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Abstract

This paper analyzes the computational complexity of computing the optimal alignment of a
set of sequences under the sum of all pairs (SP) score scheme. We solve an open question by
showing that the problem is NP-complete in the very restricted case in which the sequences
are over a binary alphabet and the score is a metric. This result establishes the intractability of
multiple sequence alignment under a score function of mathematical interest, which has indeed
received much attention in biological sequence comparison. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Multiple sequence alignment is one of the most popular and important problems in
computational biology [7]. It <nds di=erent applications in molecular biology, mainly in
two related areas: <nding information about the structure and function of the molecules,
and estimate the evolutionary distance between species from their associated sequences.

An alignment of k sequences is de<ned by a matrix k ×m in which each row
contains a sequence interleaved by spaces. Then, the similarity of sequences in the
alignment is measured by using a score or distance between elements of the matrix.
More precisely, in DNA (or RNA) sequences, the alphabet contains four letters and
the score assigned to the comparison between two letters (or nucleotides) may be zero
if there is a match, i.e. the letters are identical, otherwise the score may be one. A
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popular assumption in biological alignment is that the score is a metric, that is the
distance between identical letters is zero and it satis<es the triangle inequality. Among
di=erent score schemes, the sum of all pairs score, in short the SP-score, is the one
that has received more attention, mainly for its mathematical elegance. By means of
the SP-score a value is assigned to a multiple alignment; an optimal alignment is the
one that minimizes the value over all possible alignments.

Several methods have been developed for multiple sequence alignment [3, 2], but
no eDcient methods are known to <nd the optimal alignment. Recently, a polynomial-
time approximation algorithm for the problem has been proposed by Gus<eld [6] who
achieved a 2−2=k approximation factor by assembling an alignment of k sequences
from optimal alignment of pairs of sequences. The approximation ratio has been im-
proved to a 2−l=k factor, for any <xed l, by Bafna et al. [1]. But, besides these results
it was an open question whether the problem is NP-complete. The computational com-
plexity of multiple sequence alignment has been investigated in [9] where is given
a simple proof of NP-completeness of the alignment with score scheme over a <xed
alphabet of four letters that satis<es the triangle inequality, and assigns a non-zero
distance between identical letters. But, this result leaves open the problem of analyz-
ing the complexity of computing optimal SP-score multiple sequence alignments for
instances of this problem which are of practical biological relevance. Mainly, the result
in [9] does not consider an important requirement for score schemes [4, 11] which is
the property of metricity: this one implies a zero distance between identical letters.

Here, we prove the intractability of multiple sequence alignment in the very restricted
case in which sequences are over a binary alphabet and the score is a metric. The
signi<cance of the intractability in this case is that it establishes the NP-completeness
for less restricted cases encountered in practice, as well as for general instances of the
alignment problem in which |�|¿2.

2. Preliminaries

A DNA sequence is a string over the alphabet � that contains four letters A; C; G
and T representing four distinct nucleotides. Protein sequences are over an alphabet of
20 letters, each representing a unique amino acid. A multiple alignment of k sequences
is obtained by inserting spaces in the sequences such that the sequences have the same
length l and they can be arrayed in k rows of l columns each. A space is denoted
by � and is viewed as a new letter over alphabet  =�∪{�}. Given two sequences
s1 and s2 in the alignment, then each letter � of s1 is in the same column of a letter
of s2; we say that � is opposite to a unique letter of s2. A match occurs where two
identical letters are opposite in the two sequences s1 and s2, otherwise two non-identical
opposing letters give a mismatch which is viewed as a replacement. The insertion of a
space in a sequence opposing a letter � of a second sequence, is viewed as the deletion
in the <rst sequence of the letter � or an insertion of � into the second one. A score d
is assigned to each pair of letters and it is generally described by means of a || × ||
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symmetric matrix. The following properties are considered a mathematical requirement
for cost matrices [3, 10]:

(i) d(a; a) = 0, for every a∈,
(ii) d(a; b) = 0 implies that a= b, for every a; b∈,
(iii) d(a; b) =d(b; a), for every a; b∈,
(iv) d(a; c)6d(a; b)+d(b; c), for every a; b; c∈,
(v) d(a; c)6 max{d(a; b); d(b; c)}, for every a; b; c∈.

A score scheme that satis<es properties (i)–(iii) is a semi-metric, the score is a
metric if property (iv) is also satis<ed and is an ultrametric if all above speci<ed
properties hold.

By means of a score scheme a value is assigned to a multiple alignment. A very
popular score scheme, called SP-score de<nes the value of a multiple alignment as the
sum of the scores of all columns, where the score of each column is the sum of the
scores of all distinct unordered pairs of letters in the column. Then, the value of the
alignment of a column x of height l is

∑
16i¡j6l d(x(i); x(j)), where x(i) is the letter

in ith row of column x and d(x(i); x(j)) is the score between the two letters x(i) and
x(j).

