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In this work we construct a family of spherically symmetric, static, charged regular black hole metrics
in the context of Einstein-nonlinear electrodynamics theory. The construction of the charged regular
black hole metrics is based on three requirements: (a) the weak energy condition should be satisfied,
(b) the energy–momentum tensor should have the symmetry T 0

0 = T 1
1 , and (c) these metrics have to

asymptotically behave as the Reissner–Nordström black hole metric. In addition, these charged regular
black hole metrics depend on two parameters which for specific values yield regular black hole metrics
that already exist in the literature. Furthermore, by relaxing the third requirement, we construct more
general regular black hole metrics which do not behave asymptotically as a Reissner–Nordström black
hole metric.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

Charged regular black hole solutions exist in the framework
of Einstein-nonlinear electrodynamics theory and are obtained as
solutions of Einstein equations that are characterized by the fact
that the metric as well as the curvature invariants R , Rμν Rμν ,
Rκλμν Rκλμν do not present singularities anywhere.1

The Bardeen black hole is the first of a series of regular black
hole solutions obtained [2]. If we write the most general form of a
static line element with spherical symmetry

ds2 = − f (r)dt2 + f (r)−1 dr2 + r2(dθ2 + sin2 θ dφ2), (1)

where the metric function can be written as

f (r) = 1 − 2m(r)

r
, (2)

then, we can write the mass function of the Bardeen black hole
as [2]2

m(r) = Mr3 

(r2 + g2)3/2
. (3)

* Corresponding author.
E-mail addresses: leonardo.balart@ufrontera.cl (L. Balart),

elias.vagenas@ku.edu.kw (E.C. Vagenas).
1 For a recent review see [1].
2 Henceforth, we use geometrized units, i.e., G = c = 1.
http://dx.doi.org/10.1016/j.physletb.2014.01.024 
0370-2693 © 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license.
Such a metric has event horizons located at r± if g2 �
(16/27)M2, where g can be interpreted as the monopole charge
of a self-gravitating magnetic field described by nonlinear elec-
trodynamics [3]. Furthermore, if r → ∞, we get that the metric
behaves as

f (r) → 1 − 2M

r
+ 3Mg2

r3 
. (4)

Similarly, when r → 0 the Bardeen metric function behaves as
the de Sitter black hole, that is as

f (r) → 1 − 2M

g3 
r2. (5)

Later on, other solutions [4–8] were obtained, using the F–P
dual formalism, by considering the action of general relativity cou-
pled to nonlinear electrodynamics, namely

S =
∫

d4x
√−g

(
1 

16π
R − 1 

4π
L(F )

)
. (6)

Here, the Lagrangian L(F ) is a nonlinear function of the Lorentz
invariant F = 1

4 F
μν Fμν which, for weak fields, describes the

Maxwell theory, and the corresponding regular black hole solu-
tion asymptotically behaves as the Reissner–Nordström black hole.

The regular black hole may also be characterized by energy
conditions [9,10] that the corresponding energy–momentum ten-
sor should satisfy. In the context of regular black holes, three en-
ergy conditions have been utilized by several authors. In particular:
 Funded by SCOAP3.
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• The strong energy condition (SEC) states that Tμνtμtν �
1
2 T μ

μtνtν for all timelike vector tμ . This condition implies
that gravitational force is attractive.

• The dominant energy condition (DEC) states that Tμνtμtν � 0
and that T μνtμ must be non-spacelike for all timelike vec-
tor tμ or, equivalently, T 00 � |T ij | for each i, j = 1,2,3. This
means that the local energy density measured by a given ob-
server must be nonnegative, and that the speed of the energy
density flow associated with this observer cannot exceed the
speed of light.

• The weak energy condition (WEC) states that the energy den-
sity of matter measured by an observer, whose 4-velocity is tμ ,
satisfies Tμνtμtν � 0 for all timelike vector tμ , that is, the lo-
cal energy density cannot be negative for all observers. The
DEC implies the WEC.

When a black hole is regular, the SEC is necessarily violated
somewhere inside the horizon [11]. However, a regular black hole
could satisfy the WEC or the DEC everywhere [8].

Considering the line element (1) and the metric function (2),
we can write the components of the respective energy–momentum
tensor as

T 0
0 = T 1

1 = 2

8πr2

dm(r)

dr
, T 2

2 = T 3
3 = 1

8πr

d2m(r)

dr2
, (7)

and hence the WEC can be expressed equivalently in terms of the
mass function by the following inequalities

1

r2

dm(r)

dr
� 0, (8)

and

2

r

dm(r)

dr
� d2m(r)

dr2
. (9)

From these relations, it is obvious that the Bardeen black hole
satisfies the WEC everywhere [2]. The same applies to regular
black hole solutions reported in Refs. [4,7,8,12–15]. However, there
are other regular black hole solutions reported in Refs. [5–7,16,17],
which do not satisfy the WEC.

