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A B S T R A C T

As a result of the range and the variety of toxic and undesirable substances in food, which pose a poten-
tial hazard to human health, there is an ever-increasing demand for analytical methods that can reliably
detect and quantify contaminants and residues in foods. This review presents the state-of-the-art tech-
nology used in the determination of trace residues and contaminants in food by liquid chromatography-
mass spectrometry (LC-MS). LC-MS instruments utilize many different types of mass analyzer to improve
selectivity and also confidence in assigning the identity of the contaminants detected and to offer dif-
ferent approaches to analysis. We discuss current analytical approaches together with the major ben-
efits and the limitations of these technologies with respect to screening, quantification and identification
of contaminants and residues in food.
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1. Introduction

In today’s global marketplace, as foods are produced and dis-
tributed throughout the world, food quality and food safety have
become increasing concerns for consumers, governments and pro-
ducers. To protect the health of consumers, there is a requirement
for more stringent regulations and more diligent monitoring of foods
for regulators, vendors and producers. Chemical contaminants in food

have been defined as “any chemical not intentionally added to food
but present from many potential sources” [1], including residues from
the application of pesticides and veterinary medicines, those en-
tering the food chain from the environment, those formed during
the processing of food, natural toxins and accidental contamina-
tion at point sources. Contaminants can also enter the food chain
through adulteration of food (intentional contamination).

To protect consumers from health risks derived from such food-
borne contaminants, many countries and international bodies have
introduced or adopted regulations or guidelines to limit exposure.
Although thousands of chemicals are in common use, only a portion
of them have undergone significant toxicological evaluation, whilst,
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for many, their specific toxicological effects in humans remain
unknown.

Low limits of quantification (LOQs) are required to gather sur-
veillance data from the occurrence and background levels of both
recognized and newly identified contaminants in foods in order to
estimate human daily intake for risk assessment. Many regulatory
limits are driven by the achievable limits of detection (LODs) or LOQs
or a “minimum required performance”, especially when dealing with
banned substances. For example, recent analyses in European Union
(EU) member states revealed the presence of phenylbutazone in
horse meat fraudulently added to beef-based products [2]. Al-
though the risk to humans from exposure was considered very low,
there is no Maximum Residue Limit (MRL) set for phenylbuta-
zone, as the use of the product on horses destined for the food chain
is prohibited. A “compliant” result means that no phenylbutazone
has been found in the sample above the CCα concentration (the
lowest level at which a method can discriminate with statistical cer-
tainty of 1-α that phenylbutazone is present, where α is 1%). This
concentration is determined during the validation of the method
and, with modern instruments, calculated values are typically very
low. For example, a sample of horse kidney was found to be non-
compliant after detection of a residue of phenylbutazone at a con-
centration of 0.84 μg/kg [3].

Over the past decades, approaches to the trace-level determi-
nation of food contaminants have changed considerably, moving
away from the use of gas chromatography (GC) with selective de-
tectors to the selectivity and the sensitivity offered by mass spec-
trometry (MS). The application of MS in combination with
chromatography [GC or liquid chromatography (LC)] has been well
recognized as the “gold standard” for both quantification and semi-
quantitative screening of food contaminants, such as pesticides [4].
Although GC-MS continues to be used in the analyses of volatile,
moderate to non-polar small molecules (e.g. PCBs, dioxins, other ha-
logenated aromatic compounds and many pesticides), recent de-
velopments in both LC and MS have resulted in very powerful
instrumentation for sensitive and selective determination of other
more polar or ionic contaminants at trace levels in food [5,6] in-
cluding veterinary medicines [7,8], pesticides [9,10], toxins [11,12]
and so-called “emerging contaminants” [13].

Developments in chromatography are enabling more rapid, highly
efficient LC separations [14,15] and providing opportunities for the
analysis of ionic or polar compounds [16–18]. Electrospray ioniza-
tion (ESI) [19] remains the most common ionization technique em-
ployed for the determination of chemical contaminants in food by
LC-MS. The use of atmospheric pressure chemical ionization (APCI)
[20] for analysis of food contaminants [21,22] appears to have been
left in the wake of the overwhelming popularity of ESI. This may
be related to the increasing number and the wider range of analytes
currently sought but may also reflect the improvements in source
and probe design for ESI not yet paralleled in APCI.

The most important change in the past decade has been in the
increase in choice of mass analyzers for LC-MS and how this has in-
fluenced the approach to monitoring chemical contaminants in food.

2. Choice of mass analyzer

Holcapek et al. recently reviewed developments in LC-MS over
the past decade [23] including a helpful overview of the different
mass analyzers available, many of which have been applied to the
analysis of food contaminants by LC-MS [24–26]. The perfor-
mance characteristics of the types and combinations of mass ana-
lyzers used for the analysis of food contaminants are summarized
in Tables 1 and 2.

2.1. Tandem mass spectrometry (MS/MS)

The basic principle of MS/MS is the selection of precursor ion,
fragmentation of this ion, usually by collision-induced dissocia-
tion (CID), and measurement of the m/z ratio of the product ions
formed. There are two fundamentally different approaches to MS/
MS: tandem in space and tandem in time.

Tandem-in-space instruments have separate independent mass
analyzers in physically different locations of the instrument. A hybrid
mass spectrometer is an instrument which combines analyzers of
different types. Examples of tandem mass spectrometers include,
but are not limited to, triple/tandem quadrupole (QqQ), quadrupole-
time of flight (QqToF) and Orbitrap hybrid instruments.

Tandem-in-time instruments are typically ion-trapping mass
spectrometers, which comprise 3-D quadrupole ion traps (QIT), linear
ion traps (LIT) and Fourier transform ion cyclotron resonance (FT-
ICR) instruments. The various stages of MS are conducted within
the same physical trapping volume but at different times during the
experiment.

