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wist Mechanics of the Left Ventricle
rinciples and Application

artho P. Sengupta, MBBS, MD, DM, A. Jamil Tajik, MD,
rishnaswamy Chandrasekaran, MD, Bijoy K. Khandheria, MD

cottsdale, Arizona

eft ventricular (LV) twist or torsion represents the mean longitudinal gradient of the net difference in

lockwise and counterclockwise rotation of the LV apex and base, as viewed from LV apex. Twist during

jection predominantly deforms the subendocardial fiber matrix, resulting in storage of potential energy.

ubsequent recoil of twist deformation is associated with the release of restoring forces, which contributes

o LV diastolic relaxation and early diastolic filling. Noninvasive techniques such as magnetic resonance

maging and echocardiography are useful for understanding LV twist dynamics in clinical settings, and

ata regarding their relative merits and pitfalls are rapidly accumulating. This review is a focused update on

he current and evolving applications of LV twist mechanics in clinical cardiology. First, the theoretical

ramework for understanding the physiological sequence of LV twist during a cardiac cycle is presented.

econd, variations in LV twist encountered in different experimental and clinical situations are discussed.

inally, the review presents an algorithm for routine application of LV twist in clinical differentiation of

atterns of LV dysfunction encountered in day-to-day practice. (J Am Coll Cardiol Img 2008;1:366 –76)
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na, S
ower, in 1669, was the first to describe the
twisting motion of the left ventricle (LV) as
“. . . the wringing of a linen cloth to squeeze

out the water” (1). Over the past 3
enturies, the twist deformation of the LV has
ontinued to intrigue clinicians and researchers
n their quest to understand the performance of
uman heart. Experimental and clinical explo-
ations on LV twist have entailed use of nu-
erous techniques such as implanted ra-

iopaque markers (2), biplane cine angiography
3), sonomicrometry (4,5), optical devices (6),
yroscopic sensors (7), magnetic resonance im-
ging (MRI) (8–10), and echocardiography
11–14). Furthermore, growth of interest in the
uantifying LV twist in clinical settings has

rom the Division of Cardiovascular Diseases, Mayo Clinic Arizo
anuscript received January 3, 2008; revised manuscript received Febr
esulted into development of innovative tech-
iques in which LV twists are readily com-
uted from grayscale cardiac ultrasound images
btained at the bedside.

niform Definitions for Characterization
f LV Twist Deformation

erms such as LV rotation, twist, and torsion
re often used interchangeably for explaining
he wringing motion of the LV. For a uniform
escription, this review emphasizes that the
erm rotation be referred to the rotation of a
hort-axis sections of LV as viewed from the
pical end and defined as the angle between
adial lines connecting the center of mass of

cottsdale, Arizona.
uary 19, 2008, accepted February 29, 2008.
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hat specific cross-sectional plain to a specific point
n the myocardial wall at end diastole and at any
ther time during systole (15). The unit of rotation
s degrees or radians. The base and apex of the LV
otate in opposite directions. The terms twist and
orsion refer to the same phenomenon and should
e used for defining the base-to-apex gradient in
he rotation angle along the longitudinal axis of the
V, expressed in degrees per centimeter or radians
er meter (15). The absolute apex-to-base differ-
nce in LV rotation (also in degrees or radians) is
tated as the net LV twist angle or the net LV
orsion angle (15). Some investigators have also
xpressed torsion as the axial gradient in the rota-
ion angle multiplied by the average of the outer
adii in apical and basal cross-sectional planes,
hereby representing the shear deformation angle
n the epicardial surface (unit degrees or radians)
16). It must be emphasized that LV length and
iameter change dynamically during a cardiac cycle,
nd therefore these normalization schemes permit
omparison of only the peak magnitude of torsion
or different sizes of LV (15,17).