The regular black hole solutions that satisfy the WEC and their
energy–momentum tensor has the symmetry T 0

0 = T 1
1, necessar-

ily have de Sitter behavior at r → 0 as was shown in Ref. [13],
and illustrated here in Eq. (5) for the Bardeen black hole solution.
As we will see later, this leaves an extra condition which allows
the WEC to be better exploited compared to the DEC when one
is building solutions. However, it should be noted that a de Sit-
ter behavior at the center of a regular black hole is not sufficient
by itself to ensure that the solution satisfies the WEC. In addi-
tion, it has been shown that for a regular black hole in nonlinear
electrodynamics which satisfies the WEC, the non-existence theo-
rems [16] can be circumvented by removing the condition of the
Maxwell weak field limit imposed at the center of the black hole.
In this way, regular black hole solutions with electric charge do
exist [8].

Furthermore, there are other features that characterize regular
black holes which are due to the nonlinearities of the field equa-
tions. For example, the thermodynamic quantities of the regular
black holes do not satisfy the Smarr formula [18], the identity
of Bose–Dadhich [19] which refers to the relation between the
Brown–York energy and the Komar charge, is not satisfied by reg-
ular black holes [20].

In all the above-mentioned solutions, one asymptotically re-
covers the Schwarzschild black hole metric, and if the condition
r2m′(r) �= 0 as r → ∞ is satisfied, then one recovers the Reissner–
Nordström black hole metric.
In this Letter, in the context of Einstein-nonlinear electrody-
namics theory, we will construct a family of spherically symmet-
ric, static, charged regular black hole metrics without utilizing the
aforesaid methods but by imposing three conditions: (a) the weak
energy condition should be satisfied, (b) the energy–momentum
tensor should have the symmetry T 0

0 = T 1
1 , and (c) these metrics

have to asymptotically behave as the Reissner–Nordström black
hole metric. In addition, by relaxing the third condition, i.e., con-
dition (c), we construct more general regular black hole metrics
which do not behave asymptotically as a Reissner–Nordström black
hole metric. The Letter is organized as follows. In Section 2, we
present the equations that we will use in the construction of our
metrics. In Section 3, we obtain a general metric for charged reg-
ular black holes that satisfies the WEC and asymptotically behaves
as the Reissner–Nordström black hole metric. In addition, we dis-
cuss a specific case of the aforesaid general metric function. In Sec-
tion 4, we extend the analysis to obtain metric functions that do
not necessarily asymptotically behave as the Reissner–Nordström
solution. Finally, in Section 5, we briefly summarize our results.

2. WEC equations

Up to now, regular black holes solutions have been constructed
by searching for, or postulating, the Lagrangian function L(F ) in
the framework of F–P dual formalism [21].3 As already mentioned
in the Introduction, here we will construct a family of spherically
symmetric, static, charged regular black hole metrics by imposing
three conditions: (a) the weak energy condition should be satis-
fied, (b) the energy–momentum tensor should have the symmetry
T 0

0 = T 1
1 , and (c) these metrics have to asymptotically behave as

the Reissner–Nordström black hole metric. Therefore, in this sec-
tion we will derive the equations which will be used in this con-
struction, from the WEC.

For simplicity and future convenience, we replace the variable
r that appears in Eqs. (8) and (9) with a new variable x which
is defined as r = 1/x and obviously x ∈ [0,∞). It is evident that
by employing the new variable x, the WEC inequalities, namely
Eqs. (8) and (9), now read

x4 dm(x)

dx
� 0 (10)

and

4x3 dm(x)

dx
+ x4 d2m(x)

dx2
� 0. (11)

It should be noted that these conditions plus regularity imply
that the regular black hole metric function must satisfy the follow-
ing limit

−dm(x)

dx
x4 → b when x → ∞ (12)

where b is a positive constant.
At this point, we should stress that if we want the regular black

hole metric to behave asymptotically as the Schwarzschild black
hole, then we have to demand our metric function to satisfy the
following condition

m(x) �= 0 when x → 0. (13)

However, if we want the regular black hole metric to be-
have asymptotically as the Reissner–Nordström black hole, then we
must also require our metric function to satisfy the condition

−dm(x)

dx
�= 0 when x → 0. (14)

3 The F–P dual formalism is briefly presented in Appendix A.
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It is easily seen that two mass functions which satisfy the afore-
said conditions, i.e. Eqs. (10)–(14), are defined by the following
WEC equations

−dm(x)

dx
= c1

(1 + c2xα)4/α
(15)

and

−dm(x)

dx
= c3

(1 + c4x1/β)4β
(16)

where α is a positive integer, β is a positive constant, c1, c2, c3,
and c4 are arbitrary but also positive constants related by c1 =
(c2)

4/αb and c3 = (c4)
4/βb. However, the latter mass function has

to be discarded since its expansion leaves fractional powers (with
the exception of the case with β = 1).

