
Theoretical Computer Science 299 (2003) 179–210
www.elsevier.com/locate/tcs

Structuring the elementary components of graphs
having a perfect internal matching

Mikl$os Bartha∗;1 , Mikl$os Kr$esz2

Department of Computer Science, Memorial University of Newfoundland St. John’s,
Newfoundland, Canada A1B 3X5

Received 22 May 2001; accepted 29 October 2001
Communicated by G. Ausiello

Abstract

Graphs with perfect internal matchings are decomposed into elementary components, and these
components are given a structure re0ecting the order in which they can be reached by external
alternating paths. It is shown that the set of elementary components can be grouped into pairwise
disjoint families determined by the “two-way accessible” relationship among them. A family tree
is established by which every family member, except the root, has a unique father and mother
identi8ed as another elementary component and one of its canonical classes, from which the given
member is two-way accessible. It is proved that every member of the family is only accessible
through a distinguished canonical class of the root by external alternating paths. The families
themselves are arranged in a partial order according to the order they can be covered by external
alternating paths, and a complete characterization of the graph’s forbidden and impervious edges
is elaborated. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Graph matching; Alternating path; Elementary graph; Canonical partition

1. Introduction

The results reported in this paper contribute to the research on soliton automata,
which has been active for more than a decade now. The aim of this research is to

∗ Corresponding author.
E-mail address: bartha@cs.mun.ca (M. Bartha).

1 Partially supported by Natural Science and Engineering Research Council of Canada Operating Grant
335591, and by National Scienti8c Research Fund of Hungary Operating Grant T 014202.

2 Author on leave from Juh$asz Gyula Teacher Training College, University of Szeged, Hungary. Work
partially supported by the International G. Soros Foundation and by the APPOL 14084 Thematic Network
project within the Fifth European Community Framework Program (FP5).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00048 -8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81935131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

180 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

explore the mathematical aspects of some molecular switching devices suggested in
[6]. Although the possibility of actually building a molecular computer is still rather
remote, results on soliton automata are very encouraging.
The underlying object of a soliton automaton is a so-called open graph, which is

simply an undirected graph having at least one vertex with degree 1. Such vertices are
called external, and their role is to provide an interface by which soliton automata can
be controlled from the outside world. The states of a soliton automaton are matchings
of the underlying graph that cover all vertices, except possibly the external ones. Such
a matching is called a perfect internal matching, and a graph having a perfect internal
matching is a soliton graph. A state change of a soliton automaton is carried out by
selecting an alternating walk connecting two external vertices of the underlying graph
with respect to the current state, and exchanging the status of each edge along the walk
regarding its being present or not present in that state (i.e., perfect internal matching).
The reader is referred to [7,8,9,10,11] for some early results on soliton automata.
The concept “perfect internal matching” emerged directly from the study of soliton

automata, therefore relatively little has been done so far in order to adopt even the most
fundamental results in matching theory [12] on perfect matchings, and 8nd out their
usefulness concerning soliton automata. Tutte’s well-known theorem on the structure of
maximum matchings has been generalized in [1] for maximum internal matchings, and
the counterpart of the Gallai–Edmonds structure theorem was worked out in [2]. Other
basic results directly related to soliton automata have been gathered in [3]. An algebraic
approach to study open graphs and perfect internal matchings has been outlined in [2,4].
The present paper makes a signi8cant step towards the decomposition of soliton

automata into elementary ones. For technical reasons, namely space restrictions, the
actual decomposition has been carried out in a separate paper [5], while this work
concentrates on matching theoretic issues only. Implications on soliton automata are
never spelled out, although the traces of these implications should be conspicuous even
for a reader completely unfamiliar with soliton automata.
The elementary components of soliton graphs are grouped into pairwise disjoint fami-

lies based on the so-called “two way accessible” relationship among them.
A family tree is then established in each of these groups, which re0ects the order
in which family members can be reached by external alternating paths. In addition, a
complete characterization of the graph’s impervious and forbidden edges is given.
The paper is organized as follows. Section 2 introduces the notation and terminology

relating to graphs and matchings, and puts forward four simple claims for the sections
to follow. Section 3 provides a link between perfect matchings and perfect internal
matchings by elaborating a framework in which the latter constructs can be studied
in terms of the former ones. Section 4 introduces hidden edges to soliton graphs, and
shows that the addition of these edges does not change the elementary decomposition
of the graph. The grouping of elementary components into families is carried out in
Section 5. It is proved that each viable family contains a unique one-way component,
called the root, and that all external alternating paths targeting any member in that
family must enter the family at the principal canonical class of the root. Section 6
establishes a family tree within each viable family, characterizes forbidden edges con-
necting elementary components inside a family and between two viable families, and

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 181

identi8es impervious edges of the graph as ones that are incident with a viable family
only at vertices belonging to the principal canonical class of the root of that family.
Finally, Section 7 is a summary of the results obtained.