emporal Sequence of LV Twist

igure 1 shows the temporal sequence of LV twist.
uring isovolumic contraction, the LV apex shows

rief clockwise rotation that reverses rapidly and
ecomes counterclockwise during LV ejection
18,19). The magnitude of peak rotation varies
epending on the position of the cross-section
iewed from the tip of LV apex. For standardiza-
ion, therefore, the LV apical cross-section should
e obtained well beyond the papillary muscle, with
ither none or the smallest view of the right
entricle (RV) in the cross-section. Counterclock-
ise twist in ejection is followed by untwisting

clockwise rotation) of the LV apex, which occurs
uring the isovolumic relaxation and the early
eriod of diastole.
In contrast to the LV apex, rotation of the LV

ase is significantly lower in magnitude and oppo-
ite in direction. During isovolumic contraction,
here is a brief counterclockwise rotation, which is
ollowed by clockwise rotation during ejection and
ounterclockwise rotation during isovolumic relax-
tion and early diastolic filling.

Interestingly the description of LV apex rotation
uring the phase of isovolumic contraction has
aried depending on the technique used. Studies

hat have measured LV apex rotation using cine-
ngiographic markers (18), sonomicrometry (11,
4), rotational devices (6), and echocardiography
11,14) have recorded an initial clockwise motion of
he LV apex and counterclockwise motion of the
V base during isovolumic contraction. However,

tudies with magnetic resonance tagging have re-
orted that both the LV base and the apex rotate in
counterclockwise direction during iso-

olumic contraction (10,20). The reason
or this discrepancy remains unclear and
as been attributed to the lower temporal
esolution of magnetic resonance tagging
14).

ink Between Myofiber Geometry
nd Twist Mechanics

n the LV myocardial wall, the myofibers geometry
hanges smoothly from a right-handed helix in the
ubendocardium to a left-handed helix in the sub-
picardium such that the helix angle varies contin-
ously from positive at the endocardium to negative
t the epicardium (Fig. 2). To provide a framework
or interpreting LV twist, Taber et al. (21) proposed

model of helical layer architecture composed of
bliquely aligned muscle fibers embedded in an
sotropic matrix (Fig. 2A). As shown in the model,
n one hand the contraction of the epicardial fibers

0.0

0 200 400 600 800 1000 1200 1400

8.0

16.0

1 2 3 4

Apex Rotation

Base Rotation

Figure 1. Temporal Sequences of LV Twist During a Cardiac Cyc

The left ventricular (LV) rotation from apical and basal cross-section
has been obtained by speckle tracking of B-mode cardiac ultrasoun
(GE Healthcare, Milwaukee, Wisconsin) in a normal healthy subject.
ference between the 2 rotations provides an estimate of net LV twi
(black line). During isovolumic contraction (phase 1), the apex show
clockwise rotation and the base shows a brief counterclockwise rot
During ejection (phase 2), the direction of rotation changes to coun
wise at the LV apex and clockwise at the LV base, respectively. Tors
recoil occurs predominantly during the phase of isovolumic relaxati
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ill rotate the apex in counterclockwise and the
ase in clockwise direction, whereas on the other
and, contraction of subendocardial region will
otate the LV apex and base in exactly the opposite
irection. When both layers contract simulta-
eously, a larger radius of rotation for the outer
picardial layer results in epicardial fibers having a
echanical advantage in dominating the overall

irection of rotation (21).
With the onset of cardiac electromechanical ac-

ivation, the subendocardial fibers near the mid and
pical septal walls are first to be excited with an
pex-to-base sequence of activation (Fig. 3) (22,23).
ubendocardial shortening sequence is accompa-
ied with subepicardial fiber stretching (24,25).

