 	 DD.Ž .

Finally, if DD is flexible, then

t	 	 	� �x , y � x , y for all x , y 	 DD.
�

Ž . Ž . Ž .�Proof. a Define a map B: DD � DD � QQ by the rule B x, y � x� y ,
x, y 	 DD. Clearly B is an FF-bilinear map. Since DD is third power-associa-

� 2 �tive, x , x � 0. Linearizing, we see that

� � � � � �x� y , z � y� z , x � z� x , y � 0 for all x , y , z 	 DD.

Applying � to both hands of the equation, we get

� � �B x , y , z � B y , z , x � B z , x , y 	 CCŽ . Ž . Ž .
for all x , y , z 	 DD.

Moreover, the left hand of the above equation is equal to 0 provided that
� � 0. Now Theorem 2.3 implies that there exists elements a, b 	 CC,
FF-linear maps �, � : DD � CC, and an FF-bilinear map � : DD � DD � CC such
that

� � � � � � �x� y � B x , y � ax y � by x � � x y � � y x � � x , yŽ . Ž . Ž . Ž . Ž .
for all x , y 	 DD.

Ž . Ž .Recalling that B x, y � B y, x for all x, y 	 DD, we infer from Theorem
Ž . Ž .2.2 that a � b, � � � , and � x, y � � y, x for all x, y 	 DD. Setting

� � a, we get

� � � � �x� y � B x , y � � x � y � � x y � � y x � � x , yŽ . Ž . Ž . Ž . Ž .
for all x , y 	 DD

Ž .and so a is proved.
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Ž . � � � � � �b By 36, Lemma 1.5 , x� x, y � 2 x� x, y for all x, y 	 DD.
Ž .Therefore 22 implies that

t
� � � � 2� x � x � 2� x x , y � � x , yŽ . Ž .

2

1 ��� � � �� x� x , y � x� x , yŽ .
2

� � � � � � � � � �� t� x � x , y � 2�� x , y x � t� x x , yŽ . Ž .
� � � � �� � x � x , y � � x , y x � � x , x , yŽ . Ž . Ž . Ž .

and whence

� � � 22�� x , y � � x , y x � � x , y � � x � x , y� 4Ž . Ž . Ž .Ž . Ž .
� �� � x , x , y � 0Ž .

for all x, y 	 DD. It now follows from Theorem 2.2 that in particular

� �2�� x , y � �� x , y andŽ . Ž .
2 � �� x , y � � x � x , y � � x , x , y for all x , y 	 DDŽ . Ž . Ž .Ž .

Ž � �.see also 8, Corollary 2.11 .
Ž .c Let 	 : DD � BB be as in the proposition. Setc

1 1
 x , y � � x� y � � x � y � �� x , yŽ . Ž . Ž . Ž . Ž .2 2

Ž . 	 	 	 Ž .for all x, y 	 DD. It is easy to see that x� y � x � y � 
 x, y for all
Ž .x, y 	 DD. Since DD is third and fourth power-associative, 3 implies that

Ž . Ž . �Ž . 4x� x � x� x � x� x � x � x for all x 	 DD. It now follows from Lemma
Ž . Ž .3.7 that 
 � 0. Next, assume that DD is flexible. Then by b , 2�� x, y �

Ž� �.�� x, y for all x, y 	 DD and so

1�	� � � � � �x , y � � x , y � � x , yŽ .
2

1
� �� � � �� t� x , y � �� x , y � � x , yŽ . Ž .

2

t
� � 	 	� �� t� x , y � x , y .

�

The proof is now complete.
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THEOREM 4.2. Let RR be a Lie subalgebra of the FF-algebra QQ, let LL be a
Lie FF-algebra, let � : LL � RR be a surjecti�e homomorphism of Lie algebras,
and let �: LL 2 � LL be a Lie-compatible multiplication on LL . Suppose that
1 2	 CC, RR is a 3-free subset of QQ, and the multiplication �: LL � LL is third2

power-associati�e. We ha�e:

Ž .a There exist an in�ertible element t 	 FF, an element � 	 CC, an
FF-linear map �: LL � CC, and a symmetric FF-bilinear map � : LL 2 � CC such
that

� 1 � � � � � �� �xy � t x , y � � x � y � � x y � � y x � � x , y� 4Ž . Ž . Ž . Ž .2

for all x, y 	 LL .
Ž . Ž .b If in addition RR is 4-free and LL , �, � is flexible, then

� � � �� x , y � 0 � � x , x , y for all x , y 	 LL .Ž . Ž .