2. Preliminaries

In this section we review some of the basic concepts concerning graphs and match-
ings, and state a few claims that will often be used in later sections. Our notation and
terminology will be compatible with that of [12], except that “point” and “line” will
be replaced by the more conventional terminology “vertex” and “edge”, respectively.
By a graph we shall mean a 8nite undirected graph in the most general sense, i.e.,

with multiple edges and loops allowed. For a graph G; V (G) and E(G) will denote
the set of vertices and the set of edges of G, respectively. An edge e∈E(G) connects
two vertices v1; v2 ∈V (G), which are said to be adjacent in G. The vertices v1 and v2
are called the endpoints of e, and we say that e is incident with v1 and v2. If v1 = v2,
then e is called a loop around v1.
The degree of a vertex v in graph G is the number of occurrences of v as an endpoint

of some edge in E(G). According to this de8nition, every loop around v contributes
two occurrences to the count. The vertex v is called external if its degree is one,
internal if its degree is greater than one, and isolated otherwise. An edge e∈E(G) is
said to be an external edge if one of its endpoints is an external vertex. Internal edges
are those that are not external. The sets of external and internal vertices of G will be
denoted by Ext(G) and Int(G), respectively. Graph G is said to be open if it has at
least one external vertex, and G is closed if all vertices of G are internal.
A matching M of graph G is a subset of E(G) such that no vertex of G occurs

more than once as an endpoint of some edge in M . Again, it is understood by this
de8nition that loops are not allowed to participate in M . The endpoints of the edges
contained in M are said to be covered by M . A matching is called perfect if it covers
all vertices of G. A perfect internal matching is one that covers all of Int(G). Clearly,
the notions perfect matching and perfect internal matching coincide for closed graphs.
By the usual de8nition, a subgraph G′ of G is just a collection of vertices and edges

of G. Since in our treatment we are particular about external vertices, we do not want
to allow that new external vertices (i.e., ones that are not present in G) emerge in G′.
Therefore, whenever this happens, so that vertex v∈ Int(G) becomes external in G′,
we shall augment G′ with a loop edge around v. This augmentation will be understood
automatically in all subgraphs of G. The subgraph of G determined by a set of vertices
X ⊆V (G) will be denoted by G[X], or just by [X] if G is understood.
Assume, for the rest of this section, that G is a graph having a perfect internal

matching. An edge e∈E(G) is called allowed if e is part of some perfect internal
matching of G, and e is forbidden if this is not the case. Edge e is mandatory if it is
present in all perfect internal matchings of G, and e is constant if it is either forbidden
or mandatory. Graph G is elementary if its allowed edges form a connected subgraph
covering all the external vertices, and G is 1-extendable if all of its edges, except the
loops if any, are allowed.

182 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

A subgraph G′ of G is nice if it has a perfect internal matching, and every perfect
internal matching of G′ can be extended to a perfect internal matching of G. In this
case, a perfect internal matching of G is G′-permissible if it is the extension of an ap-
propriate perfect internal matching of G′. Obviously, not all perfect internal matchings
of G must be G′-permissible. Take, for example, a single non-constant internal edge
e in G (with a loop around both endpoints) as G′. Clearly, G′ is nice, but a perfect
internal matching M of G is G′-permissible iN e∈M .
In general, the subgraph of G determined by its allowed edges has several connected

components, which are called the elementary components of G. An elementary com-
ponent C is external if it contains external vertices of G, otherwise C is internal.
Notice that an elementary component can be as small as a single external vertex of G.
Such a component is the only exception from the general rule that each elementary
component is an elementary graph. A mandatory elementary component is a single
mandatory edge e∈E(G) with a loop around one or both of its endpoints, depending
on whether e is external or internal. Note that an edge connecting two external vertices
is not mandatory in G, therefore it is not a mandatory elementary component either.
A walk in graph G is an alternating sequence of vertices and edges, starting and

ending with a vertex, such that each edge in the sequence is incident with the vertex
immediately preceding and following it. A trail is a walk in which no edge occurs
more than once, and a path is a trail with no repetition in the sequence of vertices.
A cycle is a trail that returns to its starting point after covering a path, and then stops.
A trail is called external if one of its endpoints is such, otherwise the trail is internal.
Let M be a perfect internal matching of G. A trail
= v0; e1; : : : ; en; vn is alternating

with respect to M (or M -alternating, for short) if for every 16i6n − 1; ei ∈M iN
ei+1 =∈M . Notice that an alternating trail can return to itself only at its endpoints. There-
fore we shall specify alternating trails just by giving the set of their edges, indicating
the starting point and other particulars of the trails only in words if this is necessary.
If
 is an M -alternating path and e1 ∈M (e1 =∈M), then we say that
 is positive (re-
spectively, negative) at its v0 end. An external alternating path leading to an internal
vertex is positive (negative) if it is such at its internal endpoint. An internal alternating
path is positive (negative) if it is such at both ends. A positive M -alternating fork is
a pair of disjoint positive external M -alternating paths leading to two diNerent internal
vertices. Although it sounds somewhat confusing, we say that a positive alternating
fork connects its two internal endpoints.
A perfect internal matching of G is often called a state. For any state M , an

M -alternating path connecting two external vertices of G is called a crossing. An
M -alternating loop around vertex v is an odd M -alternating cycle starting from v.
Clearly, the 8rst and the last edge of any M -alternating loop must not be in M . Since
we now have a distinct name for odd alternating cycles, we shall reserve the term
“alternating cycle” for even length ones. An M -alternating unit
 is either a crossing
or an (even length) alternating cycle with respect to M . Making the unit
 in state
M means creating a new state M ′ = S(M;
) in which for every edge e in
; e∈M ′

iN e =∈M , and for every edge e not in
; e∈M ′ iN e∈M . It is easy to see that M ′ is
indeed a state. An M -alternating network � is a set of pairwise disjoint M -alternating
units. Again, by making � in state M we mean creating a new state S(M;�) by making

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 183

Fig. 1. An impervious edge e.

the units in � one by one in an arbitrary order. It was proved in [4] that for every
two states M and M ′ there exists an M -alternating network � such that M ′ = S(M;�)
and M = S(M ′; �). This network � is called the mediator alternating network between
states M and M ′. An immediate consequence of this result is that an edge e is not
constant iN there exists an M -alternating unit passing through e in every state M .
An internal vertex v of G is called accessible in state M if there exists a positive

external M -alternating path leading to v. An edge e is impervious in state M if neither
of its endpoints are accessible in M . Edge e is viable if it is not impervious. See Fig.
1 for a graph containing an impervious edge e. In this 8gure, as well as in some of
the forthcoming ones, double lines connecting two vertices indicate edges that belong
to the given matching M .

