
Electronic Notes in Theoretical Computer Science 44 No. 4 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume44.html 11 pages

How to Specify a Graph Transformation
Approach: A Meta Model for Fujaba �

Reiko Heckel 1 Albert Zündorf 2

Dept. of Mathematics and Computer Science
University of Paderborn

D-33095 Paderborn, Germany

Abstract

Application-oriented approaches to graph transformation provide structural features
beyond vertices and edges, like composition in hierarchical graphs, inheritance in
object-oriented graphs, multiplicity constraints, etc. Often, these features have a
specific dynamic interpretation which requires complex embedding mechanisms and
context conditions. For example, the deletion of a compound node usually implies
the deletion of its components.

In this paper, we propose the use of a meta graph grammar for the definition of
such a complex graph transformation approach. A meta graph grammar is a typed
graph grammar whose type graph provides a static description of the structure of
graphs, rules, and transformations of the approach. This static meta model, which
is comparable to the meta model in the Uml specification, is extended by a specifi-
cation of the rule application operator by means of graphical embedding rules, i.e.,
the productions of the meta graph grammar. These embedding rules allow a concise
visual description of the admissible context embeddings of a rule and of the side
effects of the rule application on the context.

As a case-study, a meta graph grammar for selected features of the object-oriented
graph transformation approach Fujaba is given.

Key words: graph transformation and graph grammars, meta
modeling, fujaba

� Research partially supported by the ESPRIT Working Group APPLIGRAPH and the
TMR network GETGRATS.
1 Email: reiko@upb.de
2 Email: zuendorf@upb.de

c©2001 Published by Elsevier Science B. V.

41

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81935219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/


Heckel and Zündorf

Fig. 1. A sample class diagram

Fig. 2. A sample object diagram

1 Introduction

A graph transformation approach is formally given by its notions of graph,
rule, and transformation. In addition, some approaches provide concepts like
graph schemata or control structures. Usually, formal definitions of these no-
tions are given in mathematical (e.g., set-theoretic, logic, algebraic, or categor-
ical) terms (cf. [15] for a collection of such definitions). While mathematical
definitions are an indispensable tool for the development of the theory, they
are often not very useful for explaining the concepts and constructions to po-
tential users, in particular, if the mathematical language has a very different
nature than the approach to be defined.

A solution to this problem, which is popular for visual modeling languages
like the Uml [13], is the approach of meta modeling [12]. Here, a modeling
language is defined in a kind of boot-strapping process using as a meta lan-
guage a simple subset of the language to be defined. (In order to avoid cyclic
definitions, this subset has to be given an independent formalization.) For ex-
ample, in the Uml specification [13], class diagrams and constraints are used
in order to specify the abstract syntax and static semantics of the Uml. The
dynamic semantics is just described in informal text.

In this paper we propose meta modeling as a technique for the specification
of both the static and dynamic aspects of application-oriented graph transfor-
mation approaches. Based on a Uml-like meta model defining statically the
classes of graphs, rules, and transformations of the approach, a meta graph
grammar is used for generating, from each rule, a class of transformations.
As a case study, this technique is applied to (a subset of) the object-oriented
graph transformation approach Fujaba which includes features like composi-
tion, multiplicity constraints, and inheritance.

2 The Fujaba Approach

The Fujaba project [6] (see also www.fujaba.de) aims at promoting the use
of graph transformation in object-oriented software development. To attract
object-oriented software developers, Fujaba employs Uml collaboration di-
agrams as a notation for graph rewrite rules. In addition, the Fujaba envi-
ronment provides a code generator that generates a Java implementation of
class diagrams and graph rewrite rules. We generate plain Java code that uses
very simple implementation concepts. Graph rewrite rules are applied to usual
main memory objects and employ standard Java Beans access methods for
look-up and manipulation of object structures.