3. Regular black hole metrics

In this section, we will construct a family of spherically sym-
metric, static, charged regular black hole metrics by imposing the
following three conditions on them: (a) the weak energy condition
should be satisfied, (b) the energy–momentum tensor should have
the symmetry T 0

0 = T 1
1 , and (c) the metrics have to asymptotically

behave as the Reissner–Nordström black hole metric.
First we transform the WEC equation given by Eq. (15) into the

integral form

m(x) =
∞∫

x

c1

(1 + c2 yα)4/α
dy (17)

and then we compute the above integral. The mass function is,
thus, given by the expression

m(x) = c1

3(c2)4/α

1

x3 2 F1

(
3

α
,

4

α
; 3 + α

α
;− 1

c2xα

)
(18)

where 2 F1(a,b; c; z) is the Gauss hypergeometric function.
At this point, we demand the metric function given in Eq. (2),

i.e.,

f (r) = 1 − 2m(r)

r
, (19)

to behave asymptotically as the Reissner–Nordström black hole
metric, i.e.,

f (r) = 1 − 2M

r
+ q2

r2
. (20)

Now, we substitute Eq. (18) in Eq. (19) and Taylor expand it around
r = 0. By comparing the coefficients of the series expansion at
the asymptotic limit, i.e., r → ∞, with the corresponding ones in
Eq. (20), we define the constants c1 and c2 as follows

c1 = q2

2
, (21)

c2 =
[

q2Γ ( 1
α )Γ (α+3

α )

6MΓ ( 4
α )

]α

. (22)

Therefore, the mass function given by Eq. (18) becomes

m(r) = r3q2

6

(
6Γ ( 4

α )

Γ ( 1
α )Γ (α+3

α )

M

q2

)4

× 2 F1

(
3

α
,

4

α
; 3 + α

α
;−

(
6Γ ( 4

α )

Γ ( 1 )Γ (α+3 )

M

q2
r

)α)
. (23)
α α
This is the mass function of a charged regular black hole metric
given by Eq. (19) which asymptotically behaves as the Reissner–
Nordström black hole if α is a positive constant. It is noteworthy
that for α = 2, we retrieve the regular black hole metric given in
Ref. [8].

Furthermore, in the context of Einstein-nonlinear electrody-
namics theory, the electric field associated with the above regular
black hole metric is given as [22]

E = q

r2

(
1 +

(
Γ ( 1

α )Γ ( 3+α
α )

6Γ ( 4
α )

q2

Mr

)α)−(4+α)/α

, (24)

which behaves as E = q
r2 when r → ∞.

Finally, as an example, we choose α = 3 in which case the met-
ric function is of the form

f (r) = 1 − 2M

r

(
1 − 1

(1 + ( 2Mr
q2 )3)1/3

)
. (25)

This regular black hole metric has event horizons if the electric
charge satisfies the condition q � 1.0257M . Moreover, in the con-
text of Einstein-nonlinear electrodynamics theory, the associated
electric field is given as [22]

E = q

r2

(
1 +

(
q2

2Mr

)3)−7/3

. (26)

4. More general metrics

In this section, we will construct more general regular black
hole metrics. The same analysis as in the previous section will
be adopted here but we will not demand the metric to behave
asymptotically as the Reissner–Nordström black hole metric. For
this reason, we will relax the condition given in Eq. (14). The mass
function m(x) will now satisfy the following WEC equation

−dm(x)

dx
= c1xμ−4

(1 + c2xα)μ/α
(27)

where α and μ are integers and also α � 1 and μ � 4 and, thus,
it is given by the expression

m(x) = c1

3(c2)μ/α

1

x3 2 F1

(
3

α
,
μ

α
; 3 + α

α
;− 1

c2xα

)
. (28)

The coefficients c1 and c2 are now given by

c1 = q2

2

Γ ( 1
α )Γ (

μ
α )

Γ ( 4
α )Γ (

μ−3
α )

(
6Γ ( 4

α )