Originally, LC-MS/MS for determination of food contaminants was
mainly delivered on 3-D QIT instruments, as they initially provid-
ed more cost-effective access to MS/MS than QqQ instruments [27]
and offered the additional capability of MSn. As this mass analyzer
suffers from some significant limitations [28], the future of ion-
trap technology for analysis of contaminants in food will probably
lie with LITs [29], which can be used as ion-accumulation devices
in combination with quadrupole, Orbitrap, ToF and FT-ICR devices
or as commercially available, stand-alone mass spectrometers with
MSn capabilities, as used for the identification of unknown trans-
formation products. The combination of QqQ MS with LIT technol-
ogy in the form of an instrument of configuration QqLIT, using axial
ejection, has proved useful, because this instrument retains the se-
lective reaction monitoring (SRM) mode but with other scan func-
tions, such as product-ion, neutral-loss and precursor-ion scans
enhanced by the use of the more sensitive ion trap. Scan combina-
tions of QqQ and trap mode can be performed concomitantly [30].

Although tandem mass spectrometers can be operated in a variety
of modes, those with a QqQ configuration are typically operated in
SRM mode [also called multiple-reaction monitoring (MRM) by some
suppliers]. Monitoring transitions for each analyte, typically one pre-
cursor ion to a couple of product ions, provided a significant gain
in sensitivity compared with acquiring full spectral data.

Table 1
Common parameters used to compare performance of mass spectrometers used for LC-MS

Mass analyzer typea Resolving power (×103) Mass accuracy (ppm) Upper limit of m/z range [×103] Acquisition speed (Hz) Linear dynamic range Price

Q 3–5 Lowb 2–3 2–10 105–106 Low
IT 4–20 Low 4–6 2–10 104–105 Moderate
ToF 10–60 1–5 10–20 10–100 104–105 Moderate
Orbitrap 100–240 1–3 4 1–5 5 × 103 High

Adapted with permission from [23].
a Q, ToF and Orbitrap also include common hybrid configurations with Q or LIT as the first mass analyzer providing MS/MS or MSn capabilities.
b Qs with hyperbolic rods provide mass accuracies better than 5 ppm.
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Fast data-acquisition speeds and better designs of collision cell sig-
nificantly shorten the minimum dwell times that can be used for
each precursor/product ion pair monitored, without significantly
scarifying signal-to-noise ratios (S/N) or observing crosstalk [31].
Instrument vendors have also introduced tools for automating the
management of the duty cycle resulting in more data points per peak,
better reproducibility and higher S/N even with a high number of
SRM transitions [32]. Rapid polarity switching, moving between de-
tection of positive and negative ions, allows a wide range of com-
pounds to be incorporated into the one method [33]. Other operating
modes using QqQ analyzers, such as product-ion, neutral-loss
and precursor-ion scans, are rarely applied to the analysis of food
contaminants.

2.2. High-resolution mass spectrometry (HRMS)

The use of SRM mode on QqQ instruments for the determina-
tion of chemical contaminants in food has been seen to have certain
limitations:

• a limit to the number of compounds possible per analysis;
• no post-acquisition re-interrogation of data other than for those

analytes pre-programmed into the method;
• reliance on the availability of reference standards; and,
• an inability to screen for unknowns.

There has been a move to an alternative approach using instru-
ments capable of providing full spectral information with the added
bonus of high mass-resolving power to provide selectivity and the
capability for accurate mass measurement to aid identification with
the additional advantage of retrospective analysis [34–36]. Full spec-
tral acquisition does not rely on fragmentation, so it offers the po-
tential to overcome some technical limitations of MS/MS, namely
reliance on non-specific transitions (e.g. loss of water), difficulty frag-
menting stable adducts (e.g. nivalenol), inability to generate more
than a single useful product ion and the difficulty in detecting
product ions of low molecular weight. High mass-resolving power
that allows discrimination between isobaric interferences and ions
of interest, even with a complex background, and accurate mass mea-
surement are available using ToF and Orbitrap devices, whereas
reports of coupling magnetic sector or FT-ICR instruments with API
interfaces for the rapid screening of food contaminants are scarce,
mainly due to the high cost [37,38].

ToF is a temporally dispersive mass analyzer using the differ-
ences in transit time through a drift region (a very low pressure tube)
to separate ions of different masses. ToF analyses involve acceler-
ating a group of ions, in a brief burst, to a detector. The ions exit
the source each having received an identical high-voltage pulse. The
potential of each ion accelerates it into the flight tube. Because all
similarly charged ions share the same kinetic energy, those with
lower masses have greater velocity and strike the detector first. Since
all masses are measured for each “push”, ToF instruments can provide

Table 2
Overview of commercial mass spectrometers designed for LC-MS used to determine contaminants in food

Mass-analyzer
type

Instrument name,
manufacturera

Resolving power
(FWHM defined

at m/z)

Resolution
(Δm/z)

Mass accuracy (ppm),
calibration:

m/z range Acquisition
speed (Hz)b

Internal External

Q 6150, Agilent Technologies – 1 – – 10–1,350 10
Flexar SQ 300 MS, Perkin Elmer – 0.6 – – 20–3,000 10
LCMS-2020, Shimadzu – 1 – – 10–2,000 15
LC/MS Purification System, Gilson – 1 – – 50–3,000 10
MSQ Plus, Thermo Scientific – 1 – – 17–2,000 12
SQ Detector 2, Waters – 1 – – 2–3,072 15

3D-IT Amazon Speed ETD, Bruker Daltonics – 0.1 – – 50–6,000 52
LCQ Fleet, Thermo Scientific – 0.3 – – 15–4,000 12

LIT LTQ Velos Pro, Thermo Scientific – 0.05 – – 15–4,000 66
QqQ 6490, Agilent Technologies – 0.4 – – 5–1,400 10

LC-MS 8040, Shimadzu – 0.7 – – 10–2,000 15
TQ Detector, Hitachi – 1 – – 2–2,000 10
API 6500, ABSciex – 1 – – 5–2,000 12
TQS Vantage, Thermo Scientific 7,500 (m/z 508) 0.07 5 – 10–3,000 5
EVOQ, Bruker – – – – 10–1,250 14
Xevo TQ-S, Waters – 1 – – 2–2,048 10

QqLIT API 6500 QTRAP, ABSciex 9,200 (m/z 922) 0.1 – – 5–2,000 12
ToF 6230 ToF, Agilent Technologies 24,000 (m/z 1522) 0.06 1–2 – 25–20,000 40