Another way of viewing the SP-score value of an alignment is as sum of pairwise
sequence alignment values: given A an alignment with m rows and k columns, and si,
sj the ith and jth rows of A, the value of the pairwise alignment in A of si and sj,
denoted as dA(si; sj) is

∑
16l6k d(si(l); sj(l)), where si(l) (sj(l)) is the lth symbols of

si (sj respectively). Then, the value of A can be expressed as
∑

16i¡j6m dA(si; sj). We
assume that an alignment cannot contain a column of only �’s. An optimal multiple
alignment of a set of sequences is the one that minimizes the value over all possible
alignments.

Let B be a subset of a set S of sequences and A an alignment of S. Then, by
AB we denote the array consisting of all rows of A containing sequences in B (in
this case in AB there may be some columns containing only �’s).

By D(A) we will denote the value of an alignment A of a set of sequences. By
A[i], we denote the column of A of index i. Let B and C be two disjoint subsets of
sequences of S, and let B(t) and C(t) be the tth sequence in B and C, respectively,
then by D(AB;C) we denote

∑
i; j dA(B(i); C(j)).

Lemma 1. Let s1; s2 be two sequences over � such that l1 = |s1|; l2 = |s2|; l2¿ l1 and
there are m symbols of s1 that are not in s2. Then every alignment of the set {s1; s2}
has at least m+l2−l1 mismatches.

The following two properties hold for every alignment over a score which is a metric
and has non-null values greater or equal to 1.

Corollary 2. Let s1; s2 be two sequences over �, such that l1 = |s1|; l2 = |s2|; l2¿ l1

and there are m symbols of s1 that are not in s2. Then for every alignment A{s1 ; s2}
of the set {s1; s2}; D(A{s1 ; s2})¿m+l2−l1.
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Proof. It follows from Lemma 1.

Lemma 3. Let U be a subset of a set S of sequences over � such that U contains
only identical sequences; and let A be an optimal alignment of S. Then D(AU ) = 0.

Proof. Assume to the contrary that A is an optimal alignment of S and D(AU )¿0.
Let u∈U be the sequence that minimizes the value D(A{u}; S−U ). Then, let A1 be
the alignment obtained from A by assuming that all sequences in S−U are aligned
as in A (i.e. AS−U =A1S−U ), while all sequences in U are aligned identically to the
alignment of u in A. Since D(AS−U ) =D(A1S−U ) and D(A1U )¡D(AU ), it follows
that D(A1)¡D(A), which is a contradiction.

We will prove that multiple sequence alignment is NP-complete over a <xed score
scheme that is a metric, by giving a reduction from the node cover problem (NC)
which is NP-complete [5].

The NC and sequence alignment decision problems are de<ned in the following.

NC (Node cover)
Instance: A graph G = (V; E) and an integer k6|V |.
Question: Is there a node cover V1 of G of size k or less, i.e. a subset V1 of V

such that for each edge e = (u; v)∈E at least one of u and v belongs to V1?
Multiple Sequence Alignment
Instance: A set S= {s1; : : : ; sn} of <nite sequences over a <xed alphabet � and a

SP-score. An integer C.
Question: Is there a multiple alignment of the sequences in S that is of value C or

less?

3. Multiple alignment over alphabet of size 6

We <rst describe a reduction from the node cover problem on graphs (NC) [5]
to sequence alignment over an alphabet of size 6. The proof for the case of bi-
nary alphabet, that will be stated in Section 4, is rather involved. The encoding used
to obtain the result in the current section does not require the same level of com-
plexity, while it allow us to point out the main ideas on which both reductions are
based.

The SP-score for multiple alignment over alphabet �= {a; b; 0; 1; c; d} is the one
described in Table 1.
The reduction: The transformation from NC to alignment consists of constructing a

set S of sequences encoding the graph G and a value C, depending on k and on the
number l of edges of G, such that C is an upper bound for the value of an optimal
alignment of S if and only if k is the size of a node cover for G.
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Table 1
SP-score for alphabet of size 6

a b 0 1 c d �

a 0 1 1 1 1 2 2
b 1 0 1 1 2 1 2
0 1 1 0 2 2 2 2
1 1 1 2 0 2 1 2
c 1 2 2 2 0 2 1
d 2 1 2 1 2 0 2
� 2 2 2 2 1 2 0

Let G = (V; E) be a graph with V = {v1; : : : ; vn} and E = {e1; : : : ; el}.
Now, we construct an encoding for the edges of the graph that gives the set of

sequences which is instance of the alignment problem. In the following, given a letter
�∈, and an integer j¿0, by �j we denote the sequence of j symbols �.