Ž . 2c If in addition RR is 5-free, the multiplication �: LL � LL is fourth
power-associati�e, � is in�ertible, and the map 	 : LL � RR � RRCC � CC isc

1	 � Ž .gi�en by the rule x � � x � � x , x 	 LL , then2

1 1� x� y � � x � y � �� x , y � 0 for all x , y 	 LLŽ . Ž . Ž . Ž .2 2

Ž . 	 	 	 Ž .and x� y � x � y for all x, y 	 LL . Finally, if in addition LL , �, � is
flexible, then

t	 	 	� �x , y � x , y for all x , y 	 LL .
�

Proof. By assumption there exists an invertible element t 	 FF such
� � Ž .� � � � �that xy � yx � t x, y and so xy � yx � t x , y for all x, y 	 LL .

1 Ž � �.Clearly xy � x� y � t x, y for all x, y 	 LL . The result now follows2
Ž .from Proposition 4.1 with � � 0, DD � LL , �, � and BB � RR.

Ž . � Ž .Given a not necessary associative FF-algebra DD, we denote by M DD

Ž Ž .. Ž .M DD the subalgebra of the FF-algebra End DD generated by all leftFF

Ž � Ž . .and right multiplications respectively, by M DD and id . The algebraDD
� Ž . Ž Ž .. ŽM DD M DD is called the multiplication ideal respectively, the multipli-

.cation algebra of DD. It is well known that DD is a left unital module over
Ž . � Ž . Ž . Ž � �. Ž .M DD and M DD is an ideal of M DD see 47 . Given p 	 M DD and

x 	 DD, we denote by p � x their product.
The concept of the extended centroid of a nonassociative semiprime ring

� �was introduced by Baxter and Martindale 5 . A different approach to the
definition of the extended centroid and the central closure of such rings

� � � �was found by Wisbauer 46 . The reader is referred to 5, 46, 47 for the
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definition and basic properties of the extended centroid and central
Ž .closure of semiprime rings. Let DD be a not necessary associative

� �semiprime FF-algebra with extended centroid TT. By 47, 32.1 , TT is a
commutative von Neumann regular self-injective FF-algebra. Moreover TT is
a field provided that DD is a prime algebra. Given a nonempty subset

Ž .SS � DD, there exists a uniquely determined idempotent E SS 	 TT such
that

� 4r TT ; SS � c 	 TT � c SS � 0 � 1 � E SS TTŽ . Ž .Ž .
Ž � Ž .�.see 12, 33.3; 47, 32.3 3 . Further, let II be the ideal of the algebra DDSS

generated by the subset SS and let JJ be an ideal of DD such that
Ž .JJ � II � 0 and II � JJ is an essential ideal of DD. Then E SS is aSS SS

Ž . Ž � Ž .projection of the left M DD -module II � JJ onto II see 47, 32.3 3 ; 12,SS SS

�.33.3 . That is to say,

E SS II � JJ � II . 24Ž . Ž . Ž .SS SS

Ž . � 4 Ž .Given c 	 TT, we set c : DD � d 	 DD � cd 	 DD . Clearly c : DD is an ideal
Ž . � Ž .�of DD. Moreover, c : DD is an essential ideal of DD by 47, 32.1 3 .

We continue with the following general observation.