Claim 2.1. An internal vertex v is accessible in state M i9 v is accessible in all states
of G.

Proof. Let us augment G by a new external edge at v, that is, by an edge e=(v; v′),
where v′ =∈V (G). If G+ e denotes the augmented graph, then G+ e still has a perfect
internal matching, moreover, G is a nice subgraph of G + e. Obviously, there is only
one way to extend any perfect internal matching of G to G + e, i.e., by not including
the edge e in that matching. We shall therefore identify each state of G by its unique
extension to G + e. By assumption, there exists an M -alternating crossing
 in G + e
passing through the edge e. Consider the state S(M;
), and switch to any G-permissible
state M ′ of G + e by making the mediator alternating network � between S(M;
)
and M ′. It is clear that � contains a unique crossing � going through e. Stripping �
from the edge e results in the desired positive external M ′-alternating path in G leading
to vertex v.

By virtue of Claim 2.1 we can say that an internal vertex v is accessible in G
without specifying the state M relative to which this concept was originally de8ned.

Corollary 2.2. An edge e is impervious in some state of G i9 e is impervious in all
states of G.

184 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Claim 2.3. Every internal vertex of an open elementary graph G is accessible.

Proof. It was proved in [4] that, for every two allowed edges e1; e2 of an elementary
graph, there exists a state M such that both e1 and e2 are contained in an appropriate
M -alternating unit. Let v be an arbitrary internal vertex of G. Clearly, there exists an
edge e∈M incident with v. If e is external, then we are through. Otherwise, since e
is allowed, for any external edge e′ of G there exists a state M ′ and a crossing
 with
respect to M ′ such that
 goes through e and e′. Thus, v is indeed accessible (e.g. in
state M ′).

Claim 2.4. Let C1 and C2 be two di9erent external elementary components of G.
There exists no alternating path � with respect to any state M connecting C1 and C2

in such a way that the two endpoints of �, but no other vertices, lie in C1 and C2.

Proof. Assume, by contradiction, that there exists an M -alternating path � connecting
vertex v1 in C1 with vertex v2 in C2 as described in the claim. Clearly, � must be
negative at both ends. Moreover, vi (i=1; 2) can be external only if Ci = {vi}. Take a
positive external M -alternating path
i leading to vi inside Ci if vi is internal, otherwise
let
i be the empty path. The path
i exists by Claim 2.3 above. Combining
1; �, and

2 then results in a crossing through both components C1 and C2, which contradicts
that C1 �=C2.

Now we recall the de8nition of canonical equivalence from [12,3]. Let G be ele-
mentary, and de8ne the relation ∼ on Int(G) by v1 ∼ v2 if an extra edge e connecting
v1 with v2 becomes forbidden in G + e. It is well-known that, in case G is closed, ∼
is an equivalence relation that determines the so-called canonical partition of V (G). It
was proved in [3] that, for open graphs, too, ∼ is an equivalence relation on Int(G).

Claim 2.5. If v1 and v2 are two internal vertices of an elementary graph G, then
v1 �∼ v2 i9 one of the following conditions are met in any state M of G:
(a) there exists a positive M -alternating path connecting v1 and v2,
(b) there exists a positive M -alternating fork connecting v1 and v2.

Proof. Consider the extra edge e=(v1; v2) in the graph G + e. Since G is a nice
subgraph of G + e, the edge e cannot be mandatory. Therefore e is not forbidden
iN there exists an Me-alternating unit passing through e in any state Me of G + e.
Identifying the G-permissible states of G + e with those of G, this is equivalent to
saying that e is not forbidden in G + e iN there exists an M -alternating unit passing
through e in any state M of G. The claim is now obvious.

3. The closure of open graphs

In order to prove a result on open graphs and perfect internal matchings it is some-
times useful to start reasoning about some related closed graphs with perfect matchings,

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 185

and then deduce the desired result by reopening these graphs. The closure operation
introduced in this section allows a deduction mechanism of this nature. Throughout
this section, unless otherwise stated, G will denote an open graph.

De nition 3.1. The closure of graph G is the closed graph G∗ for which:
• V (G∗)=V (G) if |V (G)| is even, and V (G∗)=V (G)∪{c}; c =∈V (G) if |V (G)| is
odd;

• E(G∗)=E(G)∪{(v1; v2) | vi ∈Ext(G)∪{c}}.

Intuitively, G∗ is obtained from G by connecting all of its external vertices with
each other in all possible ways. If |V (G)| happens to be odd, then a new vertex c is
added to G, and edges are introduced from c to all the external vertices. The edges
of G∗ belonging to E(G∗) − E(G) will be called marginal, and the vertex c will be
referred to as the collector. Edges incident with the collector vertex will also be called
collector edges.
Notice that, in the speci8cation of E(G∗), it is not required that v1 �= v2. Conse-

quently, in G∗, we are going to have a loop around each external vertex of G. These
loops have no speci8c role if G has at least two external vertices, although their in-
troduction as trivial forbidden edges is harmless. If there is only one external vertex
in G, however, the loop is essential to make G∗ closed.

