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FROM PICTURES TO PRACTICE PARADIGMS

Twist Mechanics of the Left Ventricle

Principles and Application

Partho P. Sengupta, MBBS, MD, DM, A. Jamil Tajik, MD,
Krishnaswamy Chandrasekaran, MD, Bijoy K. Khandheria, MD

Scottsdale, Arizona

Left ventricular (LV) twist or torsion represents the mean longitudinal gradient of the net difference in
clockwise and counterclockwise rotation of the LV apex and base, as viewed from LV apex. Twist during
ejection predominantly deforms the subendocardial fiber matrix, resulting in storage of potential energy.
Subsequent recoil of twist deformation is associated with the release of restoring forces, which contributes
to LV diastolic relaxation and early diastolic filling. Noninvasive techniques such as magnetic resonance
imaging and echocardiography are useful for understanding LV twist dynamics in clinical settings, and
dataregarding their relative merits and pitfalls are rapidly accumulating. This review is a focused update on
the current and evolving applications of LV twist mechanics in clinical cardiology. First, the theoretical
framework for understanding the physiological sequence of LV twist during a cardiac cycle is presented.
Second, variations in LV twist encountered in different experimental and clinical situations are discussed.
Finally, the review presents an algorithm for routine application of LV twist in clinical differentiation of
patterns of LV dysfunction encountered in day-to-day practice. (J Am Coll Cardiol Img 2008;1:366-76)
© 2008 by the American College of Cardiology Foundation

ower, in 1669, was the first to describe the
twisting motion of the left ventricle (LV) as

“. .. the wringing of a linen cloth to squeeze
out the water” (1). Over the past 3
centuries, the twist deformation of the LV has
continued to intrigue clinicians and researchers
in their quest to understand the performance of
human heart. Experimental and clinical explo-
rations on LV twist have entailed use of nu-
merous techniques such as implanted ra-
diopaque markers (2), biplane cine angiography
(3), sonomicrometry (4,5), optical devices (6),
gyroscopic sensors (7), magnetic resonance im-
aging (MRI) (8-10), and echocardiography
(11-14). Furthermore, growth of interest in the
quantifying LV twist in clinical settings has

resulted into development of innovative tech-
niques in which LV twists are readily com-
puted from grayscale cardiac ultrasound images
obtained at the bedside.

Uniform Definitions for Characterization
of LV Twist Deformation

Terms such as LV rotation, twist, and torsion
are often used interchangeably for explaining
the wringing motion of the LV. For a uniform
description, this review emphasizes that the
term rotation be referred to the rotation of a
short-axis sections of LV as viewed from the
apical end and defined as the angle between
radial lines connecting the center of mass of
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that specific cross-sectional plain to a specific point
in the myocardial wall at end diastole and at any
other time during systole (15). The unit of rotation
is degrees or radians. The base and apex of the LV
rotate in opposite directions. The terms twist and
torsion refer to the same phenomenon and should
be used for defining the base-to-apex gradient in
the rotation angle along the longitudinal axis of the
LV, expressed in degrees per centimeter or radians
per meter (15). The absolute apex-to-base differ-
ence in LV rotation (also in degrees or radians) is
stated as the net LV twist angle or the net LV
torsion angle (15). Some investigators have also
expressed torsion as the axial gradient in the rota-
tion angle multiplied by the average of the outer
radii in apical and basal cross-sectional planes,
thereby representing the shear deformation angle
on the epicardial surface (unit degrees or radians)
(16). It must be emphasized that LV length and
diameter change dynamically during a cardiac cycle,
and therefore these normalization schemes permit
comparison of only the peak magnitude of torsion

for different sizes of LV (15,17).