42



Heckel and Zündorf

Class and object diagrams. Figure 1 shows a fragment of a class diagram that
models the control software of an automatic material flow system in an in-
dustrial assembly hall, developed within the Isileit project [7]. In Fujaba,
the classes of a class diagram are translated into usual Java classes. Class
attributes become private data members of the corresponding Java classes
with appropriate set- and get-methods. Class diagram associations repre-
sent bi-directional relationships between classes. Therefore, associations are
translated into pairs of pointers within the corresponding Java classes. As-
sociations in a class diagram may be adored with multiplicity constraints.
For example, each robot may hold an arbitrary number of goods (multiplicity
“∗”), while every good may belong to at most one robot. For a to-many end
of an associations (multiplicity “∗”, the Fujaba code generator creates a pri-
vate data member of type HashSet, i.e., a standard container class provided
by the Java runtime library. In addition, a number of access methods that
is created allowing, e.g., to add and to remove links from/to an association
and to enumerate all its links. Thus, for the to-many end of association holds
in Fig. 1 (attached to class Good) a private data member HashSet holds;

in class Robot is generated with methods addToHolds, removeFromHolds and
iteratorOfHolds.

To-one associations are most naturally implemented by pointers. Thus,
we generate a private data member of the neighbors type and set- and get-
methods. The to-one end of association holds at class Robot creates a pri-
vate data member Robot robot in class Good and methods setRobot and
getRobot.

The implementation of to-one associations via usual pointers saves
memory-space and reduces the read-access to a minimum. However, this im-
plies that our implementation is not able to store more than one pointer for
a given association at a certain object, not even temporarily. If, for example,
a good g already belongs to a certain robot r1 and if we assign a new robot
r2 to hold g by calling g.setRobot(r2), then we create a conflict in owner-
ship between robots r1 and r2. One has to deal with this conflict by either
rejecting the new owner or by overriding the old owner or by raising a runtime
exception. In the Fujaba approach, the default behavior is to override the
old owner with the new owner.

In order to guarantee the consistency of the pairs of pointers that
represent a link between two objects, the write methods for the corre-
sponding data members call each other, mutually. For example, method
r.addToGoods(g) calls method g.setRobot(r) and vice versa. Similarly, the
call r.removeFromGoods(g) results in call g.setRobot(null) and vice versa.
Since the data members are private and may only be changed via their access
methods, we are able to guarantee that each time a link is added to or removed
from the object structure, the corresponding pair of pointers is established or
removed properly. This guarantee turns usual Java object structures into a
proper implementation of object-oriented graphs.

43



Heckel and Zündorf

Fig. 3. A story pattern creating a to-one association

Fig. 4. A story pattern dealing with compositions

The consequently bi-directional implementation of associations guarantees
that each object knows all its neighbors. Therefore, we are able to generate a
method removeYou that removes all links between an object and its neighbors.
Such an isolated object becomes easily garbage collected. Thus, our method
removeYou allows to implement a behavior where nodes may be removed with-
out explicit knowledge of their context while avoiding the severe problem of
dangling references and guaranteeing referential integrity.

The removeYou-method is also used to implement a simple concept of com-
position. In Uml class diagrams, an association marked with a black diamond
represents a composition relationship indicating so-called co-incident life time.
We implement this co-incident life time as a weak existence dependency: If a
component object looses its compound, it is removed, too. We achieve this by
forwarding recursively removeYou calls along composition relations. Thus, in
the object diagram in Fig. 2 which instantiates the class diagram in Fig. 1,
the call g1.removeYou() would recursively isolate (and thus garbage collect)
all Good-objects.

Rules and transformations. Figure 3 and 4 show two Fujaba story patterns,
i.e., graph rewrite rules in Uml collaboration diagram notation. A story pat-
tern is represented as a group of connected objects optionally with additional
attribute constraints. Objects and links may be marked with constraints {new}
and {destroyed} and the attribute compartment of objects may contain at-
tribute assignments. One may derive the left-hand side of a usual graph rewrite
rule from such a collaboration diagram by collecting all unmarked elements
and attribute constraints and all elements marked with {destroyed}. The right-
hand side of the corresponding graph rewrite rule consists of all unmarked
elements, the attribute assignments, and the elements marked with {new}.
Common elements of the left- and right-hand sides are mapped identically.