Myofiber Architecture of LV and Models for Understanding
ynamics

rientation in the left ventricular (LV) changes smoothly from a
helix in the subepicardium to a right-handed helix in the suben-
(A, left). Thick-walled cylindrical myofibers models proposed by
l. (A, right) and Taber et al. (B), showing the subendocardial fiber
a right-handed helix and a subepicardial fiber wrapped in a left-

lix. Arrows (A) depict the circumferential components of force
s from force development in each fiber direction. The radii (R1 for
rdium and R2 for the subepicardium) are the lever arms, which
ese circumferential components of force into torque about the
f the cylinder. The subepicardial fibers have a longer arm of
an the subendocardial fibers ( R1� R2). Figure illustration done
well.
ubendocardial shortening and subepicardial L
tretch both contribute to a brief clockwise rotation
f LV apex (18,22,26,27). The transmural spread
f electrical activation results in sequential
ubendocardial-to-subepicardial fiber shortening
24,25). Although the subendocardial forces exceed
ubepicardial forces, the larger radius of subepicar-
ial region produces higher torque to dominate the
irection of rotation. The large subepicardial torque
s coupled transmurally to the midwall and suben-
ocardium and results in global counterclockwise
V rotation near the apex and clockwise rotation
ear the LV base during ejection. In the subepicar-
ium, this twist aids contraction in the principal
ber direction (18). In the midwall, this torque
nhances shortening in the circumferential direc-
ion (18). In the subendocardium, this torque causes
ber rearrangement such that subendocardial fibers
re sheared toward the LV cavity for LV wall
hickening, whereas the LV base is pulled toward
he apex, shortening the longitudinal axis of the
V. Twisting and shearing of the subendocardial
bers deforms the matrix and result in storage of
otential energy, which is subsequently utilized for
iastolic recoil (4).
The torsional recoil during isovolumic relaxation

nd early diastole releases the potential energy
tored in the deformed matrix of the subendocar-
ium (4,28,29). This process is facilitated by pres-
nce of lengthening-shortening gradients in the LV
all, which hasten lengthening of relaxed segments.
or example, in experimental animal models, LV
picardium at the base is seen to lengthen while
ngoing shortening occurs near the LV apex. How-
ver, the subendocardial fibers lengthen near the
V apex and recoil in clockwise direction, like a

wisted coil that springs open, with ongoing short-
ning of the subendocardial region near LV base
22,23). The presence of simultaneous shortening
nd lengthening vectors of deformation within the
V wall allows diastolic restoration to be initiated
ithout changes in LV volume.
Torsion helps bring a uniform distribution of LV

ber stress and fiber shortening across the wall (30).
t has been shown in a mathematical model that
ormal torsion causes sarcomere shortening of 0.20
m in the epicardium and 0.48 �m in the endo-

ardium (31). However, elimination of the torsion
ould decreases epicardial shortening (0.10 �m),

nd increases endocardial shortening (0.55 �m).
hus the disappearance of torsion would increase

ndocardial stress and strain and, therefore, increase
xygen demand, thereby reducing the efficiency of
Figure 2.
LV Twist D

Myofiber o
left-handed
docardium
Ingels et a
wrapped in
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that result
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hysiological Variables Affecting LV Twist

he LV twists increase gradually from infancy to
dulthood. Counterclockwise apical rotation is con-
tant in its magnitude during childhood, whereas
he basal rotation changes over age, initially coun-
erclockwise in infancy to neutral in early child-
ood, and shows the adult clockwise pattern in
dolescence (32). This progressive change has been
ttributed to the maturation of the helical myofiber
rchitecture of the LV wall (32). Subsequently, with
ncreasing age in adult life, subendocardial function

ay gradually attenuate, and LV twist increases
urther because of an unopposed increase in LV
pical rotation (33,34). Age-related degenerative
hanges reduce the elastic resilience of the myocar-
ial wall, and therefore the velocity of untwisting in
arly diastole progressively reduces (34).

Physiological variables such as preload, afterload,
nd contractility alter the extent of LV twist (Table
) (35–37). Twist is greater with higher preload.