Proposition 3.2. Graph G has a perfect internal matching i9 G∗ has a perfect match-
ing.

Proof. If G∗ has a perfect matching M∗, then deleting the marginal edges from G∗

and M∗ will leave G with a perfect internal matching. Conversely, if G has a perfect
internal matching M , then it is always possible to extend M to a perfect matching of
G∗ by matching up the external vertices of G not covered by M in an arbitrary way,
using the collector vertex c if necessary. Obviously, the use of c is necessary if and
only if |V (G)| is odd.

Lemma 3.3. Every M -alternating crossing of G can be turned into an M∗-alternating
cycle of G∗ by any extension of M to a perfect matching M∗. Conversely, for an
arbitrary perfect matching M∗ of G∗, every M∗-alternating cycle of G∗ containing
at least one marginal edge opens up to a number of alternating crosses with respect
to the restriction of M∗ to E(G) when the marginal edges are deleted from G∗.

Proof. Straightforward, using the same argument as in Proposition 3.2.

Corollary 3.4. For every edge e∈E(G); e is allowed in G i9 e is allowed in G∗.

Proof. Indeed, by Lemma 3.3, e is allowed in G
i9 there exists a M -alternating unit through e in G for some M ,
i9 there is an M∗-alternating cycle through e in G∗ for some M∗,
i9 e is allowed in G∗.

186 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Fig. 2. Marginal edges that are forbidden in G∗.

Corollary 3.5. A connected graph G is elementary i9 G∗ is elementary.

Proof. If G is elementary, then its allowed edges form a connected subgraph Ge of G
covering all the external vertices. By virtue of Corollary 3.4, Ge is part of an elementary
component in G∗, which must be the only one as the collector vertex alone cannot form
an elementary component in the closed graph G∗. Conversely, let G∗ be elementary,
and assume by way of contradiction that G has more than one elementary component.
All these components must be external, because any internal elementary component of
G would also be an elementary component of G∗ according to Corollary 3.4. Since G
is connected, there must be two elementary components in G that are connected by a
forbidden edge, which is in contradiction with Claim 2.4.

By Corollary 3.4, if the closure G∗ of a connected graph G is 1-extendable, then
so is G. Conversely, if G is 1-extendable, then only the marginal edges of G∗ might
be forbidden in G∗. Among these, however, the collector edges are ruled out for the
following reason. Let v be an arbitrary external vertex of G, and consider a state M
of G by which v is left uncovered. Such a state M can always be found, because
if a randomly chosen M ′ does cover v, then switching to state M = S(M ′;
) for an
appropriate crossing
 starting from v will do the job. (Crossing
 will exist, for G
cannot be a single mandatory external edge if the collector vertex is present.) Now
we can extend M to a perfect matching M∗ of G∗ by 8rst putting in the edge (v; c),
then matching up the remaining uncovered external vertices of G in an arbitrary way.
This proves the edge (v; c) allowed. Thus, only those marginal edges can be forbidden
in G∗ that connect the external vertices of G directly. Fig. 2 shows a simple example
where all these edges are indeed forbidden.
If G is not elementary, then several of its external elementary components may be

amalgamated in G∗. The internal elementary components of G, however, will remain
intact in G∗ as every forbidden edge of G is still forbidden in G∗. The mandatory
external elementary components of G, too, will remain mandatory in G∗. We claim
that the union of all non-mandatory external elementary components of G, together with
the collector vertex if that is present, forms one elementary component in G∗, called the
amalgamated elementary component. Indeed, as we have already seen, every collector
edge not adjacent to a mandatory external edge of G is allowed in G∗. Similarly, if
e is an edge in G∗ connecting two external vertices of G belonging to diNerent non-

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 187

mandatory elementary components, then it is always possible to 8nd a state M of G
by which the two endpoints of e are not covered. Then M can be extended to a perfect
matching M∗ of G∗ by putting in the edge e 8rst, so verifying it to be allowed in G∗.
The observations of the previous paragraph are summarized in Theorem 3.6 below,

which provides a characterization of the elementary decomposition of G∗.

Theorem 3.6. The set of elementary components of G∗ consists of:
(i) the internal elementary components of G;
(ii) the mandatory external elementary components of G;
(iii) the amalgamated elementary component, which is the union of all non-mandatory

external elementary components of G and the collector vertex, if that is present.

4. Canonical equivalence

Recall from Section 2 that the canonical partition of an elementary graph G is
determined by the equivalence relation ∼ on V (G). We generalize this relation for
non-elementary graphs in the following natural way.