Figure 3 represents a story pattern that looks up a good g1 with attribute
prodName equal to “ bobby car” and a shuttle s. This object structure is
“rewritten” by the same objects plus a holds-link connecting g1 and s. The
application of this story pattern to the object structure shown in Fig. 2 would
match objects g1 and s and it would create a holds-link between them. So
far, this creates the situation that good g1 is attached to two holds-links con-
necting it to assembly cell a and shuttle s, respectively. This would violate
the multiplicity constraint of association holds that allows at most one robot
as holder of a certain good. In addition, our pointer based implementation is
not able to hold more than one robot pointer within one good. As already
discussed, the Fujaba approach resolves this conflict by removing existing
holds-links attached to goods as soon as new holds-links are attached. Thus, in

44



Heckel and Zündorf

our example, the holds-link connecting assembly cell c and good g1 is removed
as a side-effect of adding the holds-link between g1 and s.

Figure 4 outlines how our approach deals with compositions. The shown
story pattern looks up a good g1 with attribute prodName equal to “ bobby
car” and a good g3 with prodName equal to “ seat” and a parts-link between
g1 and g3. This object structure is rewritten by destroying good g1 and the
parts-link to good g3 and by creating a new good g9 and a new parts-link to g3.
Although this operation looks as it does not change anything but the object id
of good g1, it has dramatic side effects. As Fig. 1 shows, the parts-association
is a composition relationship. This means that the deletion of a parent good
removes all child goods that become orphans, too. Thus, in Fig. 2, the deletion
of good g1 would cause the deletion of all its child goods and, recursively, of
all descendants. However, the story pattern of Fig. 4 explicitly removes the
parts-link from g1 to g3. Thereby the child object g3 is separated from its
parent g1 and, thus, it is not affected by the removal of good g1. However,
the other children of g1 are not rescued by some other object in the story
diagram and they are removed together with their parent, i.e., objects g2 and
g4 are removed and their children g5, g6, g7, and g8 become orphans and are
removed, too.

At first glance, the survival of good g3 may look strange, since intermedi-
ately it became an orphan. However, in our project this semantics has proven
to be very useful since it allows to deconstruct composition hierarchies and to
unmount parts from their parents in order to store them separately for later
reuse. In our example, the unmounted seat is directly reused for the new good
g9.

To summarize, the application of graph transformation to object-oriented
data models creates challenges for the semantics definition of graph rewrite
rules. In particular, multiplicity constraints for associations and composition
relations imply certain side effects of the creation and deletion of objects and
links that need to be carefully specified. Semantic decisions like the overriding
of links of to-one associations are guided by the implementation in Java and a
in contrast with most other graph transformation approaches. In the following
two sections, we present a formalization for the static and dynamic aspects of
these non-standard features.

3 Abstract Syntax: Typed Graphs

As in the Uml specification [13], we adopt a meta modeling approach [12]
in order to specify the abstract syntax of object-oriented graphs and graph
schemata, story patterns, and transformations which form the core of the Fu-
jaba language. The relation between the (static) meta model—the language
definition—and the individual models—the elements of the language—is cap-
tured by the concept of typed graphs [2].

By graphs we mean directed unlabeled graphs G = 〈GV , GE, srcG, tarG〉

45



Heckel and Zündorf

Fig. 5. Fujaba static meta model

with set of vertices GV , set of edges GE, and functions srcG : GE → GV

and tarG : GE → GV associating to each edge its source and target vertex,
respectively. A graph homomorphism f : G → H is a pair of functions 〈fV :
GV → HV , fE : GE → HE〉 compatible with source and target, i.e., for all
edges e in GE, fV (srcG(e)) = srcH(fE(e)) and fV (tarG(e)) = tarH(fE(e)).

Given a graph TG, called type graph, a TG-typed (instance) graph consists
of a graph G together with a typing homomorphism g : G → TG associating
to each vertex and edge x of G its type g(x) = t in TG. In this case we also
write x : t ∈ G. The collection of all instance graphs typed over TG is denoted
by GraphTG.

Throughout this paper, the type graph TG shall be given by the Fujaba
meta model depicted in Fig. 5. Following the Uml meta model [13], we distin-
guish between two levels of very similar structure: the schema level consisting
of the meta types Class, Assoc, AssocEnd, Attribute, Type and Schema and the
instance level given by meta types Object, Link, LinkEnd, AttribLink, Value and
Graph. Each instance-level graph element is associated to a schema element
by an instOf-edge.

All vertex types have an attribute name: string which is not shown in the di-
agram. Unless stated otherwise, the multiplicity of edges is ∗ (any). Properties
like multiplicity and composition which belong to the ends of an association
(rather than to the association as a whole) are modeled as attributes of the
vertex type AssocEnd. The super-links model inheritance between Fujaba
classes pointing from the sub- to the superclass.