Figure 3. Sequence of Twist Mechanics Explained in an Experim

Electric and mechanical activation are initiated in the apical subend
cardial myofibers (right-handed helix) shorten with stretching of the
wise rotation of the apex and a counterclockwise rotation of the le
subepicardial layers shorten simultaneously, with shortening strains
moment of the subepicardial fibers dominates the direction of twis
clockwise directions, respectively. During isovolumic relaxation (IVR)
the subendocardium from the apex toward the base. The subseque
minimum untwisting (D). This figure refers to the experimental mod
Rob Flewell.
or example, higher end-diastolic volumes of LV,
ith end-systolic volume held constant, produce
igher LV twist. Similarly, afterload affects twist,
hat is, twist decreases at higher end-systolic vol-
mes when end-diastolic volumes are held constant.
he effect of preload on twist is about two-thirds as
reat as that of afterload. Like changes in loading
onditions, increasing contractility increases LV
wist; for example, positive inotropic interventions
uch as dobutamine infusion and paired pacing,

al Animal Model

rdial region. During isovolumic contraction (IVC) (A), the subendo-
bepicardial myofibers (left-handed helix), producing a brief clock-
ntricular base. During ejection (B), the subendocardial and
r the apex exceeding those of the base. The larger arm of
using rotation of the apex and base in counterclockwise and
, subepicardium lengthens from the base toward the apex and
eriod of diastole is characterized by relaxation in both layers with
hat was used in Sengupta et al. (22). Figure illustration done by

Table 1. Physiological Variables Influencing Left Ventricular
Twist Mechanics

Physiological Variables Twist Er

Increasing preload (35–37) 1 2

Increasing afterload (35–37) 2 2*

Increasing contractility (9,36,38,39) 1 1

Exercise (40) 1 1

Increasing age (33,34) 1 2*

Numbers in parentheses correspond to the reference number in the Refer-
ences list. *Delayed onset of untwisting.
ent

oca
su

ft ve
nea
t, ca
(C)
nt p
el t
2 � reduced; 1 � increased; Er � early diastolic untwisting velocity.
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reatly increase LV twist (9,36,38,39), whereas
egative inotropic interventions markedly reduce
wist (9).

In the intact circulation, changes in contractility
re often accompanied by changes in loading con-
itions for increasing the twist mechanics of LV.
or example, LV systolic twisting and untwisting
an almost double with short-term exercise because
f augmented rotation of both apical and basal
evels (40), storing additional potential energy that
s released for improving diastolic suction (41,42).
ong-term exercise training may, however, reduce

he LV twist at rest. Soccer players show lower LV
wist values and untwisting velocities than non-
rained individuals (43). It has been postulated that
educed LV twist in soccer players may represent
ncreased torsional reserves that are used in
ncreased-demand situations such as high-intensity
ports. Indeed, a higher resting LV twist value, as
een with advancing age, is associated with attenu-
tion of torsional reserves at peak exercise (44).

linical Techniques for Measuring LV Rotation

he LV rotation can be measured in clinical prac-
ice noninvasively using MRI and echocardiogra-
hy. For several years, MRI examinations were
onsidered the reference standard for noninvasive
ssessment of cardiac biomechanics. The 2 most
ommon MRI methods for measuring myocardial
otion are tagging and phase contrast velocity
apping. Conventional analysis of tagged images

ntails computer-assisted detection of the epicardial
order, endocardial border, and tag lines (45).
order and tag detection can be performed manu-
lly or semiautomatically; however, semiautomatic
echniques generally require some extent of manual
orrection, and either technique is usually quite
ime consuming. Tissue phase mapping, on the
ther hand, directly encodes the velocity of myo-
ardial motion into the MRI signal and offers high
patial resolution of the functional information (1 to

mm) (20). Because both methods in MRI are
ased on multiple breath-held 2-dimensional mea-
urements, the temporal resolution is limited by the
ength of the breath-hold period to 30 to 80 ms.
his limitation has been addressed by development
f a respiratory-gated free-breathing method for
issue phase mapping that allows measurements
ith a temporal resolution comparable to tissue
oppler imaging. A major limitation remains the
mpossibility of routinely studying patients, partic- m
larly those with a pacemaker and/or an internal
ardioverter-defibrillator.