De nition 4.1. For any two internal vertices u; v∈V (G); u∼ v if u and v belong to
the same elementary component of G and the edge e=(u; v) becomes forbidden in
G + e.
One might think that the relation ∼, when restricted to a particular elementary com-

ponent C, results in the equivalence ∼C , which is canonical equivalence on C alone
in the usual sense. In general this fails to hold, and we shall see that ∼ |C—the re-
striction of ∼ to C—is just a re8nement of ∼C . At the moment, however, we do not
even know that ∼ is an equivalence relation for non-elementary graphs. All we know
is that ∼ is re0exive and symmetric, and that u �∼C v implies u �∼ v, i.e., ∼ |C ⊆∼C .
Claim 2.5, too, remains true under the current more general conditions.
In the light of Claim 2.5, Lemma 3.3 and Corollary 3.4 it is easy to see that

for any two internal vertices u and v belonging to the same elementary component of
G; u∼ v holds in G iN u∼ v holds in G∗. Furthermore, if u and v are arbitrary vertices
belonging to diNerent non-mandatory external elementary components, then u �∼ v holds
in G∗. Indeed, by Claim 2.3, if u (v) is internal, then there exists a positive external
alternating path leading to that vertex in its elementary component with respect to any
state M of G, which path (paths) will give rise to a positive alternating path connecting
u with v in G∗ with respect to any extension of M . Finally, by the same argument, c �∼ v
holds for the collector vertex c and any other vertex v in the amalgamated elementary
component of G∗. Thus, we have proved the following characterization of the relation
∼G∗ in terms of ∼G.

Theorem 4.2. Let u and v be vertices of an elementary component C in G∗.
(i) If u and v are both internal in G, then, irrespective of the choice of C; u∼G∗ v

i9 u and v are in the same elementary component of G, too, and u∼G v.
(ii) If C is a mandatory external elementary component of G, then u∼G∗ v i9 u= v.

188 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Fig. 3. A C-loop and a C-fork.

(iii) For C being the amalgamated elementary component, u �∼G∗ v whenever u and v
belong to di9erent external elementary components of G, or exactly one of them
is the collector vertex. If u and v are external vertices of the same elementary
component in G, then either of u∼G∗ v and u �∼G∗ v is possible.

(iv) Statements (i)–(iii) remain true if we replace ∼G and ∼G∗ in them by the local
relations ∼C in G and G∗, respectively.

Corollary 4.3. For every elementary component C of G,

∼G |C =∼G∗ |C and ∼C = ∼C∗ |C;

where C∗ is the elementary component of G∗ containing C.

Proof. Straightforward by Theorem 4.2(i) and (iv).

Let C be a nice elementary subgraph of G, and consider a C-permissible perfect
internal matching M in G. An M -alternating C-loop (or just C-loop if M is understood)
is a negative internal M -alternating path or loop in G having both endpoints, but no
other vertices, in C, see Fig. 3a. If C is closed, then an M -alternating C-fork is a pair
of edge-disjoint negative external M -alternating paths such that their internal endpoints,
but no other vertices, are in C, see Fig. 3b. A C-loop (fork) is said to connect its
internal endpoints even if this does not in fact happen in the case of forks. Notice that
Claim 2.4 excludes the possibility of having a C-fork with C being external.

De nition 4.4. A hidden edge of G is an edge e=(v1; v2), not necessarily in E(G),
for which v1 and v2 are the endpoints of an M -alternating C-loop or C-fork for some
elementary component C and state M of G. The word “shortcut” will sometimes be
used as a synonym for “hidden edge”.

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 189

Note that, by de8nition, every forbidden edge in an elementary component C of G is
a C-loop, and hence becomes a hidden edge of G. Reversing the argument one can see
that hidden edges always become forbidden in their respective elementary components.
Indeed, suppose that v1 �∼C v2 for the two endpoints v1 and v2 of an M -alternating
C-loop or C-fork
. Then there exists a positive M -alternating path or fork � con-
necting v1 with v2 running entirely in C. (See Claim 2.5.) Notice that a fork
 can-
not be coupled with a fork � in one case, since an alternating C-fork exists only
if C is closed. Combining the negative
 with the positive � then results in an M -
alternating unit in G containing
, which contradicts the fact that C is an elementary
component.
Let us now have a closer look at the composition of an alternating C-loop
 for

some elementary component C. Intuitively,
 starts out from an internal vertex of C
and, after traversing a forbidden edge of G, enters another elementary component C1.
After making a positive alternating path in C1 the whole process is iterated, so that
by the time
 returns to C, a sequence C1; : : : ; Cn of elementary components will have
been visited. Note that the case n=0 is possible, indicating the presence of a single
forbidden edge in C as a C-loop. Also notice that there might be repetitions in the
sequence C1; : : : ; Cn, as any of these components can be left and reentered subsequently.
We say that the components C1; : : : ; Cn are covered by the C-loop
.
The following proposition shows that the particular matching M , relative to which

 is de8ned, has no bearing on the existence and composition of C-loops covering
internal components only.

Proposition 4.5. Let
 be a C-loop connecting vertices v1 and v2 of an elementary
component C with respect to some state M of G, and assume that all components
covered by C are internal. Then, for every state M ′, there exists an M ′-alternating
C-loop connecting v1 and v2 that goes through the same forbidden edges as
 and
covers the same set of elementary components, too.

Proof. Let C
 be the set of elementary components covered by
, and consider the
subgraph G[∪C
] of G determined by the union of these components. Augment G[∪C
]
by the two forbidden edges e1 and e2 of
 originally incident with v1 and v2, and
consider them as external edges. Denote the resulting graph having two external vertices
by G
, and let M
 (M ′

) be the restriction of M (respectively, M ′) to G
. Clearly, G
 is
elementary, since the opening of the loop
—being an M
-alternating crossing in this
graph—connects the components in C
 to each other. Consider the state S(M
;
) of
G
. Making the crossing
 in this state and then switching to state M ′

 determines an
alternating network N with respect to state M ′

 . The network N will consist of several
cycles within the components belonging to C
 and one crossing
′ connecting the two
external vertices. Clearly, the crossing
′ determines a C-loop in G with respect to
state M ′. All the forbidden edges of G traversed by
 will also be traversed by
′, as
none of these edges are present in either M or M ′. Thus,
′ covers exactly the same
elementary components as
, not necessarily in the same order, though. Nevertheless,
it certainly covers each one with the same multiplicity as
.