Temporal Sequence of LV Twist

Figure 1 shows the temporal sequence of LV twist.
During isovolumic contraction, the LV apex shows
brief clockwise rotation that reverses rapidly and
becomes counterclockwise during LV ejection
(18,19). The magnitude of peak rotation varies
depending on the position of the cross-section
viewed from the tip of LV apex. For standardiza-
tion, therefore, the LV apical cross-section should
be obtained well beyond the papillary muscle, with
either none or the smallest view of the right
ventricle (RV) in the cross-section. Counterclock-
wise twist in ejection is followed by untwisting
(clockwise rotation) of the LV apex, which occurs
during the isovolumic relaxation and the early
period of diastole.

In contrast to the LV apex, rotation of the LV
base is significantly lower in magnitude and oppo-
site in direction. During isovolumic contraction,
there is a brief counterclockwise rotation, which is
followed by clockwise rotation during ejection and
counterclockwise rotation during isovolumic relax-
ation and early diastolic filling.

Interestingly the description of LV apex rotation
during the phase of isovolumic contraction has
varied depending on the technique used. Studies
that have measured LV apex rotation using cine-
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angiographic markers (18), sonomicrometry (11,
14), rotational devices (6), and echocardiography
(11,14) have recorded an initial clockwise motion of
the LV apex and counterclockwise motion of the
LV base during isovolumic contraction. However,
studies with magnetic resonance tagging have re-
ported that both the LV base and the apex rotate in
a counterclockwise direction during iso-
volumic contraction (10,20). The reason
for this discrepancy remains unclear and
has been attributed to the lower temporal
resolution of magnetic resonance tagging

(14) MR = mitral regurgitation

imaging

Link Between Myofiber Geometry
and Twist Mechanics

In the LV myocardial wall, the myofibers geometry
changes smoothly from a right-handed helix in the
subendocardium to a left-handed helix in the sub-
epicardium such that the helix angle varies contin-
uously from positive at the endocardium to negative
at the epicardium (Fig. 2). To provide a framework
for interpreting LV twist, Taber et al. (21) proposed
a model of helical layer architecture composed of
obliquely aligned muscle fibers embedded in an
isotropic matrix (Fig. 2A). As shown in the model,
on one hand the contraction of the epicardial fibers
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Figure 1. Temporal Sequences of LV Twist During a Cardiac Cycle

(phase 3) and early diastolic filling (phase 4).

The left ventricular (LV) rotation from apical and basal cross-sections of LV
has been obtained by speckle tracking of B-mode cardiac ultrasound images
(GE Healthcare, Milwaukee, Wisconsin) in a normal healthy subject. The dif-
ference between the 2 rotations provides an estimate of net LV twist angle
(black line). During isovolumic contraction (phase 1), the apex shows a brief
clockwise rotation and the base shows a brief counterclockwise rotation.
During ejection (phase 2), the direction of rotation changes to counterclock-
wise at the LV apex and clockwise at the LV base, respectively. Torsional
recoil occurs predominantly during the phase of isovolumic relaxation
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Figure 2. Myofiber Architecture of LV and Models for Understanding
LV Twist Dynamics

Myofiber orientation in the left ventricular (LV) changes smoothly from a
left-handed helix in the subepicardium to a right-handed helix in the suben-
docardium (A, left). Thick-walled cylindrical myofibers models proposed by
Ingels et al. (A, right) and Taber et al. (B), showing the subendocardial fiber
wrapped in a right-handed helix and a subepicardial fiber wrapped in a left-
handed helix. Arrows (A) depict the circumferential components of force
that results from force development in each fiber direction. The radii (R, for
subendocardium and R, for the subepicardium) are the lever arms, which
convert these circumferential components of force into torque about the
long axis of the cylinder. The subepicardial fibers have a longer arm of
moment than the subendocardial fibers ( R;< R,). Figure illustration done
by Rob Flewell.

will rotate the apex in counterclockwise and the
base in clockwise direction, whereas on the other
hand, contraction of subendocardial region will
rotate the LV apex and base in exactly the opposite
direction. When both layers contract simulta-
neously, a larger radius of rotation for the outer
epicardial layer results in epicardial fibers having a
mechanical advantage in dominating the overall
direction of rotation (21).