� 4PROPOSITION 4.3. Let DD be a nonassociati�e FF-algebra, let DD � i 	 IIi
be a family of nonassociati�e prime FF-algebras, let 
 : DD � DD , i 	 II, bei i

Ž .surjecti�e homomorphisms of FF-algebras, let TT � CC DD be the extended
Ž . �centroid of DD, let TT � CC DD , i 	 II, let n 	 NN , let a , a , . . . , a 	 DD, andi i 1 2 n

let

TT Ž i. � � 	 TT � � : DD � ker 
 , i 	 II .� 4Ž . Ž .i
Ž .Suppose that � ker 
 � 0. Then TT is a commutati�e �on Neumanni	 II i

regular self-injecti�e ring and we ha�e:

Ž . 
 i n�1 
 i n�1a Suppose that a 	 Ý TT a for all i 	 II. Then a 	 Ý TTa .n k�1 i k n k�1 k

Ž . Ž i.b For e�ery i 	 II, TT is a subalgebra of the FF-algebra TT and there
Ž i. Ž .
 i 	 i 
 iexists a homomorphism of FF-algebras 	 : TT � TT such that � x � � xi i

Ž i. Ž . 
 ifor all � 	 TT and x 	 � : DD . Further, if x 	 DD with x � 0, then
Ž . Ž i. Ž . 	 iE x 	 TT and E x � 1.

Ž .c Let JJ be an essential ideal of DD, let a, b 	 TT with a JJ � b JJ � DD,
Ž . � 
 i 4 Ž . 	 i 	 iand let II JJ � i 	 II � JJ � 0 . Then � ker 
 � 0. If a � bi	 II Ž JJ . i

Ž .for all i 	 II JJ , then a � b.

Proof. Clearly DD is a semiprime ring and so TT is a commutative von
Neumann regular self-injective ring.

Ž . n�1 � Ž .�a Suppose that a � Ý TTa . By 47, 32.2 7 there exists p 	n k�1 k
Ž .M DD such that a � p � a � 0 and p � a � 0 for all k � 1, 2, . . . , n � 1.n k
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� Ž . Ž .2If M DD � a � 0, then FFa is an ideal of DD with FFa � 0 which is
� � � Ž . �impossible. Therefore p � a � 0 for some p 	 M DD . Set q � p p. Then

� Ž .q 	 M DD , q � a � 0, and q � a � 0 for all k � 1, 2, . . . , n � 1. By as-n k
Ž .
 isumption there exists i 	 II such that q � a � 0. Clearly 
 induces an i

� Ž . � Ž .surjective homomorphism of FF-algebras � : M DD � M DD such thati
Ž .
 i � 
 i � Ž . � 
 if � x � f � x for all f 	 M DD and x 	 DD. Set g � q and b � a ,k k
k � 1, 2, . . . , n. Then b � Ýn�1� b for some � 	 TT by our assumption.n k�1 k k k i
Therefore

n�1 n�1

 
i i0 � q � a � g � b � � g � b � � q � a � 0,Ž . Ž . Ž .Ý Ýn n k k k k

k�1 k�1

Ž .a contradiction. Therefore a is proved.

Ž . Ž i. Ž . Ž .b Let � , � 	 TT and u, � 	 FF. Set UU � � : DD � � : DD .1 2 1 2
Ž . Ž . Ž .Since ker 
 is a prime ideal of the algebra DD and � : DD , � : DD �i 1 2

Ž . Ž .ker 
 , we conclude that UU � ker 
 . Clearly UU is an essential ideal ofi i
Ž . Ž i. Ž i.DD and u� � �� UU � DD. Therefore u� � �� 	 TT and so TT is an1 2 1 2

FF-submodule of TT.
Ž i. Ž . 
Let � 	 TT . Set JJ � � : DD , 
 � 
 , BB � DD , and KK � JJ . Wei i

Ž . � 
�14
define a map f : KK � BB by the rule f x � � x , x 	 KK. We claim� �

Ž .that f is a well-defined map. Indeed, let a 	 JJ � ker 
 and let LL ��

Ž . Ž .M DD � �a . Clearly LL is a nonzero ideal of the algebra DD and JJ LL �
Ž .Ž Ž . . Ž . 
� JJ M DD � a � ker 
 . Since JJ � 0 and BB is a prime ring, we


 Ž .conclude that LL � 0 and so �a 	 ker 
 . Therefore f is well defined.�

Ž .Obviously f is homomorphism of M BB -modules and so there exists a�

Ž .uniquely defined element c 	 TT such that f x � c x for all x 	 KK.� i � �
Ž i. 	 Ž .
 	 