We follow the approach of [10] (also used in the Uml meta model [13]) of
regarding attribute instances as links from objects to attribute values. Corre-
spondingly, at the type level, each attribute is associated to its class and its
type. The latter provides a meta attribute sort which refers to a sort of an
algebraic signature Σ = 〈S, OP 〉 while Value-vertices are attributed with the
elements of (the corresponding carrier of) a Σ-algebra A. We assume that the
signature Σ and the algebra A are fixed so as to reflect the built-in data types
of the language.

The association of schema elements to schemata and of graph elements to
graphs is represented by el-edges as modeled in the lower part of Fig. 5. It
also defines a transformation Trafo as a pair of two graphs (not necessarily
disjoint).

Various integrity constraints have to be imposed on the instances of this
meta model in order to represent well-formed Fujaba models. Many of them
are obvious, like the commutativity of instOf-edges with the el-edges inside
object-oriented graphs and graph schemata. For example, the Object connected
to a LinkEnd should be an instance of the Class connected to the corresponding
AssocEnd. Also, we require that the elements associated with a Graph-vertex
through el-edges form indeed an object-oriented graph being an instance of the

46



Heckel and Zündorf

Fig. 6. Abstract syntax of sample graph schema and story pattern

corresponding schema. The formalization of such constraints using a formal
constraint language is beyond the scope of this paper.

The representation of the story pattern of Fig. 3 according to this meta
model is given in Fig. 6. The upper part represents the graph schema of Fig. 1
where we have omitted some of the obvious instOf- and el-edges for readability.
The lower part describes the story pattern as a pair of graphs where, in this
case, the pre-graph is a subgraph of the post-graph. Notice, that the meta
model does not distinguish between story patterns (i.e., rewrite rules) and
transformations. In fact, in the following section, a story pattern is considered
as a minimal transformation from which all transformations using this pattern
can be generated by means of context embedding rules.

4 Operational Semantics: Embedding Rules

In this section, a meta graph grammar is used to specify, for each story pattern,
the set of transformations resulting from applying the pattern to legal object-
oriented graphs. The productions of this meta graph grammar generate the
contexts in which the pattern can be placed. Each production describes, at
the same time, the matching conditions and the effect of the transformation
in the given context. The productions are presented as embedding rules like
below on the left

P

C
T ❀ P ∪ T ←↩ P ∩ C ∪ T ↪→ C ∪ T

where P is called the premise, C the conclusion, and T the typing condition
of the rule, such that the union P ∪ C ∪ T is well-defined. Usually, P and
C represent transformations (or story patterns) while T is a fragment of the
graph schema.

Formally, our meta graph grammar is based on the algebraic double-pushout
(DPO) approach to graph transformation [4,3] using typed graphs [2] and neg-
ative application conditions [8]. The premise P and the condition T jointly
form the left-hand side of a graph grammar production as shown above on the
right. The right-hand side is given by the conclusion C and the typing condi-
tion C, and the interface graph in the center is the intersection of the two. The
application of such a production to a TG-typed graph representing a transfor-
mation yields another TG-typed graph which represents a transformation with
additional objects, links, or attribute instantiations. The set of all transfor-
mations using a given story pattern G0 is given by all well-formed TG-typed
graphs G derivable from G0 by means of the graph grammar productions.
This use of embedding rules is inspired by the contextualization rules in SOS
[14], like the rule for restriction in CCS [11] stating under which conditions
an action can be performed in the context of the restriction operator.

47



Heckel and Zündorf

Fig. 7. DPO-like embedding rules: adding disconnected nodes, adding edges between
preserved nodes, and merging of preserved nodes

Fig. 8. Abstract syntax of embedding rules: interface vertices (upper left), dangling
edges (right), and generalization (lower left).

Fig. 9. SPO-like embedding rules: deletion of dangling edges, merging destroyed
nodes, and conflict resolution

Fig. 10. Composition rules: implicit deletion of dependent objects, unless there exists
another dependency

The context embedding rules are formally defined on the level of abstract
syntax. However, as it is obvious from the abstract syntax graph depicted in
Fig. 6 of the story pattern in Fig. 3, this presentation is quite complex even in
simple examples. Moreover, it is not adequate for explaining the application
of story patterns to users of the language (e.g., software developers or domain
experts). Therefore, we present the context embedding rules in the style of
graphical deduction rules [1] based on the concrete syntax of the language.