With the onset of cardiac electromechanical ac-
tivation, the subendocardial fibers near the mid and
apical septal walls are first to be excited with an
apex-to-base sequence of activation (Fig. 3) (22,23).
Subendocardial shortening sequence is accompa-
nied with subepicardial fiber stretching (24,25).

Subendocardial shortening and subepicardial
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stretch both contribute to a brief clockwise rotation
of LV apex (18,22,26,27). The transmural spread
of electrical activation results in sequential
subendocardial-to-subepicardial fiber shortening
(24,25). Although the subendocardial forces exceed
subepicardial forces, the larger radius of subepicar-
dial region produces higher torque to dominate the
direction of rotation. The large subepicardial torque
is coupled transmurally to the midwall and suben-
docardium and results in global counterclockwise
LV rotation near the apex and clockwise rotation
near the LV base during ejection. In the subepicar-
dium, this twist aids contraction in the principal
fiber direction (18). In the midwall, this torque
enhances shortening in the circumferential direc-
tion (18). In the subendocardium, this torque causes
fiber rearrangement such that subendocardial fibers
are sheared toward the LV cavity for LV wall
thickening, whereas the LV base is pulled toward
the apex, shortening the longitudinal axis of the
LV. Twisting and shearing of the subendocardial
fibers deforms the matrix and result in storage of
potential energy, which is subsequently utilized for
diastolic recoil (4).

The torsional recoil during isovolumic relaxation
and early diastole releases the potential energy
stored in the deformed matrix of the subendocar-
dium (4,28,29). This process is facilitated by pres-
ence of lengthening-shortening gradients in the LV
wall, which hasten lengthening of relaxed segments.
For example, in experimental animal models, LV
epicardium at the base is seen to lengthen while
ongoing shortening occurs near the LV apex. How-
ever, the subendocardial fibers lengthen near the
LV apex and recoil in clockwise direction, like a
twisted coil that springs open, with ongoing short-
ening of the subendocardial region near LV base
(22,23). The presence of simultaneous shortening
and lengthening vectors of deformation within the
LV wall allows diastolic restoration to be initiated
without changes in LV volume.

Torsion helps bring a uniform distribution of LV
fiber stress and fiber shortening across the wall (30).
It has been shown in a mathematical model that
normal torsion causes sarcomere shortening of 0.20
pm in the epicardium and 0.48 wm in the endo-
cardium (31). However, elimination of the torsion
would decreases epicardial shortening (0.10 wm),
and increases endocardial shortening (0.55 pm).
Thus the disappearance of torsion would increase
endocardial stress and strain and, therefore, increase
oxygen demand, thereby reducing the efficiency of
LV systolic function.
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Figure 3. Sequence of Twist Mechanics Explained in an Experimental Animal Model

Electric and mechanical activation are initiated in the apical subendocardial region. During isovolumic contraction (IVC) (A), the subendo-
cardial myofibers (right-handed helix) shorten with stretching of the subepicardial myofibers (left-handed helix), producing a brief clock-
wise rotation of the apex and a counterclockwise rotation of the left ventricular base. During ejection (B), the subendocardial and
subepicardial layers shorten simultaneously, with shortening strains near the apex exceeding those of the base. The larger arm of
moment of the subepicardial fibers dominates the direction of twist, causing rotation of the apex and base in counterclockwise and
clockwise directions, respectively. During isovolumic relaxation (IVR) (C), subepicardium lengthens from the base toward the apex and
the subendocardium from the apex toward the base. The subsequent period of diastole is characterized by relaxation in both layers with
minimum untwisting (D). This figure refers to the experimental model that was used in Sengupta et al. (22). Figure illustration done by