Define a map 	 � 	 : TT � TT by the rule � � c . Clearly � x � � xi i �

Ž i. Ž .for all � 	 TT and x 	 � : DD .
Ž i. Ž . Ž . 
 
Let � , � 	 TT . Set MM � � : DD and NN � � : DD . Since MM � 0 � NN

Ž .
and BB is a prime algebra, we conclude that MM � NN � 0. Let UU � MM � NN.
We have



 
 		 
 	 
 
� x � � x � � x � � x � � � � x � � � � x� 4Ž . Ž . Ž . Ž .

� 	 	 Ž . 	 4 
 
for all x 	 UU and so � � � � � � � UU � 0. Since UU is a nonzero
Ž . 	 	 	ideal of the prime algebra BB, we conclude that � � � � � � � .

Ž . 	 	 Ž i.Analogously one can show that f� � f� for all f 	 FF and � 	 TT .
Ž .
 
 
Finally, MMNN � MM NN � 0 because BB is prime. Let WW be the ideal of DD

Ž .generated by MMNN. Then WW � ker 
 and � WW � �WW � ��WW � DD. We show
that WW is an essential ideal of DD. Indeed, let KK be a nonzero ideal of DD.

Ž .2As DD is semiprime, 0 � KK � MM � NN � WW � KK and so WW is an essential
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ideal of DD. Therefore �� 	 TT Ž i. and whence TT Ž i. is a subalgebra of TT.
Further,



 
	 
 	 	 	 
�� x � �� x � � � x � � � x � � � xŽ . Ž . Ž . Ž .
�Ž . 	 	 	 � 
 Ž . 	 	 	for all x 	 WW and whence �� � � � WW � 0. Thus �� � � � .

Finally, let x 	 DD. Let II be the ideal of DD generated by x and let JJx
be an ideal of DD maximal with respect to the property II � JJ � 0. Clearlyx

Ž Ž . . Ž .II � JJ is an essential ideal of DD contained in E x : DD by 24 . Sincex

 
 Ž . Ž i.x � 0, II � 0 as well and so E x 	 TT . Further,x


 	i
 
ii ix � E x x � E x xŽ . Ž .Ž .
Ž . 	 iand whence E x � 1 because TT is a field.i

Ž . Ž . Ž .c Let UU � � ker 
 and let VV � � ker 
 . Theni	 II Ž JJ . i i	 II 
 II Ž JJ . i

Ž .JJ � VV and so VV is an essential ideal of DD. Since UU � VV � � ker 
i	 II i
� 0, we conclude that UU � 0.

	 i 	 i Ž .Suppose that a � b for all i 	 II JJ . Set c � a � b. Then c JJ � DD
	 i Ž .and c � 0 for all i 	 II JJ . Assume that c � 0. Then cy � 0 for some

Ž . Ž .
 i Ž .
 i 	 i 
 iy 	 JJ and so there exists i 	 II JJ with cy � 0. But cy � c y � 0,
a contradiction. The proof is thereby complete.

�Ž . 4Proof of Theorem 1.1. Let RR ; 
 � p 	 PP be a family of Lie algebrasp p
RR 	 � together with surjective Lie homomorphisms 
 : LL � RR suchp p p

Ž . Ž .that � ker 
 � 0. Further, let AA � AA RR and CC be as in Theo-p	 PP p p p p

Ž . Ž . Ž . Ž .rem 1.1 i or ii , p 	 PP. By 14 , 15 , each RR is a 4-free subset ofp
Ž .QQ AA .mr p

Given any nonzero ideal II of the Lie algebra LL , we set

� 
 p 4P II � p 	 PP � II � 0 .Ž .
ˆ ŽNext, we note that TT is a field because LL is prime, and set LL � LLTT see