AccuToF, Jeol 6,000 (m/z 609) 0.1 5 – 6–10,000 10
AxION 2 ToF MS, Perkin Elmer 12,000 (m/z 922) 0.08 2 – 18–12,000 70
Citius, Leco 100,000 (m/z 609) 0.006 <1 – 50–2,500 200
micrOToF II focus, Bruker Daltonics 16,500 (m/z 922) 0.06 <2 <5 50–20,000 40
Xevo G2-S ToF, Waters 22,500 (m/z 956) 0.04 <1 – 20–16,000 30

IT-ToF LC-MS-IT-ToF, Shimadzu 10,000 (m/z 1000) 0.1 3 5 50–5,000 10
QqToF maXis 4G, Bruker Daltonics 60,000 (m/z 1222) 0.02 <0.6 <2 50–20,000 30 (MS), 10 (MS/MS)

micrOToF-Q II, Bruker Daltonics 20,000 (m/z 922) 0.05 <2 <5 50–20,000 20
TripleToF 4600 & 5600, ABSciex 35,000 (m/z 956) 0.03 0.5 2 5–40,000 100
Xevo G2-S QToF, Waters 22,500 (m/z 956) 0.04 <1 – 20–16,000 30
6550 QToF, Agilent Technologies 42,000 (m/z 922) 0.02 <1 – 50–10,000 50

Q-IMS-ToF Synapt G2-S HDMS, Waters 40,000 (m/z 956) 0.02 <1 – 20–100,000 30
Orbitrap Exactive Plus, Thermo Scientific 140,000 (m/z 200) 0.001 <1 <3 50–6,000 12 (at RP = 17,500)
Q-Orbitrap Q-Exactive, Thermo Scientific 140,000 (m/z 200) 0.001 <1 <3 50–6,000 12 (at RP = 17,500)
LIT-Orbitrap Orbitrap Elite, Thermo Scientific 240,000 (m/z 400) 0.0002 <1 <3 50–4,000 4 (at RP = 60,000)

Adapted with permission from [23].
a If manufacturers have more instruments in particular series, only the instrument with the best performance is listed here. Technical specifications are as published by

the manufacturers. This list may not be comprehensive.
b Values for acquisition speed for low RP mass analyzers specified by manufacturers have been recalculated into Hz units for the mass range of Δm/z 1000.
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full spectral acquisition with better sensitivity than scanning
instruments.

Although there were plenty of examples of stand-alone early ToF
instruments, more recently they were more typically combined in
hybrid configurations (e.g. QqToF). Ions are typically introduced or-
thogonally into reflectron-based or multi-pass ToF analyzers to maxi-
mize mass-resolving power [39]. There are two basic approaches
used to translate a detector signal into a digital measurement: time-
to-digital detectors (TDC) and analogue-to-digital detector tech-
nology (ADC).

The Orbitrap analyzer consists of a small electrostatic device into
which ion packets are injected at high energies to orbit around a
central, spindle-shaped electrode. The image current of the axial
motion of the ions is picked up by the detector and this signal is
Fourier transformed (FT) to yield high-resolution mass spectra. The
first commercial instrument involving an Orbitrap mass analyzer was
a hybrid LIT Orbitrap [40,41]. Other options include a bench-top in-
strument with no precursor-ion selection [42] and, most recently,
another hybrid instrument capable of MS/MS using a quadrupole
for precursor-ion selection [43].

The primary considerations for determining whether a HRMS in-
strument is suitable for determination of contaminants in food are
mass resolution (or mass-resolving power), mass accuracy and sen-
sitivity. It is important to distinguish between mass resolution and
mass accuracy when considering the options and use of the various
HRMS instruments. The terms mass resolution and mass-resolving
power are frequently confused and are often used interchange-
ably. The key point is that the term mass resolution should always
pertain to the data, whereas the term mass-resolving power is used
to describe mass-analyzer performance.

Mass resolution is defined as the mass difference, m1- m2, between
two mass spectral peaks that can be clearly distinguished [44]. Typ-
ically this is qualified by relating the value to a specified fraction
of the height of the smaller individual peak: 10% valley for sector
instruments (Δm10%) and 50% valley for quadrupole analyzers (Δm50%).
A different approach is applied to measuring mass resolution from
ToF and subsequently Orbitrap data, where the full width at half-
maximum height (FWHM) of either peak alone is used.

Mass-resolving power can be defined for an isolated peak of mass
m as m/Δm and for two peaks of equal height, m1and m2, mass re-
solving power is m2/Δm [45]. Mass-resolving power is usually a large
number. For example, an instrument with a resolving power (FWHM)
of 10,000 at m/z 250 could separate or resolve masses that differ
by 0.025 mass units. For a given mass analyzer, it is important to
specify the value of m (or m/z) at which the resolving power or res-
olution is reported. Despite the rapid and continuing changes to
instrument specifications, ToF analyzers typically still have less mass-
resolving power than instruments based upon the Orbitrap (Table 2).
Orbitrap analyzers operate at a varying mass-resolving power that
is proportional to acquisition time and inversely proportional to the
square root of the m/z ratio. Thus, we expect values for the Orbitrap
to be highest at low mass whereas resolving power is consistent
across the mass range when using ToF.