Echocardiography has wide availability, and
herefore is a more feasible technique for bed-
ide assessment of LV twist, including for patients
ith a pacemaker and/or internal cardioverter-
efibrillator. Applications for measuring twist using
chocardiography were initially applied semiquali-
atively by studying the rotational motion of papil-
ary muscles (46). This was followed by attempts to
ecipher the rotational mechanics using tissue
oppler imaging (13); however, the angle depen-

ency of Doppler imaging has remained a major
imitation. Another echocardiographic method for

otion estimation has gained recent acceptance and
s based on 2-dimensional tracking of unique
peckle patterns created by the constructive and
estructive interference of ultrasound beams within
issue (11,12,14). These speckles are cross-
orrelated and tracked on a frame-by-frame basis.
ecause the tracking is fundamentally based on
ray-scale B-mode images, it is independent of
ardiac translation and angle dependency. The ac-
uracy of speckle-tracking imaging has been vali-
ated against sonomicrometry and tagged MRI
12,14). However, the quality of tracking is depen-
ent on the image quality and is vulnerable to
ropouts of ultrasound data and reverberations.
oreover, clinical studies with speckle-tracking

chocardiography have reported a wide variability in
he values for resting LV systolic torsion (47). This
ay be related to the incongruent locations of LV

pical and basal cross-sectional planes, errors re-
ated to through-plane motion, and the variable
ransmural depth of the region of interest for
easuring LV rotation in each cross-sectional view.
ethods for improving reproducibility of measure-
ents should be addressed in future investigations.

linical Applications

iastolic dysfunction. Assessment of twist and peak
ntwisting rates were previously proposed to accu-
ately reflect LV relaxation (48). Interestingly, how-
ver, recent studies indicate that LV twist may
emain preserved in patients with diastolic dysfunc-
ion in presence of normal ejection fraction (49).
or example, Wang et al. (49) studied 67 patients

34 with LV ejection fraction �50% and 33 with
V ejection fraction �50%) undergoing simulta-
eous right heart catheterization and echocardio-
raphic imaging and compared the LV twist

echanics with 20 healthy subjects as a control
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roup. The LV twisting and untwisting rates
ere reduced in patients with LV systolic dys-

unction and depressed ejection fraction, but not
n those with diastolic dysfunction and normal
jection fraction. The onset of untwisting oc-
urred just before aortic valve closure in control
ubjects and was significantly delayed after aortic
alve closure in patients with systolic and dia-
tolic heart failure (Fig. 4). In another study of 49
atients with hypertension, twist was not differ-
nt among groups of patients with or without LV
ypertrophy, although early diastolic LV un-
wisting and untwisting rates were significantly
elayed and reduced in parallel to the severity of
V hypertrophy, as assessed by LV mass index

50). Thus, LV twist is either preserved or
ugmented in patients with diastolic dysfunction
nd normal systolic performance. However, the
nset of LV untwisting and the magnitude of
eak untwisting velocities either remain normal
r are reduced and significantly delayed (Table
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Figure 4. LV Twist in Health and Disease

Rotation of the left ventricular (LV) apex, the LV base, and the net L
are assessed by speckle-tracking echocardiography in a normal sub
ure (B), a patient with cardiac amyloidosis presenting as heart failur
patient with constrictive pericarditis (D). Net ventricular twist is neg
LV apex rotation (B). In contrast, a patient with amyloid cardiomyop
normal subject, the onset of untwisting occurs just before the aorti
myopathy, the onset of untwisting is delayed after AVC (C). The pa

net ventricular twist and marked delay in the onset of untwisting. Phas
). More studies are required to explore the
ariability of this observation.
yocardial ischemia and the extent of LV infarct. In
atients with anterior wall myocardial infarction,
eak circumferential strain in the apex is signifi-
antly depressed in patients with LV systolic dys-
unction compared with those with preserved sys-
olic function (51). In addition, LV twist is severely
epressed in patients who have reduced LV ejection
raction, mainly because of the reduced magnitude
f LV apical rotation. With the onset of systolic
ysfunction, diastolic untwisting is also reduced and
elayed (51). In contrast, systolic twist is main-
ained in patients with anterior wall myocardial
nfarction with relatively preserved LV systolic
unction (51,52). This is associated with a milder
eduction of circumferential strain in the LV apex.
he role of measuring LV twist during stress