The rules of Fig. 7 specify the embedding policy of the DPO approach. The
first rule states that, given any transformation, for every vertex type C we can
add a vertex o:C to obtain another transformation. The vertex is added to
the interface, i.e., it occurs both in the pre and the post graph, because there
is no qualification with {destroyed} or {new} (cf. Sect. 2). The second rule
states that a transformation can be extended by introducing edges between
vertices in the interface, provided this is permitted by the schema graph. The
third rule specifies the possibility of gluing two vertices in the interface if they
have the same type. A similar rule could be defined for edges. Thus, given
a DPO production (represented as an instance of the meta model in Fig. 5),
the rules in Fig. 7 allow us to derive all legal DPO transformations, i.e., they
specify the notion of production application in the DPO approach. For the
first and second rule, the formal presentation based on the abstract syntax as
specified by the meta model is shown in Fig. 8 in the upper left and in the
right, respectively.

In Fig. 9, three additional rules are shown that are needed in order to spec-
ify the more general SPO approach. The three rules correspond to the three
situations ruled out by the DPO gluing condition [3]: the deletion of dangling
edges, the merging of vertices that are both deleted, and the conflict between
deletion and preservation, which is resolved in favor of deletion. Notice, how
the difference between DPO and SPO (which is quite difficult to tell looking
at the original definitions) boils down to a few additional embedding rules.

As far as normal associations (without composition or multiplicities other
than “∗”) are concerned, Fujaba behaves like the SPO approach. The be-

48



Heckel and Zündorf

Fig. 11. Multiplicity rules: adding links to constrained associations, and overwriting
of links

Fig. 12. Inheritance and embedding of attribute links

havior w.r.t. composition is shown in Fig. 10. The idea is that a component
object depends on the existence of at least one composite, i.e., it is deleted
when the last composite is removed. As specified by the first rule, a transfor-
mation which destroys an object o can be extended by attaching a composition
relation with another object p so that both the object p and the composition
relation are also destroyed. If there exists a second composition relation of p,
the object is preserved in the transformation, as specified by the rule on the
right. In order to be complete, we would have to add a third rule, analogous
to the second rule in Fig. 7, which adds a composition between two objects
that are both preserved.

Figure 11 specifies the possibly most surprising feature of Fujaba, the
overriding of links of multiplicity 0..1. As discussed in Sect. 2, the idea is to
consider such a link as a pointer to an object which is assigned a new value
once a new link of this type is created. We essentially distinguish two situations
in dealing with links of multiplicity 0..1. On its left, Fig. 11 shows the simple
case of introducing such a link to the interface if none is existing so far. This
is specified by the negative application condition in the premise of this rule
depicted by the crossed-out object p:D. Similar rules are needed in order to
introduce the A-edge to the pre- or the post-graph of the transformation. On
the right, it is shown that a transformation in which a new A-link is created
can happen in the presence of a second A-link. As a side effect, the latter is
destroyed.

The rule in the left of Fig. 12 specifies the semantics of inheritance: An
object o: C in a story pattern may be matched by an object o: D in a trans-
formation if D is a subclass of C. The abstract syntax of this rule is shown in
the lower left of Fig. 8. In the right of Fig. 12, the instantiation of attribute
links is explained. The rule in the center specifies that, given a class C with
an attribute attr:type, an object o:C may be linked to an attribute value val
of the same type. The rule in the right of Fig. 12 describes how the deletion
of an object leads to the deletion of its attribute links. Despite the different
concrete syntax for links and attribute links, these rules are very similar to
those for embedding and implicit deletion of links.

This concludes our presentation of the context embedding rules for Fu-
jaba story patterns. We have considered structural features like multiplicity
constraints 0..1, composition, attributes, and inheritance. For lack of space,
several other features have been omitted, like more sophisticated multiplicity
constraints, ordered or qualified associations, and multi-objects. Some of these
require a more powerful notion of graph grammar which supports, e.g., the
distinction between terminal and non-terminal types. Whether, besides the

49



Heckel and Zündorf

basic concepts, also the results of graph grammar theory can be of benefit
for the specification graph transformation approaches is a question of future
work.