� Ž .�. Ž p. Ž p.47, 32.2 1 . Finally, let TT and 	 : TT � CC be as in Proposition 4.3.p p

Ž . 2a First suppose that �: LL � LL is third power-associative. We
claim that

x� y � xy � yx 	 TT x � TT y for all x , y 	 LL . 25Ž .
Ž . Ž .
 p 
 pIndeed, by Proposition 4.3 a it is enough to show that x� y 	 CC x �p


 p Ž .CC y for all p 	 PP. Since RR is a 4-free subset of QQ AA , Theoremp p mr p

Ž .4.2 a yields that there exist an element � 	 CC , an FF-linear map � :p p p
LL � CC , and a symmetric FF-bilinear map � : LL 2 � CC such thatp p p


 p 
 
 
 
p p p pu�� � � u �� � � u � � � � u � � u , �Ž . Ž . Ž . Ž .p p p p

for all u , � 	 LL .
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Ž . 
 p Ž . 
 pClearly � u � � � � u 	 CC RR . Now assume that RR and AA are asp p p p p p

Ž . 
 p 
 pin Theorem 1.1 i . If � � 0, then u �� 	 CC RR � CC for all u, � 	 LL .p p p p
Since 
 is surjective, we conclude that RR � RR � CC RR � CC and whencep p p p p p

CC RR � CC is a subring of CC AA � CC , a contradiction. Therefore � � 0p p p p p p p

Ž . Ž . Ž .
 pand so � u, � 	 CC � CC RR � 0 for all u, � 	 LL . Hence x� y 	p p p p

 p 
 p Ž .CC x � CC y . Finally, assume that RR and AA are as in Theorem 1.1 ii .p p p p

It is well known that the involution � can be uniquely extended up to the
Ž � �.involution of the same kind of CC AA � CC see 11, Proposition 2.5.4 .p p p


 p 
 p Ž .Then � u �u � � u, � is a symmetric element of CC AA � CC belong-p p p p p

Ž .ing to CC RR � KK CC AA � CC and so it is equal to 0. Therefore againp p p p p

Ž .
 p 
 p 
 px� y 	 CC x � CC y which proves our claim. It also follows fromp p
our discussion that


 p 
 
p pu�� � � u � � � � u for all u , � 	 LL . 26Ž . Ž . Ž . Ž .p p

Ž .It follows from 25 that x� x 	 TT x for all x 	 LL . Define a map �: LL � TT

Ž .by the rule x� x � 2� x x, x 	 LL . Since TT is a field, the map � is well
Ž . Ž .defined. Clearly � fx � f� x for all f 	 FF and x 	 LL .

Ž Ž . . Ž .Let x 	 LL and II � � x : LL . Since x� x � 2� x x, x 	 II. We now
claim that

	p� x � � x for all p 	 P II . 27Ž . Ž . Ž . Ž .p

Ž . Ž . Ž p.Indeed, given p 	 P II , � x 	 TT and so it follows from Proposition
Ž . Ž Ž . .
 p Ž . 	p 
 p Ž .4.3 b that � x x � � x x . By 26 we have



 	pp
 
pp p2� x x � x� x � 2� x x � 2� x xŽ . Ž . Ž . Ž .Ž .p

Ž . 	p Ž .and so � x � � x .p

Ž Ž . . Ž Ž . . Ž Ž . .Now let x, y 	 LL and JJ � � x : LL � � y : LL � � x � y : LL .
Ž . ŽŽ Ž . .. ŽŽ Ž . .. ŽŽ Ž . ..Clearly P JJ � P � x : LL � P � y : LL � P � x � y : LL .
Ž . Ž .Given p 	 P JJ , it follows from 27 that

	 	 	p p p� x � y � � x � y � � x � � y � � x � � yŽ . Ž . Ž . Ž . Ž . Ž .p p p

	p� � x � � y� 4Ž . Ž .

Ž . Ž . Ž . Ž .and so � x � y � � x � � y by Proposition 4.3 c . We conclude that
�: LL � TT is an FF-linear map. We now have

2 x� y � x � y � x � y � x� x � y� yŽ . Ž .
� 2� x � y x � y � 2� x x � 2� y y � 2� x y � 2� y xŽ . Ž . Ž . Ž . Ž . Ž .