Given an edge e = (vi; vj), where we assume that i¡j, we construct an encoding of
such an edge with a sequence, called edge sequence constructed as follows:

s(i; j) = a3iba3( j−i)−2ba3(n−j)+3:

Note that for each edge (vi; vj) the edge sequence s(i; j) has length 3n+3. Moreover,
we construct a template sequence t of length 3n+4:

t = c(001)n00c:

We also construct the test sequence x(k) of the form

x(k) = cdkc:

Note that the test sequence depends on k. The set of sequences that is instance of
the alignment problem associated to the instance (G; k) of the NC problem, is the
set S= S ∪T ∪X , where S = {s(i; j): (vi; vj)∈E}, T contains C2 sequences t and X
contains C1 sequences x(k), where C1 and C2 will be determined later.

In Fig. 1 is represented an alignment of the encoding of a graph G.
The main idea on which the encoding of S is based, is that an optimal alignment

A of S is obtained when A satis<es certain properties: such an alignment will be
called standard alignment. More precisely, we will show that the value of a standard
alignment is bounded by a given threshold C only when G has a node cover of a
given size k. This fact is obtained by forcing d′s of the test sequences to be opposite
to b′s of the edge-sequences. By construction, only one b of each edge sequence can
be opposite to a d, and the number of such b′s determines the value of the alignment.
If the total number of b′s opposite to d′s is equal to the number of edges, which is
possible only if there are k vertices which cover one end of each edge sequence, then
D(A)¡C, otherwise D(A)¿C.
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Fig. 1. An example of the encoding of a graph.

De"nition 4 (Standard alignment). Let A be an alignment of S. Then A is a stan-
dard alignment if it satis<es the following properties:

(i) there are no �’s in AT ;
(ii) all �’s in AS are aligned with c’s of AT ;
(iii) all d’s of AX are aligned with 1’s of AT ;
(iv) all c’s of AX are aligned with c’s of AT ;
(v) no column of AX contains both �’s and d’s.

It follows easily that each standard alignment has exactly r = 3n+4 columns. Note
that in Fig. 1 is represented a standard alignment of S where, for simplicity, all �’s
are not shown.

In the following, we give some useful properties of standard alignments:

Proposition 5. Let A be a standard alignment of S. Then for each edge sequence
encoding the edge (vi; vj); the b encoding one end vertex vh; for h∈{i; j}; is opposite
to the hth 1 of each template sequence; while the other b is opposite to 0’s of the
template sequences.

Lemma 6. Let A be an optimal alignment of S and let A1 be a standard alignment
of S. Then D(AX;T ) =D(A1X;T ) or D(AX;T )¿D(A1X;T ) + C2.

Proof. Assume that D(AX;T ) is minimum over all possible alignments of S. Then,
A{x; t} contains exactly r−2 mismatches of value 1, for every x∈X and t ∈T . In fact,
since the mismatches (d; 1) have a value 1, while the mismatches (d; 0), (d; �), (d; c)
all have value 2 it is advantageous to align all d’s of x with 1’s of t. By the SP-
score d(c; c) = 0, d(c; �) = 1; d(c; 0) =d(c; 1) =d(�; 0) =d(�; 1) = 2, it follows that it
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is advantageous to align the c’s of x with the c’s of t. Note that any other alignment
of {x; t} cannot be optimal. It is immediate to verify that D(AX;T )¿D(A1X;T ).

Now, assume that D(AX;T ) �=D(A1X;T ). Since for every sequence x∈X and t ∈T ,
A1{x; t} contains exactly r− 2 mismatches of value 1, then there is a sequence x1 such
that A{x1 ; t} must contain at least r − 1 mismatches. Since, by Lemma 3, D(AX ) = 0,
D(AT ) = 0, and |T |=C2, it follows that D(AX;T ) =C2|X |D(A{x1 ; t}). Consequently,
since D(A1X;T ) =C2|X |D(A1{x1 ; t}), it follows that D(AX;T )¿D(A1X;T ) + C2, as re-
quired.

Lemma 7. Let A be an optimal alignment of S and let A1 be a standard alignment
of S. Then D(AS; T ) =D(A1S; T ); or D(AS; T )¿D(A1S; T ) + C2.

Proof. Assume that D(AS;T ) is minimum over all possible alignments of S. Then,
A{s; t} contains exactly r mismatches of value 1, for every s∈ S and t ∈T . In fact,
by Corollary 2, since there is no symbol common to both sequences s and t, and
|t|= r, |s|= r− 1 it follows that every alignment A′ for S is such that D(A′

{s; t})¿r.
By construction of standard alignment and by the SP-score, it follows easily that
D(A1{s; t}) = r.

Now, assume that D(AS; T ) �=D(A1S; T ). Then, there is a sequence s1 ∈ S such that
A{s1 ; t} must contain either at least r + 1 mismatches or r mismatches one of which is
of value 2. Since, by Lemma 3, D(AT ) = 0, and |T |=C2, it follows that D(AS; T ) =C2

D(A{s1 ; t}) +D(AS−{s1};T ). But, D(A1S; T ) =C2D(A1{s1 ; t}) +D(A1S−{s1};T ). It follows
that D(AS; T )¿D(A1S; T ) + C2, as required.