Physiological Variables Affecting LV Twist

The LV twists increase gradually from infancy to
adulthood. Counterclockwise apical rotation is con-
stant in its magnitude during childhood, whereas
the basal rotation changes over age, initially coun-
terclockwise in infancy to neutral in early child-
hood, and shows the adult clockwise pattern in
adolescence (32). This progressive change has been
attributed to the maturation of the helical myofiber
architecture of the LV wall (32). Subsequently, with
increasing age in adult life, subendocardial function
may gradually attenuate, and LV twist increases
further because of an unopposed increase in LV
apical rotation (33,34). Age-related degenerative
changes reduce the elastic resilience of the myocar-
dial wall, and therefore the velocity of untwisting in
early diastole progressively reduces (34).
Physiological variables such as preload, afterload,
and contractility alter the extent of LV twist (Table
1) (35-37). Twist is greater with higher preload.
For example, higher end-diastolic volumes of LV,

with end-systolic volume held constant, produce
higher LV twist. Similarly, afterload affects twist,
that is, twist decreases at higher end-systolic vol-
umes when end-diastolic volumes are held constant.
The effect of preload on twist is about two-thirds as
great as that of afterload. Like changes in loading
conditions, increasing contractility increases LV
twist; for example, positive inotropic interventions
such as dobutamine infusion and paired pacing,

Table 1. Physiological Variables Influencing Left Ventricular
Twist Mechanics

Physiological Variables Twist E,
Increasing preload (35-37) T \
Increasing afterload (35-37) l L*
Increasing contractility (9,36,38,39) 1 1
Exercise (40) T 1
Increasing age (33,34) 1 L

Numbers in parentheses correspond to the reference number in the Refer-
ences list. *Delayed onset of untwisting.
| = reduced; 1 = increased; E, = early diastolic untwisting velocity.
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greatly increase LV twist (9,36,38,39), whereas
negative inotropic interventions markedly reduce
twist (9).

In the intact circulation, changes in contractility
are often accompanied by changes in loading con-
ditions for increasing the twist mechanics of LV.
For example, LV systolic twisting and untwisting
can almost double with short-term exercise because
of augmented rotation of both apical and basal
levels (40), storing additional potential energy that
is released for improving diastolic suction (41,42).
Long-term exercise training may, however, reduce
the LV twist at rest. Soccer players show lower LV
twist values and untwisting velocities than non-
trained individuals (43). It has been postulated that
reduced LV twist in soccer players may represent
increased torsional reserves that are used in
increased-demand situations such as high-intensity
sports. Indeed, a higher resting LV twist value, as
seen with advancing age, is associated with attenu-
ation of torsional reserves at peak exercise (44).

Clinical Techniques for Measuring LV Rotation

The LV rotation can be measured in clinical prac-
tice noninvasively using MRI and echocardiogra-
phy. For several years, MRI examinations were
considered the reference standard for noninvasive
assessment of cardiac biomechanics. The 2 most
common MRI methods for measuring myocardial
motion are tagging and phase contrast velocity
mapping. Conventional analysis of tagged images
entails computer-assisted detection of the epicardial
border, endocardial border, and tag lines (45).
Border and tag detection can be performed manu-
ally or semiautomatically; however, semiautomatic
techniques generally require some extent of manual
correction, and either technique is usually quite
time consuming. Tissue phase mapping, on the
other hand, directly encodes the velocity of myo-
cardial motion into the MRI signal and offers high
spatial resolution of the functional information (1 to
3 mm) (20). Because both methods in MRI are
based on multiple breath-held 2-dimensional mea-
surements, the temporal resolution is limited by the
length of the breath-hold period to 30 to 80 ms.
This limitation has been addressed by development
of a respiratory-gated free-breathing method for
tissue phase mapping that allows measurements
with a temporal resolution comparable to tissue
Doppler imaging. A major limitation remains the
impossibility of routinely studying patients, partic-
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ularly those with a pacemaker and/or an internal
cardioverter-defibrillator.