When selecting mass-resolving power, one also needs to con-
sider the trade-off between mass resolution and scan speed. With
modern ToF instruments, mass-resolving power is independent of
the acquisition rate [46]. High mass-resolving power with Orbitrap
instruments comes at the expense of scan speed. For example, the
LIT-Orbitrap achieves a mass-resolving power of 100,000 at 1 scan/s
but such scan speeds cannot keep up with the increasingly narrow
peaks generated by today’s high-efficiency LC columns. Doubling the
scan speed to 2 scans/s cuts the mass-resolving power in half, which
can lead to issues with insufficient acquisition data points [47]. In-
sufficient data points across chromatographic peaks also results in
poorly described peaks so the chromatographic resolution avail-
able cannot be fully exploited. It should be noted that whilst ToF

instruments have the potential for faster acquisition rates than
Orbitrap, sensitivity can be compromised if there is not enough time
to accumulate enough transients to generate a spectrum with suf-
ficient S/N. Operating with a mass-resolving power of 140,000
FWHM, the quadrupole-Orbitrap hybrid offers roughly three times
the mass-resolving power of the typical QqToF, but this resolution
can still be achieved only at a speed of 2 Hz. Whilst this is double
that of the original Orbitrap instruments, it is significantly slower
than current QqToF instruments (10–100 Hz). When acquiring at the
maximum rate (12 Hz), the mass-resolving power has to be set con-
siderably lower (17,500 FWHM at m/z 200). However, it is impor-
tant to note that, in many cases, an acquisition speed of 1 Hz is
sufficient to provide good data when monitoring a relatively small
number of contaminants [48]. Lower mass-resolving power set-
tings are likely to be sufficient for good mass measurement of MS/
MS product ions.

When dealing with complex sample matrices, adequate mass
resolution is essential. Much of the published literature is based
upon measurements made with instruments with what is now con-
sidered limited resolving power (10,000–20,000 FWHM). The in-
troduction of more advanced instruments has led to debate as to
how much mass-resolving power is required when using HRMS.
For example, 50,000–60,000 (FWHM) was considered adequate to
ensure consistent and reliable mass assignment [49]. Whilst insuf-
ficient mass resolution may lead to inaccurate mass measure-
ments caused by including unresolved background matrix
interferences, especially when dealing with complex sample ma-
trices, this may be less of an issue if no accurate mass measure-
ment is required (i.e. when HRMS is used for screening only with
no attempt at identification). Clearly, in such cases, enough mass
resolution is required to provide sufficient selectivity to enable de-
tection of residues or contaminants at the concentration of inter-
est and not provide false positives in the database search. Ferrer
and Thurman demonstrated a mass resolving power of 6,000–
10,000 (FWHM) to be sufficient for many vegetable matrices [50].
Others have shown that higher mass-resolving power is required
when faced with other food matrices, such as liver and honey [51].
Isobaric interferences can be minimized by cleaner samples (im-
practical for multi-residue methods), instruments with higher mass-
resolving power, by use of MS/MS on hybrid tandem mass
spectrometers, the use of ion mobility [52] or relying on chromato-
graphic resolution [53]. The “one-method-fits-all” type of extrac-
tion using a simple solvent system with no sample clean-up is
expected to aggravate this issue further.

Accurate mass measurement of small molecules is used to define
elemental formulae and thereby to confirm the identification of
target compounds or support the identification of suspects or un-
knowns by providing a list of possible elemental compositions [54].
Accurate mass measurement is the observed difference between
the experimentally measured mass (the accurate mass) and the
theoretical mass (the exact mass) of a particular ion of known charge
and typically reported as a relative value (ppm). Both ToF and
Orbitrap-based mass analyzers are now capable of <1 ppm mass
accuracies although specifications vary (Table 2). Earlier ToF
instruments exhibited poorer performance, typically 5 ppm [55].
Those instruments with time-to-digital converter (TDC) technolo-
gy also produced accurate mass measurements that were detri-
mentally affected by the ion abundances (detector saturation),
restricting the range over which measurements could be made
accurately.

The best values for mass accuracies are recorded when using in-
ternal mass calibration (i.e. the sample and the calibrant solution
are introduced into the ion source at the same time or background
ions are employed as calibrants). Measurements of accurate mass
in food extracts depend on sufficient response (without saturation
of the detector) and adequate mass resolution from interferences.
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3. Determination of chemical contaminants in food using
LC-MS

These mass analyzers can be used in a number of different
workflows, the steps of which are summarized in Fig. 1.

The use of LC-MS for initial screening is intended to offer a qual-
itative (yes/no) assessment of the presence of a large number of com-
pounds in a large number of samples, although there is usually a
need to relate the amount detected to some sort of action limit that
triggers confirmatory analysis. The focus is on providing a rapid, cost-
effective analysis that generates no false-negative results with a man-
ageable frequency of false-positive results. Screening techniques can
be targeted or untargeted.

Conventional targeted analysis is based on establishing an ac-
quisition method to determine a list of known analytes, often using
reference standards, and typically methods are validated prior to
analysis of real samples. A list of selected compounds is prepared
based on information, such as the likely usage of pesticides or vet-
erinary medicines, those contaminants frequently detected in food
or those included in priority lists based upon legislation. The scope
of a targeted approach, although often extensive, will always be
limited to the chosen list and the availability of standard

reference materials. This list of compounds is continually chang-
ing and it is difficult to ensure targeted methods cover all possible
compounds of interest.

To cover this gap, non-target analysis offers the possibility of de-
tecting both unexpected compounds and true unknowns. When ref-
erence standards are not available to the user, compound-specific
information, such as molecular formula and structure, can be used
to construct a detection method based upon database searching.
Identification in both workflows can be aided by comparison of MS/
MS spectra with entries in libraries supplied by vendors. However,
definitions of targeted and untargeted analysis vary, depending upon
whether one considers information available related to the method
or the analytes. Here, discussion of targeted analysis is applied to
analyses in which compound-specific information is required before
acquisition and non-target analysis refers to cases where the ac-
quisition step has no a priori information (e.g. no retention time, no
optimum MS conditions and no data on likely performance).