Corollary 8. Let A be a standard alignment of S. Then D(AX ); D(AT ); D(AX;T )
and D(AS;T ) are <xed and minimum over all possible alignments.

Proof. By de<nition of standard alignment and by Lemmas 6 and 7, the proof is
immediate.

In the following by DSD we denote the sum D(AX ) +D(AT ) +D(AX;T ) +D(AS; T )
over a standard alignment A of S.

Lemma 9. Let A be a standard alignment of S. Then D(AS)¡8l2r and D(AS;X )¡
4C1lr.

Proof. It follows easily from the SP-score and the fact that a standard alignment
consists of r columns.

We will denote such upper bounds for D(AS) and D(AS;X ) with US and US;X ,
respectively. By Corollary 8 and Lemma 9 it follows easily that each standard alignment
(hence each optimal alignment) has value not greater than DSD+US+US;X . By assuming
that C1¿US and C2¿US + US;X , we can prove that an optimal alignment must be a
standard one.
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Lemma 10. Let A be an optimal alignment of S. Then A must be a standard
alignment.

Proof. Let A1 be a standard alignment of S. If A does not satisfy one of properties
(i)–(iv) of standard alignment, it is immediate to verify that D(AX;T ) �=D(A1X;T )
or D(AS; T ) �=D(A1S; T ). By Lemmas 6 and 7, it follows that D(AX;T ) + D(AS;T )¿
D(A1X;T ) + D(A1S; T ) + C2. Since C2¿US + US;X , by Corollary 8 if follows that A is
not optimal.

Assume now that A does not satisfy property (v) of standard alignment. Then by
Lemma 3, A cannot be optimal. Consequently, A must be a standard alignment.

We are now able to prove that the multiple alignment problem is NP-complete with
a <xed SP-score that is a metric and with an alphabet of six symbols. In the following,
if A is an alignment of S, by n�(i) we denote the number of �’s occurring in the
column of index i of A.

Theorem 11. Let (G; k) be an instance of the NC problem and let S be the encoding
of such instance. Then

(i) if G has a node cover of size k; then there exists a standard alignment A of S
such that D(AS;X )6C1(l + 2l(r − 2));

(ii) if G has a minimum node cover of size k1¿k; then for each standard alignment
A of S it holds that D(AS;X )¿US + C1(l + 2l(r − 2)).

Proof. Let A be a standard alignment of S, and let I be the set of indices of
the columns of A containing some d’s. By the de<nition of standard alignment the
value D(AS;X ) can be computed as the sum of the value of the column of index
1 and r and the value of all other columns of AS∪X . Then, D(AS;X ) =C1(ld(c; �) +
ld(c; a))+C1(

∑
i∈I (d(d; b)nb(i)+d(d; a)(l−nb(i)))+

∑
i =∈I∪{1; r} (d(�; b)nb(i)+d(�; a)

(l− nb(i)))) =C1(2l + 2l(r − 2) −∑
i∈I nb(i)).

Let us assume that G has a node cover K of size k, then we will construct a
standard alignment A such that D(AS;X )6C1(l + 2l(r − 2)). From the node cover K
we construct the set K1 consisting of the indices of the columns in AT that contain
the 1’s encoding the vertices in K . Since K is a node cover of G each edge (vi; vj)
has at least an end vertex vh in K , for h∈{i; j}, moreover it is possible to align, in
each edge sequence, the b encoding the vertex vh with the hth 1 of each template
sequence. The alignment of the test sequences in AS∪X is obtained by aligning the
d’s exactly in the columns whose index is in K1. By Proposition 5, since only a b
for each edge sequence can be aligned with a 1 of each template sequence. It follows
that

∑
i∈I nb(i) = l. Substituting this value in the above relation for D(AS;X ), then (i)

easily follows.
Let us assume that G has a node cover of minimum size k1¿k. By

Proposition 5 for each edge sequence encoding the edge (vi; vj), one b of each edge
sequence, encoding the end vertex vh, for h∈{i; j}, is aligned with the hth 1 of each
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template sequence, hence there must be at least k1 columns of A that contain some
1’s of the template sequences and at least a b of the edge sequences. By properties (i),
(iii) and (v) of standard alignment, in all test sequence each d is aligned with distinct
1’s of the template sequences: it follows that there is at least one edge sequence such
that both b’s are in columns of AS∪X that do not contain any d’s. Consequently, given
I the set of indices of the columns of A that contain some d’s of the test sequences,
∑

i∈I nb(i)6l − 1, hence D(AS;X )¿C1(l + 2l(r − 2) + 1). Since C1¿US we obtain
that D(AS;X )¿US + C1(l + 2l(r − 2)), which proves (ii).