Echocardiography has wide availability, and
therefore is a more feasible technique for bed-
side assessment of LV twist, including for patients
with a pacemaker and/or internal cardioverter-
defibrillator. Applications for measuring twist using
echocardiography were initially applied semiquali-
tatively by studying the rotational motion of papil-
lary muscles (46). This was followed by attempts to
decipher the rotational mechanics using tissue
Doppler imaging (13); however, the angle depen-
dency of Doppler imaging has remained a major
limitation. Another echocardiographic method for
motion estimation has gained recent acceptance and
is based on 2-dimensional tracking of unique
speckle patterns created by the constructive and
destructive interference of ultrasound beams within
tissue (11,12,14). These speckles are cross-
correlated and tracked on a frame-by-frame basis.
Because the tracking is fundamentally based on
gray-scale B-mode images, it is independent of
cardiac translation and angle dependency. The ac-
curacy of speckle-tracking imaging has been vali-
dated against sonomicrometry and tagged MRI
(12,14). However, the quality of tracking is depen-
dent on the image quality and is vulnerable to
dropouts of ultrasound data and reverberations.
Moreover, clinical studies with speckle-tracking
echocardiography have reported a wide variability in
the values for resting LV systolic torsion (47). This
may be related to the incongruent locations of LV
apical and basal cross-sectional planes, errors re-
lated to through-plane motion, and the variable
transmural depth of the region of interest for
measuring LV rotation in each cross-sectional view.
Methods for improving reproducibility of measure-
ments should be addressed in future investigations.

Clinical Applications

Diastolic dysfunction. Assessment of twist and peak
untwisting rates were previously proposed to accu-
rately reflect LV relaxation (48). Interestingly, how-
ever, recent studies indicate that LV twist may
remain preserved in patients with diastolic dysfunc-
tion in presence of normal ejection fraction (49).
For example, Wang et al. (49) studied 67 patients
(34 with LV ejection fraction <50% and 33 with
LV ejection fraction >50%) undergoing simulta-
neous right heart catheterization and echocardio-
graphic imaging and compared the LV twist
mechanics with 20 healthy subjects as a control
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group. The LV twisting and untwisting rates
were reduced in patients with LV systolic dys-
function and depressed ejection fraction, but not
in those with diastolic dysfunction and normal
ejection fraction. The onset of untwisting oc-
curred just before aortic valve closure in control
subjects and was significantly delayed after aortic
valve closure in patients with systolic and dia-
stolic heart failure (Fig. 4). In another study of 49
patients with hypertension, twist was not differ-
ent among groups of patients with or without LV
hypertrophy, although early diastolic LV un-
twisting and untwisting rates were significantly
delayed and reduced in parallel to the severity of
LV hypertrophy, as assessed by LV mass index
(50). Thus, LV twist is either preserved or
augmented in patients with diastolic dysfunction
and normal systolic performance. However, the
onset of LV untwisting and the magnitude of
peak untwisting velocities either remain normal

or are reduced and significantly delayed (Table
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2). More studies are required to explore the
variability of this observation.

Myocardial ischemia and the extent of LV infarct. In
patients with anterior wall myocardial infarction,
peak circumferential strain in the apex is signifi-
cantly depressed in patients with LV systolic dys-
function compared with those with preserved sys-
tolic function (51). In addition, LV twist is severely
depressed in patients who have reduced LV ejection
fraction, mainly because of the reduced magnitude
of LV apical rotation. With the onset of systolic
dysfunction, diastolic untwisting is also reduced and
delayed (51). In contrast, systolic twist is main-
tained in patients with anterior wall myocardial
infarction with relatively preserved LV systolic
function (51,52). This is associated with a milder
reduction of circumferential strain in the LV apex.
The role of measuring LV twist during stress
echocardiography has not been systematically eval-
uated. Because myocardial perfusion defects in-
duced during stress testing are largely subendocar-
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Figure 4. LV Twist in Health and Disease