chocardiography has not been systematically eval-
ated. Because myocardial perfusion defects in-
uced during stress testing are largely subendocar-
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ist angle (shown in red, green, and black colors, respectively)
(A), a patient with dilated cardiomyopathy with systolic heart fail-
ith normal ejection fraction (diastolic heart failure) (C), and a
e in dilated cardiomyopathy because of complete reversal of the
y shows relatively preserved magnitude of net LV twist angle. In a
lve closure (AVC) (A); however, in the patient with amyloid cardio-
with constrictive pericarditis (D) shows reduced magnitude of
-

-

D

-

-

B

V tw
ject
e w
ativ
ath
c va
tient
es 1 through 4 are defined in the Figure 3 legend.
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ial, it is likely that LV circumferential deformation
nd twist, which reflect subepicardial function, may
emain unaltered. This postulate is supported by
bservations from experimental studies that have
xplored the influence of ischemia on LV rotation
nd reported greater-than-normal apical rotation
ith subendocardial ischemia and less-than-normal

pical rotation with transmural ischemia (9,53).
ransmural heterogeneity of LV mechanics in valvular
eart diseases. In aortic valve stenosis, coronary
ow diminishes in the subendocardial region rela-
ive to the subepicardial region. The LV twist is
ignificantly increased, although diastolic apical un-
wisting is prolonged in comparison with normal
ubjects (54–56). The delay in apical untwisting is
ssociated with diastolic dysfunction and elevated
V end-diastolic filling pressures (54,55). After
ortic valve replacement, LV twist normalizes.
evel of recovery is, however, dependent on under-

ying coronary artery disease (57). Van der Toorn et
l. (56) used the ratio of LV twist to LV shortening
or assessing LV contractile function in patients
ith aortic stenosis. The twist shortening ratio was

ignificantly higher in aortic stenosis than in a
roup of healthy volunteers. After aortic valve
eplacement, the ratio partially returned to normal.
imilarly, subendocardial contractile function was
ound to be decreased before aortic valve replace-
ent and significantly recovered 3 months after

ortic valve replacement, even before LV remodel-
ng was obvious (56).

Changes in LV twist have also been studied in
atients with mitral regurgitation (MR) (58–60).
n an experimental canine model, Tibayan et al.
58) showed that the progression from acute to

Table 2. Left Ventricular Twist Mechanics in Different
Cardiac Diseases

Cardiac Diseases Twist Er

Systolic heart failure 2 2

Diastolic heart failure (49,50) N or 1 N or 2

Aortic stenosis (54–56) N or 1 2

Mitral regurgitation (58–60) 2 2

Transmural infarction (51) 2 2

Subendocardial ischemia N N or 2

Dilated cardiomyopathy (65) 2 2

Hypertrophic cardiomyopathy (70,71) N or 1 2

Restrictive cardiomyopathy (73) N or 1 N

Constrictive pericarditis (73) 2 2

Numbers in parentheses correspond to the reference number in the Refer-
ences list.
2 � reduced; 1 � increased; Er � early diastolic untwisting velocity; N �
normal.
hronic MR was associated with decreased peak 1
ystolic twist, delayed time to peak systolic twist
occurring after end-ejection in subjects with MR),
nd reduction in diastolic recoil. It has been sug-
ested that chronic MR reduces systolic LV twist
ecause of a decreased leverage of the epicardial
bers relative to the endocardial muscle fibers.
lthough increased preload will tend to increase

ystolic twist (35), chronic MR is associated with
omplex LV adaptive remodeling and eccentric
ypertrophy. The effect of chronic MR on twist
robably depends on the extent of subclinical LV
ystolic dysfunction. Peak untwisting velocity in