3.1. Target-compound screening

Instruments with a QqQ configuration, operated in SRM mode,
deliver the selectivity and the sensitivity typically required for

Target compound analysis (where a priori method information is available)

Non-targeted screening and the determination of unknowns

Acquisition modes

•Selected 
reaction 
monitoring 
(SRM) and/or

•MS/MS with 
data dependent 
acquisition

•High resolution 
mass 
spectrometry

Peak detection 
and quantification

•SRM transition 
chromatograms 
and/or

•Extracted ion 
chromatograms

•Searching 
compound 
databases

•Screening
•Quantification if 
standards 
analyzed

Identification

• Ion ratios and 
RT from 
standards

•MS/MS spectra 
and RT from 
library and/or 
standards

•Accurate mass, 
isotope pattern 
and RT from 
database and/or 
standards

Acquisition modes

•MS/MS with 
data 
independent  
acquisition 
and/or

•High resolution 
mass 
spectrometry

Peak detection

•Exact mass 
filtering

•Searching 
compound 
databases 

•Deconvolution
•Comparative 
metabolic 
profiling

Identification

• MS/MS spectra 
and RT from 
library and/or

• Accurate mass, 
isotope pattern 
and RT from 
database

• Empirical formula 
from accurate 
mass and isotope 
pattern

• Assignment of 
fragment ions 
using chemical 
structure drawing 
package and 
fragmentation 
trees

Fig. 1. Work flows for targeted and non-targeted LC-MS analysis.
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monitoring for compliance with legislative limits. The approach is
well established for targeted multi-component determination of food
contaminants. As demonstrated by the many different chromato-
graphic peaks shown in Fig. 2, the rapid monitoring of hundreds of
transitions is now achievable with good sensitivity and precision,
making possible development of methods covering many more
analytes than previously [56,57]. The large number of analytes that
can now be monitored has been made possible by the use of
retention-time window-based SRM acquisition. The user needs only
to enter the masses and the retention times for each SRM and some
indication of peak width and/or data points across the peak. The soft-
ware sets the acquisition windows for each transition so they are
centered on the time when the compound elutes. The windows are
allowed to overlap and dwell time is calculated automatically so that
no time is wasted acquiring other transitions for compounds that
have yet to elute. This optimizes the time spent acquiring data to

maximize sensitivity whilst ensuring sufficient data points across
peaks to give good precision. This approach relies on not only knowl-
edge of the retention time for each component but also retention
time to be stable throughout multiple analyses. Hence, it has become
essential to make regular checks on retention-time drift and to make
any necessary adjustment of the acquisition method before
analysis.

When coupled with multi-residue extraction techniques, LC-
MS/MS on QqQ instruments in SRM mode is capable of screening
a large number of target contaminants, even in difficult food ma-
trices. For example, a method was successfully validated for screen-
ing 113 of the 127 veterinary medicines tested at or below US
regulatory tolerance levels in bovine muscle. A novel aspect of this
method was the post-column infusion of mobile-phase additives
during the elution of anthelmintic drugs to enhance their MS-
detection properties [58].

Fig. 2. Chromatograms obtained from the simultaneous analysis of a mixture of 250 pesticide residues, each at 0.01 mg/kg in grape extract, using UHPLC-MS/MS on a QqQ
instrument in SRM mode with rapid polarity switching.
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It is also possible to utilize MS/MS spectra to limit reporting of
false positives through extra compound identification based upon
searching against mass spectral libraries (see “Identification” below).
Pre-selection of a precursor ion is required for MS/MS. For tar-
geted analysis, this is realized by the use of information-dependent
acquisition (IDA), whereby a product-ion scan takes place only after
the detection of a candidate precursor ion selected using predeter-
mined rules, such as from an inclusion list.

Kmellar et al. described the screening of 300 pesticides in fruit
and vegetable samples using QuEChERS and LC-MS/MS with SRM-
triggered product-ion scans, although detection parameters were
reported for only those pesticides requiring confirmation [59]. No
false positives were encountered from the screening analysis (only
after analyst review) because all presumptive identifications were
confirmed in the second analysis. One pitfall of the IDA MS/MS ap-
proach occurs when two target compounds co-elute. If only the
most intense precursor ion triggers the MS/MS process, the com-
pound with the lower intensity precursor ion may not be
detected.

3.2. Non-target (or retrospective) screening

No pre-programming of multiple mass functions is required as
full spectral acquisition is carried out with selectivity being pro-
vided by high mass-resolving power or MS/MS. Non-targeted anal-
ysis provides greater scope than a targeted approach. For example,
one could extend monitoring to certain metabolites or other trans-
formation products [60], for which reference standards might not
be available, or to cover old or unauthorized substances no longer
in use (e.g. isofenphos-methyl in peppers [61]) or, conversely, because
they are very recent, so they have yet to be integrated into current
monitoring plans.

Whilst all LC-MS instruments can perform full spectral acqui-
sition, not all can maintain sufficient sensitivity in this mode for non-
target analysis. HRMS instruments have been used for non-target
screening of a wide range of different contaminants combined into
a single analysis [62–64] and separate categories including pesti-
cides [65,66], veterinary medicines [67,68], toxins [48,69] and other
food contaminants [70,71]. Being able to carry out analysis without
the need for reference standards is critical when dealing with a food-
contamination crisis, especially involving previously unreported
analytes [72] or food poisoning [73].

Strategies for evaluation of the data generated by non-targeted
acquisition using HRMS have been developed using two different
complementary processes: exact mass filtering, and searching da-
tabases relating to molecular formulae. Emphasis is focused upon
detectability rather than meeting unequivocal identification crite-
ria. To be effective, these processes must be automated and quick,
but they require more computing power and data management/
storage than traditionally associated with LC-MS analyses using QqQ
instruments.

Molecular formulae databases containing information on exact
mass and isotopic patterns were originally developed and custom-
ized by users in house but are now available commercially or via
the Intranet. Exact analyte masses, listed in the database, are ex-
tracted from the total ion current (TIC) with a narrow mass window
[74]. This can be constrained to a specific time window if informa-
tion on retention time is available. Results are reported as a “hit list”
with or without creating chromatographic peaks. Windows of 5 ppm
have been successfully employed using an Orbitrap [75] but, when
ToF analyzers are employed, more careful optimization of the
accurate-mass window tolerances (typically 5–50 ppm) is re-
quired to ensure adequate selectivity as resolving power varies con-
siderably between instrument types [76]. Applying too narrow a mass
window around the exact mass can result in complete loss of the

signal when the measured mass lies outside the defined toler-
ance, the consequence being false negatives [77].