190 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Lemma 4.6. The hidden edges of G∗ di9erent from the forbidden marginal edges are
exactly the hidden edges of G.

Proof. Let
 be a C-loop or C-fork in G for some elementary component C with
respect to state M . If C is internal, then obviously
 determines a C-loop
∗ in G∗ with
respect to any extension of M to a perfect matching M∗. If C is external, then Claim 2.4
implies that
 is a loop that will not reach any other external elementary component
of G. Therefore
∗ becomes an A-loop in G∗, where A=C if C is mandatory, and A
is the amalgamated elementary component otherwise. Thus, every hidden edge in G is
one in G∗.
Now let
 be a C-loop connecting vertices v1 and v2 of an elementary component

C in G∗ with respect to some perfect matching M∗. By Theorem 4.2, neither v1 nor
v2 is the collector. If either v1 or v2, say v1, is external in G, then v2 is external, too,
belonging to the same elementary component of G as v1. Indeed, by Theorem 4.2,
there are no forbidden edges in G∗ incident with v1 other than the marginal ones. Let
therefore v1 and v2 be both internal in G. By Claim 2.4, these two vertices are in
the same elementary component of G even if C =A is the amalgamated elementary
component. Therefore there exists an elementary component C′ of G such that either

 is a C′-loop or it opens up to a C′-fork with respect to the restriction of M∗ to G.
Thus, every hidden edge of G∗ that is not a forbidden marginal edge is a hidden edge
of G.

For every elementary component C of G, let Ch denote the enhancement of C with
all the hidden edges belonging to C. Similarly, denote by Gh the graph obtained from
G by adding all of its hidden edges.

Corollary 4.7.

(Gh)∗ = (G∗)h:

Proof. Straightforward by Lemma 4.6.

Corollary 4.8. Let
 be a C-loop or C-fork connecting vertices v1 and v2 of some
elementary component C with respect to state M of G. Then for every state M ′ there
exists an M ′-alternating C-loop or C-fork connecting v1 and v2 that covers the same
forbidden edges and elementary components as
.

Proof. By Proposition 4.5 it is enough to prove the statement in the case when
 is
either a fork or it is a loop covering an external elementary component D. Claim 2.4
then implies that C is internal and D is unique. Let M∗ and (M ′)∗ be any extensions
of M and M ′ to perfect matchings in G∗. Following the argument in the 8rst paragraph
of the proof of Lemma 4.6,
 determines an appropriate C-loop
∗ in G∗ with respect
to M∗. Using Proposition 4.5 again, there exists a C-loop (
′)∗ with respect to (M ′)∗

in G∗ covering the same forbidden edges and elementary components as
∗. Reopening
G∗ then determines a C-loop or C-fork
′ with respect to M ′ in G. Since the external

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 191

Fig. 4. The proof of Lemma 4.9.

component D that might aNect the opening of (
′)∗ into
′ is unique,
′ will cover the
same forbidden edges and elementary components as
.

Our goal is to show that the elementary decomposition of Gh is the same as that of
G, and all the hidden edges of G remain forbidden in Gh. Although this fact might
seem obvious to the reader already at this point, its formal proof poses a technical
challenge, which will be dealt with in Lemma 4.9 and Theorem 4.11 below.
Let C be any elementary subgraph of G, and assume that a negative alternating trail

 is such that none of its vertices, except possibly the endpoints, are in C. We shall
refer to this situation by saying that
 runs essentially outside C.

Lemma 4.9. Let C be a nice elementary subgraph of G, and let v; v1; v2 ∈V (C) be
such that v1 ∼C v2 but v �∼C vi for i=1; 2. Moreover, for some C-permissible state M
of G, let
 be an M -alternating C-loop or C-fork connecting v1 and v2, and � be a
negative M -alternating path running essentially outside C +
, connecting v with a
vertex u lying on
. Then there exists an M -alternating unit in C+
+� containing �.

Proof. (i) Assume 8rst that G is closed, so that
 is a C-loop. The situation is depicted
by Fig. 4. The edge e∈M on
 incident with u acts like a valve for � in the sense
that it points to either v1 or v2. Say the valve points to v2 as in Fig. 4. Let � be
the M -alternating path that starts out from v on �, then switches to
 at u, and ends
in v2. Since v2 �∼C v, there exists a positive M -alternating path connecting v2 with v
inside C. Combining this path with the negative alternating path � results in the desired
M -alternating cycle.
(ii) If G is open, then consider the closure [C]∗ of the subgraph [C] (=G[C]), and

observe that [C]∗ is a nice elementary subgraph of G∗. This is obvious if the collector
vertex is present in G∗. If it is not, but the collector is needed for [C]∗, then any
external vertex of G not in C is suitable for this purpose. Such a vertex will always
exist, otherwise the collector would not be necessary in [C]∗ either. Clearly, v1 ∼[C]∗ v2
and v �∼[C]∗ vi for i=1; 2. Moreover,
 determines a [C]∗-loop
∗ in G∗ with respect

192 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

to any [C]∗-permissible extension of M to a perfect matching. This is true because
at most one of [C]∗ �=C and
∗ �=
 can hold, keeping
∗ essentially outside [C]∗.
(Remember that C must be internal for any C-fork.) Now the statement follows easily
from (i).