R remains normal, but correlates negatively with
nd-systolic dimension and regurgitant volume,
uggesting that peak untwisting velocity, like peak
ystolic twist, depends on the stage of the disease
61).
ongenital heart diseases. There is limited informa-
ion currently regarding the utility of assessing LV
otation in patients with congenital heart diseases.
ecause echocardiography represents the noninva-

ive tool most commonly used in pediatric cardiol-
gy, application of speckle-tracking echocardiogra-
hy for bedside assessment of LV strain and twist
eformation may provide important insights into
echanical adaptive responses of the RV and LV in

ongenital heart diseases. For example, in the nor-
al heart, both RV and LV are coupled for twisting

n the same direction (62). However, in patients
ith transposition of the great arteries, the mor-
hologic RV supports the systemic circulation. It
as been shown recently that the systemic RV
ontraction in these patients resembles that of the
ormal LV, however, without the ventricular twist
63). The global performance of the systemic ven-
ricle is dependent more on the circumferential than
he longitudinal free wall contraction, and may
epresent an adaptive response to the systemic load
64). As twist contributes to energy-efficient ejec-
ion, reduced twist might represent a potential for
yocardial dysfunction (63). However, this hy-

othesis requires further prospective evaluation.
V twist variations in cardiomyopathy. In dilated car-
iomyopathy, amplitude of peak LV systolic twist is
mpaired in proportion to the global LV function
65). This reduction in LV twist is accounted for by
arked attenuation of LV apical rotation, whereas

asal rotation may be spared. In some cases, rota-
ion of the apex may be abruptly interrupted such
hat in the initial part of systole, the LV base and
pex rotate in the same direction (Fig. 4). After the
nitial part of the systole, the rotation diverges into
of 2 patterns: either continuation of identical
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otation at all levels for the remainder of systole
Fig. 4) or a divergence of rotation so that the apex
nd base rotate in opposite directions (66,67).
here is limited information presently on the effects
f therapeutic measures such as cardiac resynchro-
ization therapy (68) or LV reduction surgeries
66,67) on LV twist. Preliminary data suggest that
V reduction surgery does not change LV twist,
lthough the rate of early diastolic untwisting may
mprove (66,67). Similarly, LV torsional mechanics
o not change after cardiac resynchronization ther-
py despite improvements in LV circumferential
hortening mechanics (69). This suggests that loss
f LV torsional mechanics in remodeled hearts may
e difficult to restore once already established.
In contrast to dilated cardiomyopathy, patients

ith hypertrophic cardiomyopathy show relatively
reserved net LV twist (70), although the apex-to-
ase progression of the LV twist sequence is altered.
otation at the mid-LV level becomes clockwise,

imilar to the direction of rotation of the LV base
opposite to normal) (71). The area of null rotation,
hich represents the region of LV where rotation

rosses over from clockwise into a counterclockwise
irection, is apically displaced. This causes regional
eterogeneity of LV twist, reducing the gradient of
V rotation for the basal aspect of LV, while
xaggerating it toward the LV apex (71). During
lcohol septal ablation, LV twist in hypertrophic
ardiomyopathy may decrease transiently with oc-
lusion of the septal perforator; however, after the
njection of ethanol, twist increases to higher-than-
aseline angles. Most of the improvement in twist is
ccounted for by an increase in LV apical rotation
72). Despite a preserved LV twist magnitude,
atients with hypertrophic cardiomyopathy have
educed efficiency in generating untwisting. At rest,
eak untwisting velocities are only marginally re-
uced in comparison with normal subjects. How-
ver, these differences became more dramatic with
xercise, with the patients showing much lower
ntwisting velocities when compared with normal
ubjects (41).
ifferentiation of constrictive pericarditis from restric-
ive cardiomyopathy. Both constrictive pericarditis
nd restrictive cardiomyopathy may have similar
linical presentations related to altered LV diastolic
unction. However, the mechanism leading to the
V diastolic function is different. In restrictive
ardiomyopathy, the LV wall is resistant to stretch
ecause of endocardial disease. On the other hand,
ethering of subepicardial layers and an altered