Γ ( 1
α )Γ (α+3

α )

M

q2

)4−μ

, (29)

c2 =
[

6Γ ( 4
α )

Γ ( 1
α )Γ (α+3

α )

M

q2

]−α

. (30)

Thus, the mass function of the regular black hole metric be-
comes

m(r) = r3q2

6

Γ ( 1
α )Γ (

μ
α )

Γ ( 4
α )Γ (

μ−3
α )

(
6Γ ( 4

α )

Γ ( 1
α )Γ (α+3

α )

M

q2

)4

× 2 F1

(
3

α
,
μ

α
; 3 + α

α
;−

(
6Γ ( 4

α )

Γ ( 1
α )Γ (α+3

α )

M

q2
r

)α)
. (31)

This is the mass function of a charged regular black metric given
by Eq. (19), but which does not asymptotically behave as the
Reissner–Nordström black hole metric except for the case with
μ = 4.



L. Balart, E.C. Vagenas / Physics Letters B 730 (2014) 14–17 17
It is worthy of notice that, with an appropriate choice of pa-
rameters, we can derive from Eq. (31) several regular black hole
metrics which already exist in the literature. For instance, if we
choose μ = 5 and α = 2, we obtain

m(r) = Mr3

(r2 + π2q4

64M2 )3/2
. (32)

By replacing π2q4/(64M2) with g2 in Eq. (32), we recover the
Bardeen metric whose mass function is given by Eq. (3).

Now, if we take μ = 6 and α = 3, and we replace the factor
q6

8M3 with 2l2M , we obtain the regular black hole metric given in
Ref. [15] with mass function

m(r) = Mr3

r3 + 2l2M
. (33)

Finally, if we choose μ = 3 and let α be arbitrary, then we ob-
tain the following mass function

m(r) = M

(
1 − 1

(1 + ( 2M
q2 r)3)(α−3)/3

)
. (34)

5. Conclusions

In this Letter, we have constructed a family of spherically
symmetric, static, charged regular black hole metrics in the con-
text of Einstein-nonlinear electrodynamics theory. Our analysis is
based on the fact that we impose three conditions on the black
hole metrics: (a) the weak energy condition should be satis-
fied, (b) the energy–momentum tensor should have the symmetry
T 0

0 = T 1
1 , and (c) these metrics have to asymptotically behave as

the Reissner–Nordström black hole metric. Moreover, by relaxing
the third requirement, we construct more general regular black
hole metrics which do not behave asymptotically as a Reissner–
Nordström black hole metric. In addition, we discuss as examples
several special cases of the more general regular black hole met-
rics. These special cases have been obtained by choosing specific
values for the parameters that characterize the mass function of
the more general regular black hole metric. Some of these regu-
lar black hole metrics already exist in the literature but they are
obtained in the context of F–P dual formalism. All the above reg-
ular black hole metrics also satisfy the DEC, although it was not
imposed as a condition.
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Appendix A. Dual P formalism

An equivalent method for deriving the regular black hole met-
rics obtained here is the F–P dual formalism. For this reason, we
briefly present here the description based on the F–P dual rep-
resentation of nonlinear electrodynamics obtained by a Legendre
transformation [21] and reproduce the results of Section 3.

The regular black hole metrics can be described by the metric
function and its corresponding electromagnetic field which arise
as a solution of Einstein field equations coupled to a nonlinear
electrodynamics, that is of the action given by Eq. (6). One can
also describe the considered system in terms of an auxiliary field
defined by Pμν = (dL/dF )Fμν . The dual representation is obtained
by means of a Legendre transformation

H = 2F
dL

dF
− L (35)

which is a function of the invariant P = 1
4 Pμν Pμν . Thus, we can

express the Lagrangian L depending on Pμν as

L = 2P
dH

dP
− H, (36)

and the electromagnetic field as

Fμν = dH

dP
Pμν. (37)

The energy–momentum tensor in the F–P dual representation
is given by

Tμν = 1

4π

dH

dP
Pμα Pα

ν − 1

4π
gμν

(
2P

dH

dP
− H

)
. (38)

It follows from the components of Tμν that M ′(r) = −r2 H(P ).
Hence, we can obtain the corresponding mass function.

As an example, we give the function H(P ) for the regular black
hole metrics of Section 3

H(P ) = P

(1 + Ω(−P )α/4)4/α
(39)

where

P = − q2

2r4
(40)

and Ω is defined as

Ω =
(

q3/2

6M

Γ ( 1
α )Γ ( 3+α

α )

Γ ( 4
α )

)α

. (41)
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