Corollary 4.10. Let
 be an M -alternating C-loop or C-fork for some elementary
component C of G connecting vertices v1 and v2, and let � be an M -alternating path
starting out from a vertex v in C, but running essentially outside C. If v �∼C vi for
both i=1; 2, then � must avoid all the elementary components covered by
.

Proof. Assume, on the contrary, that there exists a negative M -alternating path �
satisfying the conditions of the corollary in such a way that the other endpoint u of
� lies on an elementary component C′ covered by
, but � runs essentially outside
C ∪C′. By switching to G∗ we can assume, without loss of generality, that
 is a
loop. (See Lemma 4.6.) According to Lemma 4.9, � and
 cannot have a vertex in
common. Let u1 and u2 be two vertices of C′ where
 enters and subsequently leaves
this component. Clearly, u1 �∼C′ u2, so that u and at least one of u1; u2 are in diNerent
canonical classes by ∼C′ . The path � can therefore be continued from u inside C′ in
an M -alternating way to reach u1 or u2. In either way this continuation will eventually
hit the loop
, which contradicts Lemma 4.9.

Theorem 4.11. For an elementary component C of G, let e1; : : : ; en be any number of
hidden edges in C. Then, for the elementary graph Cn =C + e1 + · · ·+ en, each edge
ei remains forbidden in Cn, and ∼ |C ⊆∼Cn .

Proof. (i) Again, assume 8rst that G is closed. The proof is an induction argument on
n. For n=0 the statement is trivial. Assume it holds for any choice of hidden edges
e1; : : : ; en; n¿0, and let en+1 be a further hidden edge. Let � be an arbitrary positive
alternating path or alternating cycle in Cn+1 with respect to some state M , and try to
replace the edges ei on � by appropriate C-loops one-by-one, until an overlap occurs
between two of them in G. Note that such loops always exist by Corollary 4.8. We
claim that the process of unfolding the hidden edges in � will be successful all the
way, that is, all newly introduced C-loops will be pairwise disjoint. On the contrary,
let us assume that we encounter an overlap when introducing a C-loop for edge ei
with the one that has been substituted for ej previously, and this is the 8rst time an
overlap occurs. Without loss of generality we can assume that the hidden edges that
have already been successfully replaced are e1; : : : ; ei−1, and j=1, see Fig. 5.

In the way described above, we will have an instance of the situation captured by
Lemma 4.9 with C in that lemma being Ci =C+e2 + · · ·+ei−1 now,
 being the loop
that replaced e1 with endpoints v1; v2, and � being an appropriate subpath of the loop
attempted to be substituted for ei starting out from vertex v. Note, however, that the
base graph G in that lemma is now G+ e2 + · · ·+ ei−1, in which we do not know yet
if Ci is an elementary component. But it certainly is a nice elementary subgraph. To
verify the conditions of the lemma, observe that v1 ∼Ci v2, since e1 is still forbidden
in Ci + e1 =Ci−1 by the induction hypothesis. Moreover, v2 �∼Ci v, since there exists a

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 193

Fig. 5. Unfolding the loops in Theorem 4.11.

positive alternating path connecting v2 with v in G using the pairwise disjoint C-loops
introduced for e2; : : : ; ei−1, therefore there exists one in C + e2 + · · · + ei−1 without
using them. The application of Lemma 4.9 then results in an M -alternating cycle � in
Ci +
 + � containing �. As � does not overlap with the previously introduced loops
for ek ; 26k6i − 1, these loops can be reintroduced in � to obtain a M -alternating
cycle already in G containing �, which is a contradiction.

Having made the above powerful argument, the induction started in (i) can now
be 8nished easily. Suppose en+1 becomes allowable in the graph C + e1 + · · ·+ en+1.
Then there is an M -alternating cycle � containing some (in fact all) of the edges
ei; 16i6n+1. Replacing these edges by appropriate pairwise disjoint C-loops yields
an M -alternating cycle in G covering forbidden edges, which is impossible. The proof
of ∼ |C ⊆∼Cn+1 follows exactly the same argument, and is left to the reader.

(ii) If G is open, then switch to the graph G∗, and apply part (i) for this graph and
its elementary component C∗ containing C. Theorem 3.6 and Lemma 4.6 ensure that
all the required conditions are met. Thus, the edges e1; : : : ; en are forbidden in C∗

n , and
∼G∗ |C∗ ⊆∼C∗

n
. Coming back to the graph G it follows immediately that e1; : : : ; en are

forbidden in Cn. Furthermore,

∼G |C
=∼G∗ |C (by Corollary4.3)

= (∼G∗ |C∗)|C
⊆∼C∗

n
|C

=∼Cn (by Corollary4.3):

Corollary 4.12. For every elementary component C,

∼ |C =∼Ch :

Proof. Notice that ∼Ch ⊆∼|C, because every positive alternating path or fork � in G
connecting two vertices of C can be turned into a path or fork �h in Ch by making the

194 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

appropriate shortcuts. This fact is obvious unless C is external and � is a fork. But in
this case, too, Claim 2.4 implies that �h remains in the elementary component Ch. On
the other hand, ∼ |C ⊆∼Ch follows from Corollary 4.12.