One challenge to non-targeted analysis is the assessment of the
frequency of occurrence of false negatives, as, without analytical stan-
dards, it is impossible to prove from the outset whether a com-
pound has been recovered sufficiently during the analytical
procedure or is not ionized as anticipated. Software parameters need
to be optimized to find a practical balance between reported false
positives and false negatives. Such filters or criteria might include
tolerances on response threshold, retention time and isotopic fit and
the presence of a second diagnostic ion. Mol et al. utilized adducts,
isotopes and fragments to generate additional diagnostic ions [78],
as illustrated in Fig. 3. With no information on retention time, the
false-positive rate can be high if mass-resolving power is re-
stricted (e.g. 10–20,000 FWHM on an older ToF instrument). The fre-
quency of false negatives and false positives increases in complex
sample matrices through ion suppression and isobaric interfer-
ence, respectively. Although false positives can be rejected after con-
firmatory analysis, this is time-consuming and inefficient. The scope
of this approach is also limited by the magnitude of the database.
Screening for unexpected compounds not listed the database is fa-
cilitated by the use of some form of deconvolution algorithm. Any
peak detected is then assigned a possible elemental formula based
upon measured mass and isotopic fit. The most likely candidates at
the top of the scored list are further scrutinized by employing ad-
ditional data or extra analyses.

An automatic non-targeted screening method using LC-ToF anal-
ysis and database searching was successfully used to detect and to
identify 210 pesticides in 78 positive samples of fruit and vegeta-
ble samples at concentrations greater than 0.01 mg/kg [79]. ESI in
positive-ion mode on a bench-top Orbitrap was used to success-
fully detect 89% of the 177 pesticides spiked into spinach at 0.025 mg/
kg, using an accurate mass search for [M+H]+, [M+NH4]+ and [M+Na]+

ions [80]. The authors concluded that improvements to instrumen-
tation, methods, and software were needed for efficient use of non-
targeted screens in parallel with QqQ platforms. In contrast, the same
instrument type was successfully evaluated for the screening of at
least 63 antimicrobial compounds in muscle tissue for compliance
with EU MRLs [81].

It is also possible to utilize MS/MS for non-targeted analysis by
comparing spectra against entries in mass spectral libraries, as used
in systematic toxicological analysis [82]. For non-targeted analy-
sis, with no prior knowledge of analytes prior to acquisition, MS/
MS has to be carried out in a data-independent manner, triggering
an MS/MS experiment when the TIC exceeds some specified re-
sponse threshold. Selecting precursor ions from the TIC, fragmen-
tation via CID and scanning out the product ions is very
time-consuming in terms of duty cycle limiting the number of scans
that can be acquired. An alternative approach is available when using
some HRMS instruments, which acquire data without precursor-
ion selection but rapidly alternate between low and elevated energy
to give molecular species and fragment ions. The data are re-
assigned using the chromatographic profile and occasionally other
additional filtering criteria (e.g. neutral losses and isotopes), pro-
viding correlation of “precursor” and “product” ions within a prac-
tical time frame [83,84]. Despite these advantages, this technique
is not true MS/MS, as there is no precursor-ion selection and it has
yet to be widely adopted for analysis of contaminants in food [85,86],
although it has been applied to the systematic screening of pesti-
cides and other contaminants in water samples [87] and an in-
house empirical spectral library was built for a large number of
organic pollutants acquired in this manner using MSE mode [88].

In another non-targeted approach, the safety of foods is not moni-
tored directly by determination of residues and contaminants but
using a metabolomics approach comparing suspected contami-
nated food with uncontaminated foods [89,90].
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3.3. Quantification

LC-MS/MS using SRM on QqQ instruments has become the stan-
dard approach for quantification, but, in the past decade, HRMS in-
struments were also increasingly used for this purpose [26,91,92].
In both cases, the response from peaks in sample extracts is com-
pared to that from standard solutions, and critical issues for good
quantification include avoiding carry-over and contamination, suit-
able quality control, an appropriate calibration strategy and good
linearity.

Compared to QqQ instruments, the linear dynamic range of earlier
ToF analyzers was rather narrow [55], but developments in instru-
ment design have resulted in improved quantitative performance
by extending the dynamic range, obtaining faster acquisition rates
to generate sufficient data points across the peaks and providing
higher sensitivity through improvements in ion-transfer devices. Ac-
quisition rate, mass-axis stability and mass shift at high ion abun-
dances on ToF mass analyzers can have a significant impact on
precision and accuracy of measurements made using exact mass fil-
tering. Quantification is also possible using Orbitrap analyzers but
performance can be influenced by the acquisition rate, the

automatic gain-control functionality, designed to avoid overfilling
of the C trap collecting device. When faced with “dirty” extracts con-
taining a lot of matrix co-extractives, the automatic gain control
shortens accumulation times, reducing not only the number of
matrix ions but also the number of analyte ions. Kaufmann re-
ported that the presence of a high concentration of proteins can cause
the loss of low-mass ions [93]. Once more effective cleaning was
introduced, the quantitative performance of the HRMS method was
comparable with that observed using QqQ in SRM mode.

The most significant issue that affects quantification using any
LC-MS platform, especially when ESI is employed, is that of ion sup-
pression or enhancement, typically known as the “matrix effect”
[94,95]. The predominant cause is the presence of undesired com-
ponents that co-elute in the chromatographic separation and
compete for access to the surface of droplets and subsequent “ion
evaporation” or changes in eluent properties, such as surface tension,
viscosity, volatility – all factors known to affect the ionization process
[96,97]. Matrix effects are known to depend on both compound and
matrix, and vary with the choice of ionization mode [98] and the
ion-source design [99]. Considerable variation in the magnitude of
the matrix effects has been observed, not only among various

Reproduced with permission from [78].

Fig. 3. Extracted ion chromatograms illustrating need for diagnostic ions for selected pesticides in fruit. Left: 0.01 mg/kg mefenpyr-diethyl in orange. Right: 0.01 mg/kg propoxur
in apple. Acquisition: alternating scan events without/with HCD fragmentation. Resolving power, 50,000. Mass extraction window +5 ppm.
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matrices, but from sample to sample even within the same matrix
type [100].