5 Conclusion

In this paper, we have provided a meta model for both the static and dy-
namic aspect of a subset of the Fujaba language—an object-oriented graph
transformation approach based on the Uml and Java. The static aspect is
described by the type graph of a meta graph grammar whose productions are
used to specify the generation of transformations from story patterns, i.e.,
Fujaba graph rewrite rules.

The technique presented in this paper is not limited to the specification of
an individual graph transformation approach. In fact, our use of graphical de-
duction rules is closely related to the Graphical Operational Semantics (GOS)
approach [1] where similar rules are used to specify the operational semantics
of UML diagram languages [5].

The correspondence between graph transformation rules and full Uml col-
laboration diagrams which describe, in addition to structural changes, the
interaction between objects, is further extended in [9]. In this context very
similar problems can be identified. For example, the distinction in the Uml
between collaboration diagrams on the specification level and on the instance
level corresponds to the one between graph transformation rules and trans-
formations. Embedding rules can be a general means to specify the relation
between these two levels.

Acknowledgement

Thanks to Stefan Sauer for many helpful comments on a preliminary version
of this paper.

References

[1] Corradini, A., R. Heckel and U. Montanari, Graphical operational semantics,
in: A. Corradini and R. Heckel, editors, Proc. ICALP2000 Workshop on
Graph Transformation and Visual Modelling Techniques (2000), http://www.
uni-paderborn.de/cs/ag-engels/Papers/2000/CorradiniGTVMT00.pdf.

[2] Corradini, A., U. Montanari and F. Rossi, Graph processes, Fundamenta
Informaticae 26 (1996), pp. 241–266.

[3] Corradini, A., U. Montanari, F. Rossi, H. Ehrig, R. Heckel and M. Löwe,
Algebraic approaches to graph transformation, Part I: Basic concepts and double
pushout approach, in: Rozenberg [15] pp. 163–245.

50



Heckel and Zündorf

[4] Ehrig, H., M. Pfender and H. Schneider, Graph grammars: an algebraic
approach, in: 14th Annual IEEE Symposium on Switching and Automata Theory
(1973), pp. 167–180.

[5] Engels, G., J. Hausmann, R. Heckel and S. Sauer, Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML,
in: A. Evans, S. Kent and B. Selic, editors, Proc. UML 2000, York, UK, LNCS
1939 (2000), pp. 323–337.

[6] Fischer, T., J. Niere, L. Torunski and A. Zündorf, Story diagrams: A new graph
transformation language based on UML and Java, in: H. Ehrig, G. Engels, H.-J.
Kreowski and G. Rozenberg, editors, Proc. 6th Int. Workshop on Theory and
Application of Graph Transformation (TAGT’98), Paderborn, November 1998,
LNCS 1764 (2000).

[7] Gausemeier, J., U. Glässer, W. Schäfer and (project managers), Integrative
specification of distributed control systems for the flexible automated
manufacturing, www.upb.de/cs/isileit, funded by the German Research
Foundation (DFG).

[8] Habel, A., R. Heckel and G. Taentzer, Graph grammars with negative
application conditions, Fundamenta Informaticae 26 (1996), pp. 287 – 313.

[9] Heckel, R. and S. Sauer, Strengthening UML collaboration diagrams by state
transformations, in: H. Hußmann, editor, Proc. Fundamental Approaches to
Software Engineering (FASE’2001), Genova, Italy, LNCS (2001).

[10] Löwe, M., M. Korff and A. Wagner, An algebraic framework for the
transformation of attributed graphs, in: M. Sleep, M. Plasmeijer and M. van
Eekelen, editors, Term Graph Rewriting: Theory and Practice, John Wiley &
Sons Ltd, 1993 pp. 185–199.

[11] Milner, R., “Communication and Concurrency,” Prentice-Hall, 1989.

[12] Object Management Group, Meta object facility (MOF) specification (1999),
http://www.omg.org.

[13] Object Management Group, UML specification version 1.3 (1999), http://
www.omg.org.

[14] Plotkin, G., A structural approach to operational semantics, Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department (1981).

[15] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations,” World Scientific, 1997.

51