BEIDAR AND CHEBOTAR698

Ž . Ž . 2and so x� y � � x y � � y x for all x, y 	 LL . Since �: LL � LL is
Lie-compatible, there exists an invertible element t 	 FF such that xy � yx

1 1� � � 4 � � �� t x, y for all x, y 	 LL . Finally, xy � xy � yx � xy � yx � t x, y2 2
Ž . Ž . 4 Ž .� � x y � � y x and so 4 is satisfied.

Ž . 2 Ž .Conversely, suppose that 4 is fulfilled. Then x � � x x and so
� 2 �x , x � 0 for all x 	 LL . Thus LL is third power-associative.

Ž .b Assume that LL is flexible. Then it is third power-associative and
Ž . Ž . Ž .so 4 is fulfilled by a . Next, let x, y 	 LL . It follows from Theorem 4.2 b

Ž� �. Ž . Ž .that � x, y � 0 for all p 	 PP. Now both 27 and Proposition 4.3 cp
Ž� �.imply that � x, y � 0.

Ž� �. Ž .Conversely, assume that � LL , LL � 0 and 4 is fulfilled. Then

� �4 x yx � 2 x t y , x � � x y � � y x� 4Ž . Ž . Ž .
2� � � �� t x , t y , x � � x y � t� x y , x � � x yŽ . Ž . Ž .

� � x � y x � � � x y � � y x xŽ . Ž . Ž . Ž .Ž .
22 � �� t x , y , x � � x y � � x � y xŽ . Ž . Ž .

� � � x y � � y x x andŽ . Ž .Ž .
� �4 xy x � 2 t x , y � � x y � � y x x� 4Ž . Ž . Ž .
� �� t t x , y � � x y , x � � � x y � � y x xŽ . Ž . Ž .Ž .

2� �� t� x x , y � � x y � � x � y xŽ . Ž . Ž . Ž .
22 � �� t x , y , x � � � x y � � y x x � � x yŽ . Ž . Ž .Ž .

� � x � y xŽ . Ž .

Ž� �. Ž . Ž .because � x, y � 0. Therefore x yx � xy x for all x, y 	 LL and
Ž .whence the algebra LL , �, � is flexible. The last statement follows from

Ž . Ž .both a and b .

Ž .Proof of Theorem 1.2. a In view of Theorem 1.1 it is enough to prove
�Ž .the last statement. To this end, suppose that 5 is satisfied. Then x y �

Ž . Ž . Ž . Ž� x y � � y x for all x, y 	 RR. Since RR, �, � is an FF-algebra, RR, �,
�. Ž .is also an FF-algebra. Recalling that � RR � FF, we see that

� � � � � � �x x y x � 2� x x y x � 2� x x y xŽ . Ž . Ž . Ž . Ž .
� � �� x x y xŽ . Ž .

�Ž .for all x, y 	 RR. Therefore, RR, �, is a Jordan algebra. Let x 	 RR and
Ž .let BB be the subalgebra of RR, �, � generated by x. It is easy to see that
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Ž .BB � FF x and BB, �, � is an associative algebra. Therefore � is power-as-
sociative.

Ž . Ž . Ž . Ž . Ž .b The result follows from a , Theorem 1.1 b , and 2 . Finally, c
Ž .follows from Theorem 1.1 c .

Ž .LEMMA 4.4. Let FF be a field with char FF � 2, let AA be an FF-algebra
with unity 1, and let II be a subspace of AA such that II � FF � 0 and
II � FF � AA. Suppose that x� y 	 II for all x, y 	 II, where x� y � xy � yx.
Then II is an ideal of the algebra AA.

Ž .Proof. Let x, y 	 II and a 	 FF. Then x� y � a � x� y � 2 ax 	 II

and so II � AA � II. Next, let x, z 	 AA and y 	 II. Then on the one hand

� �y , x , z � x� y � z � x� y� z 	 IIŽ . Ž .