Corollary 12. The graph G has a node cover of size k i= the set S has an optimal
alignment A of value D(A)¡DSD + US + C1(l + 2l(r − 2)).

Proof. Let A be an optimal alignment of S. By Lemma 10, A is a standard align-
ment. Then D(A) =DSD +D(AS) +D(AS;X ). By Theorem 11, if G has a node cover
of size k, then D(AS;X )6C1(l + 2l(r − 2)).

Assume now that G has a minimum node cover of size k1¿k: by Theorem 11,
D(AS;X )¿US +C1(l+2l(r−2)). Consequently, D(A)¿DSD +US +C1(l+2l(r−2)),
which proves what required.

4. Multiple alignment over binary alphabet

In this section, we show that multiple sequence alignment problem is NP-complete
even when the sequences are over a binary alphabet and the score scheme, which is a
metric, is given in Table 2:

Given (G; k) the NC instance, where G is the graph (V; E), with V = {v1; : : : ; vn} and
E = {e1; : : : ; el}, while 16k6n, we construct the following sequences over alphabet
�= {a; b}:
the edge sequence s(i; j) of length 3(n + 1), for each edge (vi; vj),

s(i; j) = a3iba3( j−i)−2ba3(n+1−j);

the template sequence t of length 3(n + 1) + 1,

t = b((a2)b)n(a2)b;

the <xed sequence q of length 3(n + 1) + 1,

q= ba3n+2b;

Table 2
SP-score for binary alphabet

a b �

a 0 1 2
b 1 0 1
� 2 1 0
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the test sequence x(k), given k the integer of the NC instance,

x(k) = a3n+2−k :

Then, let S be the set {s(i; j): (vi; vj)∈E} of all possible edge sequences, T the set
of C1 template sequences t, Q the set of C2 <xed sequences q and X the set of C3

test sequences x(k). The constants C1; C2 and C3 are related to the number of edges,
and will be <xed later in the paper.

Finally, the sequences in S ∪ T ∪ Q ∪ X give the set S that is instance of the
alignment problem.

In the following, we give some properties that allow us to show that a node cover
for G is of size k i= the cost of an alignment of S can be bounded by a value C,
depending on k and on the graph G, as stated in Theorem 25. By this result, the proof
that the construction of the instance (S; C) for the alignment problem is a polynomial
reduction is immediate.

De"nition 13. An alignment A of the set S of sequences is a standard alignment if
it satis<es properties (i)–(iv):

(i) in all columns A[i] such that AT∪Q[i] contains some �’s there are only �’s in
AT∪Q∪X [i] and no a’s in AS [i];

(ii) all �’s in AS are opposite only to �’s or to b’s in AQ;
(iii) in AX there is no column with both a’s and �’s, and the <rst and last column

of AX consist of �’s;
(iv) the �’s of AX are contained only in columns that do not contain any a’s of AT .

We will show that an optimal alignment must be a standard alignment; the properties
of De<nition 13 will allow us to relate the value of the alignment to the size of the
node cover of the graph.

Let A be a standard alignment. Then, by the previous de<nition, it is immediate
to verify that conditions (i) and (ii) imply that in A, all �’s in internal columns of
AS have a mismatch only with b’s of sequences in S. Moreover, �’s in the <rst and
last column of AS mismatch only with b’s of AQ, otherwise by condition (i), (ii)
and (iv), there is a column in A of only �’s, which is not possible. By this fact and
De<nition 13, the Proposition 14 easily follows.

Proposition 14. Let A be an alignment of S that satis<es properties (i) and (ii) of
a standard alignment. For each edge sequence s(i; j) in S; one of the two b’s encoding
one end vertex vh of the edge (vi; vj) is aligned in A with the (h + 1)th b of each
template sequence in T; while the other b of s(i; j) has a mismatch with each symbol
of the template sequences to which it is opposite.

Lemma 15. Let A be a standard alignment of S. Then D(AS)¡6l2; D(AS;X )¡
8lkC3 and D(AS;T )¡4l2C1.
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Proof. Let us <rst prove the upper bound for D(AS). By conditions (i) and (ii) of
De<nition 13, �’s in internal columns of AS have a mismatch only with b’s. Then,
mismatches occur only in columns with b’s. Since there are exactly 2l b’s, it follows
that the cost of all internal columns is bounded by 2l2, while the cost of the <rst and
last column of AS is bounded by 4l2, as in such columns �’s have mismatch with
a’s. Consequently, D(AS)¡6l2.

Now, let us prove that D(AS;X )¡8lkC3. Let s and x be two arbitrary sequences in
S and X , respectively. By conditions (i)–(iii), �’s in AS are opposite only to �’s of
AX . Since |s|= 3(n + 1), while |x|= 3n + 2 − k and s contains two b’s which are not
in x, it follows that A{s; x} contains at most k + 3 mismatches, from which we prove
that D(AS;X )¡2(k + 3)lC3. Thus the required bound follows.