No method validation should be accepted without a thorough
evaluation of matrix effects [101,102] and possible strategies to min-
imize or to correct their influence should be addressed [103].
Removal or reduction of such effects can be achieved by improved
sample preparation or re-optimization of LC conditions where prac-
tical. Various calibration strategies are used to compensate for matrix
effects. Isotopically-labeled internal standards work very well as long
as suppression is not total, but generally for the direct native analyte
only. Properties, such as retention, ionization and fragmentation, are
almost identical except for characteristic mass shifts caused by the
number of labeled isotopes. As labeled analogues are commonly not
available or prove expensive for multi-residue analyses, matrix
matching tends to be the most common way to reduce matrix effects.
However, there are logistical problems associated with location, prep-
aration and storage of the many different blank matrix extracts re-
quired that make this approach time-consuming. The magnitude of
the effects can be highly variable within a single food type, making
it difficult to find one representative blank sample, although recent
attempts have been made to use a representative matrix for quan-
tification of pesticides in soft fruit [104]. In the absence of a suit-
able blank sample matrix, the method of standard addition can be
used, so that replicate portions of the sample itself serve as the
matrix “blank”. High-sensitivity instruments allow us to dilute ex-
tracts to reduce the “matrix concentration” in the final extract and
thus also the sample equivalents injected [105,106].

LC-MS/MS is often used with QuEChERS, in combination with GC-
MS/MS, for quantitative pesticide-residue analysis. Recently, a
method was developed and validated for quantification of 85% of
the 86 pesticides sought in tea at concentrations suitable for moni-
toring compliance with EU MRLs, and recoveries of the majority of
compounds were in the 70–120% range and were characterized by
precision lower than 20% [107].

3.4. Compound identification and the structural elucidation of
unknowns

There is no universally-accepted definition of the terms “con-
firmation” or “identification” [108,109]. Historically, MS tended to
be employed for confirmation (a second analysis) of the result from
an initial screen whilst concurrently providing structural informa-
tion that met some form of acceptance criteria for identification.
However, criteria are now applied to help identify suspect posi-
tives detected in a single targeted or untargeted LC-MS analysis as
well as confirmation of those detected during an earlier screening
experiment.

When using LC-MS/MS in SRM mode, two SRM transitions are
usually acquired for each compound of interest – one for quantifi-
cation and one qualifier transition. Identification is achieved through
comparison of the ion ratio generated from analysis of the sample
with the ion ratio from a reference. Permitted tolerances for the rel-
ative intensities of the detected ions, set for official control pur-
poses within the EU, specify the maximum deviation between the
observed and the expected ion ratios [110,111]. In some cases,
however, false-positive results may be obtained by this approach
[112], especially if no consideration is given to the selectivity of tran-
sitions used. One can add or selectively trigger acquisition of ad-
ditional transitions or exhaustively evaluate the matrix under
investigation for the presence of isobaric interferences. Whilst these
approaches could prove useful, on an ad hoc basis, to solve partic-
ular problems as they arise, it is considered impractical to try to en-
compass all analytes and matrices of interest.

It is now technically possible to utilize MS/MS spectra to limit
the reporting of false positives through compound identification
based upon searching against mass spectral libraries supplied by the

vendor [113] or prepared in house, both supported by extracting ad-
ditional spectra from literature articles and Internet sites [114]. Such
spectra (e.g. β-nortestosterone in Fig. 4) have the potential to contain
more information and thus provide an added degree of confi-
dence for compound identification. The prerequisite is that the
analyte generates sufficient product ions with structural informa-
tion and there is no isobaric interference on the precursor ion.

Historically, the low duty cycle of the QqQ arrangement limited
the number of scans that could be acquired simultaneously and
hence sensitivity was lacking in this mode. MS/MS spectra can now
be acquired concurrently with SRM transitions typically using QqLIT
instruments [115] and other means of improving the sampling duty
cycle on QqQ instruments [116], although the experiment on QqQ
instruments is typically limited to a couple of scans for each MS/
MS spectra. There are currently only limited reports of using these
enhanced acquisition modes for the confirmation of identify of food
contaminants [117].

Spectral MS/MS libraries, such as MassBank or NIST, contain ref-
erence spectra for many compounds but their limited chemical cov-
erage reduces the chance of correct, reliable identification of
unknown spectra outside the database domain. Although the same
product ions may be generated using the various types of MS/MS
instrument, different mechanisms for ion isolation and fragmen-
tation result in variations in abundance, so spectra are often not com-
parable in a library search. Unreliable results are also likely if the
precursor ion and/or product ions are not sufficiently resolved from
isobaric interference. Whilst the use of ion ratios is acceptable prac-
tice for confirmation of identity within the EU, there is little guid-
ance currently on the acceptance of library searching with MS/MS
product-ion scans.

Decision 2002/657/EC also introduced a system of identifica-
tion points (IPs) for MS detection [118,119]. For example, a minimum
of four IPs is required for identification of Group A “banned” sub-
stances. When using a QqQ instrument in SRM mode, this implies
four IPs can be collected by obtaining two transitions with 1.5 iden-
tification points each and 1 point for the precursor.

HRMS has also been used for identification for official control pur-
poses. Decision 2002/657/EC defines HRMS as MS at a mass reso-
lution of 10,000 (according to the 10% valley definition typically used
with sector instruments). This corresponds to a resolution of 20,000
using the FWHM definition [120] and so is readily achievable on the
Orbitrap and more recent ToF analyzers. However, when one con-
siders instruments without MS/MS capability, such as the Orbitrap
and ToF instruments, two diagnostic ions are needed, earning 2 IPs
each. This typically requires in-source fragmentation. This ap-
proach was evaluated by Blokland et al. using accurate mass mea-
surements from analysis on LC-ToF (no MS/MS). They proposed
allocation of 2 IPs to the measurement of a single ion with a mass
accuracy better than 3 ppm [121].