� � �� � �and so II, AA, AA � II. On the other hand II � AA, AA � II. Therefore
� � � � � � Ž .II AA, AA � AA, AA II � II and whence II � II, AA � II. Since II � II � AA �

II, we conclude that the ideal JJ of AA generated by II � II is contained in
II. We now see that II�JJ is the prime radical of the factor algebra AA�JJ

and so II is an ideal of AA.

Ž . Ž .Proof of Theorem 1.3. Since deg AA 
 3, AA is a 3-free subset of QQ AAmr
Ž .by 13 . Suppose that � is third power-associative. Take LL � AA and

Ž . Ž .� � id . Then 6 follows from Theorem 4.2 a . Conversely, assume thatAA
12Ž . Ž . Ž . Ž .6 is fulfilled. Then x� x � � x � � x x � � x, x . Therefore x� x �2

Ž . � �x � x� x� x � t x� x, x � 0 and whence � is third power-associative.
Ž . Ž . Ž .Assume that deg AA 
 4. Then AA is a 4-free subset of QQ AA by 13 .mr

Ž . Ž .a Suppose that the algebra AA, �, � is flexible. Then it is third
Ž . Ž .power-associative and so 6 is fulfilled. Next, 7 follows from Theorem

Ž . Ž . Ž .4.2 b . If both 6 and 7 are satisfied, then as in the proof of Theorem 1.2
Ž . Ž .one may easily check that AA, �, � is flexible. Thus a is proved.

Ž . Ž .Now suppose that deg AA 
 5, 6 is satisfied, and � � 0. Then AA is a
Ž .5-free subset of QQ AA .mr

Ž . Ž .i Set DD � AA, �, � , BB � AA, � � id , and � � 0. Now the resultAA

Ž . Ž .follows from Proposition 4.1 c because by 23 we have

�0 � � x y � � x � y � 2�� x , yŽ . Ž . Ž . Ž .
� �� x� y � � x � y � � x , y 2� � � 1� 4Ž . Ž . Ž . Ž . Ž .

�
	 	 	Ž .for all x, y 	 AA. Moreover, x y � x � y for all x, y 	 AA by Proposi-

Ž .tion 4.1 c .
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t	 	 	Ž . Ž . � �If in addition AA, �, � is flexible, then x� y � y� x � x , y , by�

Ž .Proposition 4.1 c , and so

1 1 t	 	 	 	 	 	
�� 4x� y � x� y � y� x � x y � x , y � x � yŽ . ½ 52 2 �

� x 	 � y 	 for all x , y 	 AA.

Ž . Ž . Ž .ii Let 2� � � 1 � 0. Assume that 8 is fulfilled. Since � is third
power-associative, it is fourth power-associative if and only if the multipli-

� Ž Ž .. Ž .cation is fourth power-associative see 3 . As AA, �, � is power-associa-
�Ž .tive, it is enough to show that 	 is an isomorphism of algebras AA, �,

Ž . Ž .and AA, �, � . In view of i , we have only to show that 	 is bijective. If
1	 Ž . Ž . Ž .x � 0, then � x � � � x 	 FF and so x 	 FF. Therefore, � x � � 1 x,2

1 1	0 � x � � x � � x � 2� � � 1 x ,� 4Ž . Ž .2 2

and whence x � 0. We see that 	 is injective. Next, let y 	 AA. Set

1 � yŽ .
x � y � .

� � 2� � � 1Ž .Ž .

Clearly x 	 � y and so 	 is bijective.

Ž .If in addition AA, �, � is flexible, then 	 is an isomorphism of algebras
Ž . Ž . Ž .AA, �, � and AA, �, � by i and the above result.

Ž .Conversely, suppose that � is fourth-power associative. Then 8 is
Ž .fulfilled by i .

Ž . Ž .iv It follows from 8 that

� x� y � � x � y � 0 for all x , y 	 AA. 28Ž . Ž . Ž . Ž .