By Proposition 14 and just as in the above proof, it easily follows that D(AS; T ) ¡
4l2C1.

In the rest of the paper, we will denote the upper bounds given in Lemma 15,
respectively, as US; US;X and US;T . We pose that C1¿l; C2¿US + US;X + US;T and
C3¿US .

Lemma 16. Let s; q be two sequences with s∈ S; q∈Q and let A be an alignment
of S. Then A{s; q} contains at least four mismatches (and D(A{s; q})¿4). Moreover
if A is a standard alignment; then A{s; q} contains exactly four mismatches and
D(A{s; q}) = 4.

Proof. By construction of sequences s; q, and by de<nition of standard alignment, it
is immediate to note that, in a standard alignment A1, both b’s in s have a mismatch
with some a’s or �’s of A1{q}, and both b’s in q have a mismatch with some a’s
or �’s of A1{s}. By the SP-score D(A{s; q}) = 4. Along the same line it is immediate
to note that if A{s; q} is an arbitrary alignment where all b’s have a mismatch, then
D(A{s; q})¿4.

Assume now that in a non-standard alignment a b of s and a b of q are aligned in
the same column; we will prove that D(A{s; q})¿4. Clearly, the smallest number of
mismatches is given by assuming that the <rst b of s is aligned with the <rst b of q, or
the second b of s is aligned with the last b of q. Then, by construction of s and q the
<rst three or last three a’s of s have a mismatch with some �’s, hence D(A{s; q})¿6.

The following results are direct consequences of De<nition 13 and Lemma 16.

Lemma 17. Let A be a standard alignment of S. Then D(AX ); D(AT;Q); D(AT );
D(AQ); D(AX;T∪Q) and D(AS;Q) are <xed and minimum over all possible alignments.

Lemma 18. Let A be a standard alignment of S. Then in AS∪X there are C3l(k+1)
mismatches of the form (�; �); where �∈AS and �∈AX .
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Proof. Let x and s be, respectively, a test sequence and an edge sequence, and let us
consider the alignment A{s; x}. By properties (i)–(iii) of standard alignment each �’s
in A{s} is opposite only to �’s of A{x} in A{s; x}. Since, by construction, each edge
sequence contains k + 1 symbols more than each test sequence, it follows that in each
test sequence x there are exactly k + 1 �’s that have a mismatch with a symbol of s
in A{s; x}. The claim follows immediately.

Lemma 19. Let A be a standard alignment of S. Then the sum D(AX∪T∪Q) +
D(AS; T∪Q) is <xed over all possible standard alignments of S.

Proof. By Lemma 17, D(AX∪T∪Q) and D(AS;Q) are <xed. Let s; t be, respectively,
an edge sequence and a template sequence, and let A be a standard alignment of S.
Since in t there is one symbol more than in s it follows that in A{s} there is one �
more than in A{t}. By Proposition 14, all b’s of t, except for one, have a mismatch
with the symbol of s to which they are opposite. Moreover, by Proposition 14, there is
an a or a � inserted in t that has a mismatch with a b of s. By de<nition of standard
alignment, there cannot be any other mismatch in A{s; t}.

By previous Lemma 19, the sum D(AX∪T∪Q) + D(AS; T∪Q) is <xed for every stan-
dard alignment A; in the following we will denote such sum as DSD. Moreover, by
Lemma 15 it is immediate that every standard alignment A and hence every optimal
alignment has a value D(A)6DSD + US + US;X .

Lemma 20. Let A be an optimal alignment of S. Then A must satisfy property (i)
of a standard alignment.

Proof. Let A1 be an arbitrary standard alignment and let A be an optimal alignment
of S that does not satisfy property (i) of standard alignment. Then the following cases
must be considered.
Case 1: There is a column in AQ containing some �’s and some �’s, for �∈{a; b}.

By Lemma 3, A cannot be optimal.
Case 2: Let us assume that there is a column of AT∪Q that contains at least a

symbol � and �. Clearly, if � is in AT , then a symbol � must be in AQ. By case 1,
since each column of AQ contains either a’s or b’s or �’s, it follows that there is a
mismatch (�; �) in AT∪Q, consisting of a � in AQ and a � in AT , that occurs in the
ith column of A.

Then, we can show that D(AT;Q)¿D(A1T;Q)+C2. In fact, let t be the sequence of T
that contains the symbol � in the ith column and let q be an arbitrary sequence in Q.
Then, A{t; q} contains at least n + 1 mismatches, as |t|= |q| and t contains n + 2 b’s,
while A{q} contains 2 b′s and a � not in A{t}. Clearly, A1{t; q} contains exactly n
mismatches, all of value 1. Since |Q|=C2, it follows that D(AT;Q)¿D(A1T;Q) + C2.