Rotation of the left ventricular (LV) apex, the LV base, and the net LV twist angle (shown in red, green, and black colors, respectively)
are assessed by speckle-tracking echocardiography in a normal subject (A), a patient with dilated cardiomyopathy with systolic heart fail-
ure (B), a patient with cardiac amyloidosis presenting as heart failure with normal ejection fraction (diastolic heart failure) (C), and a
patient with constrictive pericarditis (D). Net ventricular twist is negative in dilated cardiomyopathy because of complete reversal of the
LV apex rotation (B). In contrast, a patient with amyloid cardiomyopathy shows relatively preserved magnitude of net LV twist angle. In a
normal subject, the onset of untwisting occurs just before the aortic valve closure (AVC) (A); however, in the patient with amyloid cardio-
myopathy, the onset of untwisting is delayed after AVC (C). The patient with constrictive pericarditis (D) shows reduced magnitude of
net ventricular twist and marked delay in the onset of untwisting. Phases 1 through 4 are defined in the Figure 3 legend.
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Table 2. Left Ventricular Twist Mechanics in Different
Cardiac Diseases

Cardiac Diseases Twist E,
Systolic heart failure ! l
Diastolic heart failure (49,50) Nor 1 Nor |
Aortic stenosis (54-56) Nor 1 1
Mitral regurgitation (58-60) l |
Transmural infarction (51) ! 1
Subendocardial ischemia N Nor |
Dilated cardiomyopathy (65) l |
Hypertrophic cardiomyopathy (70,71) Nor 1 |
Restrictive cardiomyopathy (73) Nor 1 N
Constrictive pericarditis (73) ! |

Numbers in parentheses correspond to the reference number in the Refer-
ences list.

| = reduced; 1 = increased; E, = early diastolic untwisting velocity; N =
normal.

dial, it is likely that LV circumferential deformation
and twist, which reflect subepicardial function, may
remain unaltered. This postulate is supported by
observations from experimental studies that have
explored the influence of ischemia on LV rotation
and reported greater-than-normal apical rotation
with subendocardial ischemia and less-than-normal
apical rotation with transmural ischemia (9,53).
Transmural heterogeneity of LV mechanics in valvular
heart diseases. In aortic valve stenosis, coronary
flow diminishes in the subendocardial region rela-
tive to the subepicardial region. The LV twist is
significantly increased, although diastolic apical un-
twisting is prolonged in comparison with normal
subjects (54—56). The delay in apical untwisting is
associated with diastolic dysfunction and elevated
LV end-diastolic filling pressures (54,55). After
aortic valve replacement, LV twist normalizes.
Level of recovery is, however, dependent on under-
lying coronary artery disease (57). Van der Toorn et
al. (56) used the ratio of LV twist to LV shortening
for assessing LV contractile function in patients
with aortic stenosis. The twist shortening ratio was
significantly higher in aortic stenosis than in a
group of healthy volunteers. After aortic valve
replacement, the ratio partially returned to normal.
Similarly, subendocardial contractile function was
found to be decreased before aortic valve replace-
ment and significantly recovered 3 months after
aortic valve replacement, even before LV remodel-
ing was obvious (56).

Changes in LV twist have also been studied in
patients with mitral regurgitation (MR) (58-60).
In an experimental canine model, Tibayan et al.
(58) showed that the progression from acute to
chronic MR was associated with decreased peak
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systolic twist, delayed time to peak systolic twist
(occurring after end-ejection in subjects with MR),
and reduction in diastolic recoil. It has been sug-
gested that chronic MR reduces systolic LV twist
because of a decreased leverage of the epicardial
fibers relative to the endocardial muscle fibers.
Although increased preload will tend to increase
systolic twist (35), chronic MR is associated with
complex LV adaptive remodeling and eccentric
hypertrophy. The effect of chronic MR on twist
probably depends on the extent of subclinical LV
systolic dysfunction. Peak untwisting velocity in
MR remains normal, but correlates negatively with
end-systolic dimension and regurgitant volume,
suggesting that peak untwisting velocity, like peak
systolic twist, depends on the stage of the disease
(61).