Ž . Ž .Therefore if x 	 II � ker � and y 	 AA, then x� y 	 II by 28 . Since
Ž . Ž . Ž .� 1 � �2� � 0, ker � � FF � 0 and so II � FF � 0. Clearly dim AA�IIFF

� 1 and whence AA � II � FF. By Lemma 4.4, II is an ideal of the algebra
�Ž . Ž . Ž .AA. Obviously ker 	 � FF. By i , 	 is a homomorphism of algebras AA, �,

�Ž . Ž . Ž .and AA, �, � . Therefore FF � ker 	 is an ideal of the algebra AA, �, .
	 Ž . 	We now have AA � II � FF � II and the result follows from the first

Ž .homomorphism theorem. If in addition AA, �, � is flexible, then 	 is a
Ž . Ž .homomorphism of AA, �, � into AA, �, � and so it induces an isomor-
Ž . Ž . Ž .phism of AA�FF and II, �, � . Finally, iii follows from iv .

Ž . Ž Ž .Proof of Theorem 1.4. First we remark that if deg AA 
 4 deg AA 
 5,
Ž . . Ž .deg AA 
 6 , then RR is a 3-free respectively, 4-free, 5-free subset of
Ž . Ž .QQ AA by 14 .mr
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Suppose that the multiplication � is third power-associative. Take
Ž .LL � RR and � � id . By Theorem 4.2 a ,RR

1 � �x� y � t x , y � � x� y � � x y � � y x � � x , y� 4Ž . Ž . Ž .2

for all x , y 	 RR.

� � Ž . Ž . Ž .Since t x, y � � x y � � y x 	 RR, we conclude that � x� y � � x, y 	
RR. Therefore


 

0 � � x� y � � x , y � � x� y � � x , y� 4Ž . Ž . Ž .

Ž . Ž .
 Ž .and so � x, y � �� x� y which proves 9 .
Ž .Both the converse implication and the statement a are proved analo-

Ž � �. Ž � �.
gously to that of Theorem 1.3 because � x, x, y � �� x� x, y �
� 2 �
�� x , y � 0 for all x, y 	 RR.

Ž . Ž . Ž . Ž .b Let x 	 RR and � , � 	 FF. Then � x � � x � ��� x x and so the
Ž .subalgebra of RR, �, � generated by x is equal to FF x and is associative.

Thus � is power-associative.
Ž . Ž .c It follows from a that � � 0. Assume that the multiplication �

is fourth power-associative. Put LL � RR and � � id . It follows fromRR

Ž . 2Ž .
 Ž .Theorem 4.2 c that � x� y � ��� x, y � 0 for all x, y 	 RR. If � � 0,
Ž .
then there is nothing to prove. Assume that � � 0. Then x� y � 0 for

all x, y 	 RR and so RR� RR � RR. It now follows from Lemma 4.4 that RR is
an ideal of AA.

Ž .Conversely, if � � 0, then � is power-associative by b . Suppose that RR

Ž .
is an ideal of AA and � � 0. Then x� y � 0 and so

1 � �x� y � t x , y � � x� y for all x , y 	 RR� 42

which is easily verified to be power-associative.
Ž .Now suppose that the condition d of Theorem 1.4 is satisfied.

Ž . Ž .i It follows from Theorem 4.2 c that 	 is a homomorphism of
�

	Ž . Ž . Ž .algebras RR, �, and RR , �, � . Since ker 	 � FF � RR � 0, we con-
clude that 	 is an isomorphism. Since RR � FF � AA, RR	 � FF � AA by the
definition of 	. Clearly RR	 � FF � 0. By Lemma 4.4, RR	 is an ideal of AA.

Ž .Finally, if in addition RR, �, � is flexible, then 	 is an isomorphism of
Ž . Ž 	 . Ž .algebras RR, �, � and RR , �, � by Theorem 4.2 d .

Ž . Ž 	 .ii Since RR , �, � is power-associative, the result follows from
Ž .3 .

Ž . Ž 	 .iii The result follows from the obvious fact that RR , �, � is
Ž . Ž . Ž .flexible and power-associative. Finally, e follows from i and b .
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