Case 3: Assume now that every column containing �’s in AT∪Q has only �’s in
AT∪Q, but at least one a in AX . Let y be the sequence in X that has at least one a in
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such column and let q be a sequence in Q. Since A{q} contains at least a � opposite
to an a in A{y; q}, while y has at least k+2 �’s, it follows that A{y; q} contains at least
k+3 mismatches, of which two are of value 1, while the other ones are of value 2. By
condition (i) of standard alignment, for any arbitrary sequence x∈X; A1{x; q} contains
exactly k + 2 mismatches. It follows that D(AX;Q)¿D(A1X;Q) + C2.
Case 4: Each column containing �’s in AT∪Q consists of only �’s in AT∪Q∪X and

has at least an a in AS . We now show that D(AS;Q)¿D(A1S;Q) +C2. By Lemma 16,
for each sequence s∈ S and q∈Q; D(A1{s; q}) = 4.

Let s1 be a sequence in S that contains an a in a column where there are only �’s in
AT∪Q∪X . Then A{s1 ; q} must contain at least a mismatch (a; �) besides four mismatches
of value 1. Hence D(A{s1 ; q})¿5. It follows that D(AS;Q)¿D(A1S;Q) + C2.

By previous cases, Lemmas 17 and 15, since C2¿US;T + US;X + US the lemma
follows.

Lemma 21. Let A be an optimal alignment of S. Then A must satisfy property
(ii) of a standard alignment.

Proof. By Lemma 20, A must satisfy property (i). Assume that A satis<es prop-
erty (i) and assume to the contrary that A does not have property (ii). Let A1 be
a standard alignment. As in the proof of Lemma 20, case 4, it is easy to show that
D(AS;Q)¿D(A1S;Q) +C2. Since C2¿US;T +US +US;X , it follows that D(AS; T∪Q)¿D
(A1S; T∪Q) + US + US;X . By applying Lemma 17 and Lemma 15, we obtain that
D(A)¿D(A1), which is a contradiction.

Lemma 22. Let A be an optimal alignment of S. Then A must satisfy property (iii)
of a standard alignment.

Proof. By Lemma 3, there is no column of AX containing �’s and a’s. Moreover,
by the SP-score, in an optimal alignment it is more advantageous that �′s of AX are
opposite to b′s of AT∪Q. Consequently, in the <rst and last column of AX there are
only �’s.

Lemma 23. Let A be an optimal alignment of S. Then A must satisfy property (iv)
of a standard alignment.

Proof. By Lemmas 20–22, A must satisfy properties (i)–(iii). Consequently, if (iv)
does not hold, it means that there is a column of index l1 in A containing only �’s
of X and only a’s of T ∪Q, and eventually b’s of S. Moreover, since for each sequence
x; x∈X; |x|= 3n+2−k, while for each sequence t ∈T; t contains n+2 b’s, it follows
that there is a column of index l2 in A containing a’s of each test sequence in X
and b’s of the template sequences. Then let A1 be the alignment obtained from A as
follows: in AX substitute the �’s in the column of index l1 with the a’s in the column
with index l2 and vice versa.
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By construction of A1; D(A)−D(A1) is equal to the sum D(A[l1])−D(A1[l1])+
D(A[l2]) − D(A1[l2]). We will prove that D(A) − D(A1)¿0, thus obtaining a con-
tradiction with the assumption that A is an optimal alignment of S. In the following,
by n�(li) we will denote the number of � symbols in the column of index li of AS .
By construction of the sequences, and by the SP-score it is easy to note that:

D(A[l1]) = (C1 + C2 + na(l1))nb(l1)d(a; b)

+ (C1 + C2 + na(l1))C3d(a; �) + nb(l1)C3d(�; b);

D(A[l2]) = (C1 + nb(l2))(C2 + C3 + na(l2))d(a; b);

D(A1[l1]) = (C1 + C2 + C3 + na(l1))nb(l1)d(a; b);

D(A1[l2]) = (C1 + nb(l2))(C2 + na(l2))d(a; b) + (C2 + na(l2))C3d(a; �)

+ (C1 + nb(l2))C3d(�; b):

Consequently D(A) −D(A1) = 2C3(C1 − (na(l2) − na(l1))). Since na(l2) − na(l1)6l,
it follows D(A) − D(A1)¿2C3(C1 − l). By posing C1¿l, we obtain that D(A1) ¡
D(A), which contradicts the fact that A is optimal.

Thus, A must satis<es property (iv).

By Lemmas 20–23 it follows directly that:

Corollary 24. An optimal alignment of S is a standard alignment.

The result of Theorem 25, relates the value of an alignment of S to the size of a
node cover.

Theorem 25. Let G be a graph and S the encoding of G. Then
(1) if G has a node cover of size k; then there is a standard alignment A of S

such that D(AS;X )62lC3 + 2lkC3;
(2) if G has a minimum node cover of size k1¿k; then for every standard align-

ment A of S it holds that D(AS;X )¿US + 2lC3 + 2lkC3.