Congenital heart diseases. There is limited informa-
tion currently regarding the utility of assessing LV
rotation in patients with congenital heart diseases.
Because echocardiography represents the noninva-
sive tool most commonly used in pediatric cardiol-
ogy, application of speckle-tracking echocardiogra-
phy for bedside assessment of LV strain and twist
deformation may provide important insights into
mechanical adaptive responses of the RV and LV in
congenital heart diseases. For example, in the nor-
mal heart, both RV and LV are coupled for twisting
in the same direction (62). However, in patients
with transposition of the great arteries, the mor-
phologic RV supports the systemic circulation. It
has been shown recently that the systemic RV
contraction in these patients resembles that of the
normal LV, however, without the ventricular twist
(63). The global performance of the systemic ven-
tricle is dependent more on the circumferential than
the longitudinal free wall contraction, and may
represent an adaptive response to the systemic load
(64). As twist contributes to energy-efficient ejec-
tion, reduced twist might represent a potential for
myocardial dysfunction (63). However, this hy-
pothesis requires further prospective evaluation.

LV twist variations in cardiomyopathy. In dilated car-
diomyopathy, amplitude of peak LV systolic twist is
impaired in proportion to the global LV function
(65). This reduction in LV twist is accounted for by
marked attenuation of LV apical rotation, whereas
basal rotation may be spared. In some cases, rota-
tion of the apex may be abruptly interrupted such
that in the initial part of systole, the LV base and
apex rotate in the same direction (Fig. 4). After the
initial part of the systole, the rotation diverges into
1 of 2 patterns: either continuation of identical
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rotation at all levels for the remainder of systole
(Fig. 4) or a divergence of rotation so that the apex
and base rotate in opposite directions (66,67).
There is limited information presently on the effects
of therapeutic measures such as cardiac resynchro-
nization therapy (68) or LV reduction surgeries
(66,67) on LV twist. Preliminary data suggest that
LV reduction surgery does not change LV twist,
although the rate of early diastolic untwisting may
improve (66,67). Similarly, LV torsional mechanics
do not change after cardiac resynchronization ther-
apy despite improvements in LV circumferential
shortening mechanics (69). This suggests that loss
of LV torsional mechanics in remodeled hearts may
be difficult to restore once already established.

In contrast to dilated cardiomyopathy, patients
with hypertrophic cardiomyopathy show relatively
preserved net LV twist (70), although the apex-to-
base progression of the LV twist sequence is altered.
Rotation at the mid-LV level becomes clockwise,
similar to the direction of rotation of the LV base
(opposite to normal) (71). The area of null rotation,
which represents the region of LV where rotation
crosses over from clockwise into a counterclockwise
direction, is apically displaced. This causes regional
heterogeneity of LV twist, reducing the gradient of
LV rotation for the basal aspect of LV, while
exaggerating it toward the LV apex (71). During
alcohol septal ablation, LV twist in hypertrophic
cardiomyopathy may decrease transiently with oc-
clusion of the septal perforator; however, after the
injection of ethanol, twist increases to higher-than-
baseline angles. Most of the improvement in twist is
accounted for by an increase in LV apical rotation
(72). Despite a preserved LV twist magnitude,
patients with hypertrophic cardiomyopathy have
reduced efficiency in generating untwisting. At rest,
peak untwisting velocities are only marginally re-
duced in comparison with normal subjects. How-
ever, these differences became more dramatic with
exercise, with the patients showing much lower
untwisting velocities when compared with normal
subjects (41).