There is some variance in the way HRMS is considered for offi-
cial control purposes. Decision 2002/657/EC attaches no signifi-
cance to measurements of mass accuracy. In contrast, Document No.
SANCO/10684/2009 for pesticide analysis has no definition of “high
resolution” but does specify the need for at least two diagnostic ions
with mass accuracy of <5 ppm. False-negative results are likely when
the mass resolution is insufficient to separate analyte ions from iso-
baric co-eluting sample matrix ions, as described earlier. The debate
over the use of HRMS for identification for official control pur-
poses has prompted proposals for additional identification criteria
to be added to Decision 2002/657/EC [38,122].

No such issues with IPs are faced when using MS/MS on a hybrid
HRMS instrument. MS/MS spectra can also be acquired using hybrid
HRMS instruments (QqToF and Orbitrap devices) with the addi-
tional advantage of accurate mass measurements on the product ions.
This facilitates the use of libraries of accurate mass CID spectra [82]
or MS/MS carried out in support of a database search [123]. The
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problem with using QqToF instruments for this approach is that the
accuracy of the mass measurements of product ions is typically worse
(>5 ppm) than that obtained in MS mode [124]. No such issues are
observed when using Orbitrap hybrids, which provide good accu-
rate mass measurements on parent and product ions alike. Mass
errors of 0.3 ppm and 1.1 ppm were reported for the precursor and
product ions of carbendazim using a quadrupole-Orbitrap instru-
ment [125].

Although structure elucidation of unknown contaminants by LC-
MS remains a challenge, despite the advanced stage of the hard-
ware, progress recently reviewed could be applied to the analysis
of unknown contaminants in food [126]. The development of an ac-
curate LC-retention prediction system augments MS information,
increasing the opportunity for identification [127]. Assignment of
a structure for a peak detected by accurate mass alone is unlikely,
unless the compound detected has a significant mass defect between
the monoisotopic mass of an element and the mass of its isotopic
cluster [128,129] or is known in the chemical literature, a refer-
ence database or an Internet resource [130]. Compound databases
{e.g. PubChem [131] or ChemSpider [132]} have an extremely large
coverage of the chemical space, but they cannot be queried with
spectral information directly.

The first crucial step is to obtain correct elemental composi-
tions. The capabilities of the vendors’ tools for chemical-formula pre-
diction are reported to be variable with others developing tools via
open source [133]. The number of possible empirical formulae that
can be assigned to a mass strongly depends on mass accuracy.

Increased filtering or restriction of error in the measurement reduces
the possible candidates for a given accurate mass measurement, but,
if the ion is actually a fragment ion, unknown to the analyst, then
assignment is more difficult. Data acquired even with <1 ppm mass
accuracy and high mass-resolving power can still be insufficient for
calculating unique elemental compositions without information
about isotope pattern [134,135]. A positive result for triflumuron,
reported by QqQ, proved false and was rejected due to lack of agree-
ment with the chlorine-isotope pattern observed from analysis by
ToF [36]. Very high mass-resolving power (e.g. 100,000 FWHM),
capable of separating 15N from 13C isotopes, does provide en-
hanced capability for identification. In order to constrain the thou-
sands of possible candidate structures automatically, rules have been
developed to select the most likely and chemically correct molec-
ular formulae, such as those used in metabolomics [136], but such
rules have yet to be systematically applied to the identification of
contaminants in food.

Fragmentation data from MS/MS or MSn experiments, in some
cases with accurate mass measurement of precursor and/or product
ions, can provide a tremendous amount of information, but there
is still a limited understanding of any rules associated with the frag-
mentation of precursor ions derived from ESI that takes place in the
MS/MS collision cell (typically CID), even though the structure-
fragmentation relationship and fragmentation mechanisms have
been widely studied [137]. In many cases, chemical-structure drawing
programs are used to try to identify fragment ions and their accu-
rate masses [138,139]. The number of chemically meaningful

Fig. 4. Identification of nortestosterone in a non-compliant sample (A) by comparison of MSMS spectrum with that generated from a reference standard (B).
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structures that can be assigned to an unknown peak detected tends
to be limited to structures showing a close relationship with the
parent compound [140,141]. In-silico fragmentation or fragmenta-
tion trees have been introduced to condense the numerous search
results from a large chemical database [142] and for the auto-
mated computational identification of small molecules that cannot
be found in any database [143]. Results from several resources can
now be combined to improve compound identification [144]. Al-
though the utility of hybrid analyzers for detailed assessment of
certain food contaminants has been demonstrated, typically for in-
vestigating metabolism and degradation pathways for pesticides
[145,146] and veterinary medicines [147], novel toxins [148,149] and
other food contaminants [150,151], the elucidation of unknown com-
pounds in food samples remains a significant challenge, which will
probably only be overcome by combining the use of several ana-
lytical techniques. Two unknown red dyes isolated from a dried
strawberry package were successfully identified as subsidiary colors
contained in food red no. 40 (R40), which had been added to the
dried strawberries, using a combination of HPLC data and UV-VIS,
MS and NMR spectra [152].

4. Conclusions

With the recent advances and novel developments in chroma-
tography and MS, it is evident that the great improvement in sen-
sitivity and selectivity offered by the combination of these two
powerful analytical techniques has made significant contributions
in both screening for, and the quantitative determinations of, food
contaminants. It has been well established that this is the corner-
stone of analytical technique for monitoring and controlling the
wholesomeness of foods.

As new techniques and instrumentation emerge, the applica-
tion of LC-MS will cover a wider range of compounds and a greater
variety of matrices, using a combination of targeted and non-
targeted approaches. Modern instruments are also more sensitive
and more selective, take up less laboratory space, are more robust,
and are easier to use and to maintain than their older counter-
parts, whilst costing less. However, more attention is needed to im-
plement software that can facilitate reliable acquisition by “non-
specialists” and to provide more efficient solutions for the automation
of time-consuming, complicated data processing. The impact of
matrix effects on detection and quantification, the presence of iso-
baric interference and maintaining confidence in the assignment of
identity remain the three major limitations for methods employ-
ing LC-MS for the determination of chemical contaminants in
complex food matrices. The increasing use of hybrid mass spec-
trometers, incorporating mass analyzers that are capable of high mass
resolution and accurate mass measurements, mitigates some of the
problems associated with selectivity and identification, but further
technological development of LC-MS interfaces is required to min-
imize matrix effects.
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