Proof. (1) Assume <rst that G has a node cover of size k. Let A be a standard
alignment of S, where the sequences in S ∪X are aligned as follows: AS does not
contain �′s in internal columns. For each test sequence the <rst and last �’s are,
respectively, aligned in the <rst and last column of AS . Moreover, for each edge
sequence s(i; j) encoding the edge e; e = (vi; vj), one of the two b’s encoding one end
vertex of e is aligned in a column of A containing �′s of each test sequence x(k).
Such an alignment is possible since each edge has one end in the node cover, and the
number of �’s in each test sequence is equal to k + 2, where k is the size of a node
cover. In fact, if the set K of vertices, with K = {vi1 ; : : : ; vik} is a node cover for G,
then A can be obtained by aligning for each 16h6k, the (h + 1)th �’s of each test
sequence with the (ih + 1)th b of each template sequence, and with a b of an edge
sequence. In fact, every edge sequence encodes an edge (vi; vj) such that either vi ∈K
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Fig. 2. Alignment A for S in the case of binary alphabet.

or vj ∈K (Fig. 2). It follows, by Proposition 14, that the total number of b′s in AS

opposing �′s in AX is equal to the number l of edges of the graph.
Let us determine D(AS;X ). Let I be the set of indices of the columns of A containing

�’s of X and let n�(i) be the number of �’s in the column of AS∪X of index i. More-
over, let r be the number of columns in A. Then D(AS;X ) =

∑
i∈I−{1; r} C3(d(�; b)nb(i)

+ d(�; a)(l − nb(i)) +
∑

i =∈I∪{1; r} C3d(a; b)nb(i) + D(AS;X [1]) + D(AS;X [r]). Since
∑

i∈I nb(i) = l, it follows that D(AS;X ) = 2klC3 + 2lC3.
(2) Now, assume that G has a minimum node cover of size k1, with k1¿k.
Let A be an arbitrary standard alignment of S. Let us compute D(AS;X ): since G

has a node cover of size k1¿k and, by Proposition 14, for each edge sequence s(i; j)
encoding the edge (vi; vj), exactly one b of s(i; j) encoding an end vertex vh is aligned
with the (h+1)th b of each template sequence, there must be at least k1 columns of A
that contain b’s of the template sequences opposing one b of at least an edge sequence.
By properties (iii) and (iv) of standard alignment, in AX∪T , each � of AX is aligned
with a b of AT . Since AX contains k �′s internal columns, it follows that there is
at least one edge sequence such that no one of the two b’s of these sequences is in
a column of AS∪X containing �’s of X . Consequently, given I1 the set of indices of
the columns of A that contain �’s of the test sequences,

∑
i∈I1 nb(i)6l− 1. Clearly,

D(AS;X ) =C3(
∑

i∈I1 (d(�; a)na(i) + d(�; b)nb(i)) +
∑

i =∈I1 (d(a; �)n�(i) + d(a; b)nb(i)).
By Lemma 18 the number of mismatches (�; �), where �∈AX is C3l(k + 1).

Consequently, there are C3l(k + 1) − C3
∑

i∈I1 nb(i) mismatches (a; �). It follows that
D(AS;X ) =C3(2l(k +1)−2

∑
i∈I1 nb(i) +

∑
i∈I1 nb(i) +

∑
i =∈I1 nb(i)+2

∑
i =∈I n�(i))¿2lk

C3 +2lC3 +2C3, as by properties (i) and (ii) of standard alignment
∑

i =∈I n�(i) = 0 and
∑

i nb(i) = 2l. By Lemma 19, since C3¿US it follows that D(AS;X )¿US+2lC3+2lkC3.

By Corollary 24 and Theorem 25, the following result is immediate.
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Corollary 26. The graph G has a node cover of size k i= the set S has an optimal
alignment A of value D(A); with D(A) ¡ DSD + US + 2lC3 + 2lkC3.

By the previous result it follows that the construction of the set S of sequences
from an instance G and k of NC is a reduction to sequence alignment.

Theorem 27. Multiple alignment with metric SP-score is NP-complete even over a
binary alphabet.

5. Conclusions

We think that the approach developed here can be generalized to prove the NP-
completeness of the decision version of the alignment problem under further restrictions
on the SP-score matrices. For example, we conjecture that our proof can be extended
to show that the problem remains intractable also in the case of a SP-score in which
the distance between distinct letters is 1, while the distance of � with all other letters
is 2, i.e. the metric is also an ultrametric.

It is not known if the multiple sequence alignment problem with a <xed metric
SP-score admits a polynomial time approximation scheme. While it is interesting to
understand whether the problem is MAX SNP-hard, it seems quite diDcult to modify
the structure of the reduction given in the paper to obtain an L-reduction [8]. At the
same time even describing an approximation algorithm whose error ratio is a constant
strictly less than 2 is a challenging problem.
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