ompliance of thickened pericardium is the main d
eason for LV diastolic filling impairment in con-
triction. The marked endocardial dysfunction with
elative sparing of epicardial function leads to ab-
ormal longitudinal mechanics with relative sparing
f circumferential and twist mechanics in restrictive
ardiomyopathy (73). However, in constrictive peri-
arditis, marked epicardial dysfunction leads to
redominant impairment of circumferential short-
ning (74) and twist mechanics (73), while rela-
ively sparing subendocardial longitudinal mechan-
cs (Fig. 4). Similarly, congenital defects of
ericardium cause a lack of LV twist while main-
aining LV regional myocardial function (75), sug-
esting that normal pericardial layers may have
mportant roles in modulating LV rotational

echanics.

Proposal for Assessing the Pattern
f LV Dysfunction

raditional concepts of heart failure have largely
ocused on the hemodynamic consequences of LV
ystolic dysfunction. Using a time-dependent model
f heart failure, it has been proposed that diastolic
nd systolic heart failure are phenotypic expressions
f the same disease process that evolves gradually as
continuum of clinical events (76). Assessment of

ardiac muscle mechanics may provide superior
athophysiological insights into the mechanism of
eart failure; however, this remains inadequately
ddressed.

The majority of progressive myocardial diseases,
ncluding coronary ischemia, tend to predominantly
ause subendocardial dysfunction. This results in an
arly preferential involvement of longitudinal LV
echanics, which can be identified even in a sub-

linical state. The timing of contraction–relaxation
ross-over is the most vulnerable period of myofi-
ers mechanics (77,78). In early stages, therefore,
entricular relaxation either regionally or globally
ecomes abnormally slow and impaired with a
rogressive loss of the ventricle to modulate the
iming of onset of relaxation. The epicardial func-
ion may remain relatively unaffected, and circum-
erential strain and twist either remains normal or
hows exaggerated compensation for preserving the
V systolic performance. Compensatory features

uch as myocardial hypertrophy attempt to reduce
ubendocardial stress; however, such changes are
sually maladaptive and detrimental (79). Further-
ore, loss of cardiac muscle resilience also causes

rogressive delay in LV untwisting. Loss of early

iastolic longitudinal relaxation and delayed un-
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wisting attenuates LV diastolic performance, pro-
ucing elevation of LV filling pressures. This stage
anifests as heart failure with preserved systolic

unction. With further progression of disease, sub-
picardial function starts deteriorating, resulting in
arked reduction of LV circumferential and twist
echanics. This causes progressive loss of LV

jection fraction and results in systolic heart failure.
cute transmural ischemia or infarction also results

n simultaneous impairment of LV longitudinal and
orsional mechanics, resulting in LV systolic dys-
unction. Pericardial diseases, on the other hand,
ause subepicardial tethering and predominant af-
ection of LV torsional mechanics, while relatively
paring subendocardial function. A disease process
uch as radiation that affects both the pericardium
nd the subendocardial region may produce early
ttenuation of both longitudinal and circumferen-
ial LV function. Relative differences in longitudi-
al and torsional mechanics therefore may provide
athophysiological insight into the mechanism of
V dysfunction. Application of such algorithms

equires prospective evaluation in future clinical
uation of cardiac apex rotation with an
13. Notomi Y, Setser R

Assessment of lef
inal Comments

growing body of evidence suggests that assess-
ent of LV rotation and twist is feasible in clinical

ettings. The relationship between longitudinal and
orsional mechanics of the LV provides insight into
he transmural heterogeneity in myocardial contrac-
ile function. The presence of a subendocardial-to-
ubepicardial gradient in LV mechanics may pro-
ide a useful clinical measure for early recognition
f a subclinical state that is likely to progress into
ither systolic or diastolic heart failure. With the
dvent of 3-dimensional echocardiography, newer
lgorithms for the characterization of ventricular
wist mechanics hold promise for better under-
tanding mechanisms of ventricular dysfunction and
mproving management of heart failure patients.
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