Differentiation of constrictive pericarditis from restric-
tive cardiomyopathy. Both constrictive pericarditis
and restrictive cardiomyopathy may have similar
clinical presentations related to altered LV diastolic
function. However, the mechanism leading to the
LV diastolic function is different. In restrictive
cardiomyopathy, the LV wall is resistant to stretch
because of endocardial disease. On the other hand,
tethering of subepicardial layers and an altered
compliance of thickened pericardium is the main
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reason for LV diastolic filling impairment in con-
striction. The marked endocardial dysfunction with
relative sparing of epicardial function leads to ab-
normal longitudinal mechanics with relative sparing
of circumferential and twist mechanics in restrictive
cardiomyopathy (73). However, in constrictive peri-
carditis, marked epicardial dysfunction leads to
predominant impairment of circumferential short-
ening (74) and twist mechanics (73), while rela-
tively sparing subendocardial longitudinal mechan-
ics (Fig. 4). Similarly, congenital defects of
pericardium cause a lack of LV twist while main-
taining LV regional myocardial function (75), sug-
gesting that normal pericardial layers may have
important roles in modulating LV rotational
mechanics.

A Proposal for Assessing the Pattern
of LV Dysfunction

Traditional concepts of heart failure have largely
focused on the hemodynamic consequences of LV
systolic dysfunction. Using a time-dependent model
of heart failure, it has been proposed that diastolic
and systolic heart failure are phenotypic expressions
of the same disease process that evolves gradually as
a continuum of clinical events (76). Assessment of
cardiac muscle mechanics may provide superior
pathophysiological insights into the mechanism of
heart failure; however, this remains inadequately
addressed.

The majority of progressive myocardial diseases,
including coronary ischemia, tend to predominantly
cause subendocardial dysfunction. This results in an
early preferential involvement of longitudinal LV
mechanics, which can be identified even in a sub-
clinical state. The timing of contraction—relaxation
cross-over is the most vulnerable period of myofi-
bers mechanics (77,78). In early stages, therefore,
ventricular relaxation either regionally or globally
becomes abnormally slow and impaired with a
progressive loss of the ventricle to modulate the
timing of onset of relaxation. The epicardial func-
tion may remain relatively unaffected, and circum-
ferential strain and twist either remains normal or
shows exaggerated compensation for preserving the
LV systolic performance. Compensatory features
such as myocardial hypertrophy attempt to reduce
subendocardial stress; however, such changes are
usually maladaptive and detrimental (79). Further-
more, loss of cardiac muscle resilience also causes
progressive delay in LV untwisting. Loss of early
diastolic longitudinal relaxation and delayed un-
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twisting attenuates LV diastolic performance, pro-
ducing elevation of LV filling pressures. This stage
manifests as heart failure with preserved systolic
function. With further progression of disease, sub-
epicardial function starts deteriorating, resulting in
marked reduction of LV circumferential and twist
mechanics. This causes progressive loss of LV
ejection fraction and results in systolic heart failure.
Acute transmural ischemia or infarction also results
in simultaneous impairment of LV longitudinal and
torsional mechanics, resulting in LV systolic dys-
function. Pericardial diseases, on the other hand,
cause subepicardial tethering and predominant af-
fection of LV torsional mechanics, while relatively
sparing subendocardial function. A disease process
such as radiation that affects both the pericardium
and the subendocardial region may produce early
attenuation of both longitudinal and circumferen-
tial LV function. Relative differences in longitudi-
nal and torsional mechanics therefore may provide
pathophysiological insight into the mechanism of
LV dysfunction. Application of such algorithms
requires prospective evaluation in future clinical
trials.
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Final Comments

A growing body of evidence suggests that assess-
ment of LV rotation and twist is feasible in clinical
settings. The relationship between longitudinal and
torsional mechanics of the LV provides insight into
the transmural heterogeneity in myocardial contrac-
tile function. The presence of a subendocardial-to-
subepicardial gradient in LV mechanics may pro-
vide a useful clinical measure for early recognition
of a subclinical state that is likely to progress into
either systolic or diastolic heart failure. With the
advent of 3-dimensional echocardiography, newer
algorithms for the characterization of ventricular
twist mechanics hold promise for better under-
standing mechanisms of ventricular dysfunction and
improving management of heart failure patients.
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