Corollary 4.13. The elementary decomposition of G is the same as that of Gh.

Proof. It is suRcient to prove that the addition of just one hidden edge e to G does
not change the elementary decomposition of G. This is equivalent to saying that e is
forbidden in G + e. Suppose, by contradiction, that for any hidden edge e connecting
vertices v1 and v2 in elementary component C there exists an inter-elementary alternat-
ing unit � in G+e with respect to some state M of G+e going through e. Without loss
of generality we can assume that e =∈M , i.e., M is a state of G, too. The unit � puts v1
and v2 in diNerent canonical classes according to ∼ |C. But then, by Corollary 4.12,
v1 and v2 cannot be in the same canonical class according to ∼Ch either, which is in
contradiction with Theorem 4.11.

The key observation made in the proof of Theorem 4.11 is now generalized and
stated as a separate principle.

Theorem 4.14 (Shortcut Principle). For any state M , let � be an arbitrary
M -alternating trail in Gh. Then any number of the shortcuts along � can be un-
folded into appropriate M -alternating loops or forks without the chance of creating
any intersections. Moreover, � either remains a trail or becomes a pair of external
trails after the unfolding, the latter only if � is internal.

Proof. It is suRcient to prove that the unfolding of just one shortcut e=(v1; v2) in
some elementary component C into a C-loop or C-fork
 does not create an intersection
with the rest of �, and that the unfolding of � has the desired properties.
(i) G is closed. Assume, by contradiction, that
 intersects with �. Setting out on

� from v1 or v2 in a positive M -alternating way (i.e., on an edge belonging to M)
we must encounter a vertex that lies on
. Let u be the 8rst such vertex, starting out
from say v1. On the interval from v1 to u there is a last vertex v at which � leaves
component C. Making the appropriate shortcuts in C on the interval of � from v1 to v
results in a positive M -alternating path connecting these two vertices in Ch, indicating
that v1 �∼Ch v. A contradiction is now immediate by Lemma 4.9. Obviously, � is a single
trail after the unfolding.
(ii) G is open. Consider the graph (G∗)h and the elementary component C∗ in

G∗ containing C. In this setting � determines an alternating trail �∗ in (G∗)h, and

determines an alternating C∗-loop
∗ with respect to any extension of M to a perfect
matching. (See Theorem 3.6, Lemma 4.6, and Corollary 4.8.) Knowing from (i) that
∗

and �∗ do not intersect, it follows that their subtrails
 and � do not intersect either. If

 is a fork, then � cannot be external, because in that case one of the two trails arising
from the unfolding would be an inter-elementary crossing. This observation proves the
second statement of the theorem.

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 195

Corollary 4.15. An edge e∈E(G) is impervious in G i9 e is impervious in Gh.

Proof. Straightforward by the Shortcut Principle.

Let P(G) denote the canonical partition of Int(G) determined by the equivalence ∼.

Corollary 4.16. P(G)=P(Gh):

Proof. Immediate by Claim 2.5 and the Shortcut Principle.

Let F(G) and H(G) denote the sets of forbidden and hidden edges of G.

Corollary 4.17. F(Gh)=F(G)∪H(G):

Proof. For any graph G, the set of forbidden edges consists of:
(a) the edges connecting two diNerent elementary components in G;
(b) the forbidden edges of the elementary components themselves.
By Corollary 4.13, edges in (a) are common for G and Gh. Moreover, by Theo-

rem 4.11, the forbidden edges of Gh belonging to (b) are exactly the hidden edges
of G.

In the sequel, by a canonical class of some elementary component C we shall mean
a class by the partition P(G)=P(Gh), rather than one by the partition associated with
the equivalence ∼C . According to Corollary 4.12, P(G) is determined locally by the
equivalence relations ∼Ch .

5. Structuring the elementary components

In the previous section we were concerned with the behavior of one particular el-
ementary component of G when placed in the global environment determined by the
surrounding elementary components. In this section we look at the global environment
itself, and investigate the structure of all elementary components in G. Elementary
components will be related to each other according to their accessibility from external
vertices by alternating paths. Unlike in the previous sections, we shall use the phrase
“external alternating path � enters elementary component C” in the strict sense, mean-
ing that � enters C for the 8rst time. Obviously, the path � must then be negative.

De nition 5.1. An elementary component of G is viable if it does not contain im-
pervious allowed edges. A viable internal elementary component C is one-way with
respect to some state M of G if all external M -alternating paths enter C in the same
canonical class of C. This unique class is called principal in C. Further to this, every
external elementary component is a priori one-way by the present de8nition (with no

196 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

principal canonical class, of course). A viable elementary component is two-way if it
is not one-way. An impervious elementary component is one that is not viable.

It is easy to see that an impervious elementary component consists of impervious
edges only. On the contrary, let us assume that there exists a positive external alter-
nating path
 leading to some vertex of an impervious elementary component C. Let
v be the vertex of C where
 enters this component, and denote by � the pre8x of

up to v. By Claim 2.3, C is internal. Moreover, if e is an arbitrary allowed edge of
C, then, using the argument in Claim 2.3, there exists a positive alternating path � in
C connecting v with one endpoint of e in some state of C. Thus, the positive external
alternating path �� in an appropriate state of G proves e to be viable. Since e was
arbitrary, this contradicts the fact that C is impervious.

Proposition 5.2. The one-way property is matching invariant with the principal canon-
ical class preserved.

Proof. Consider a negative external alternating path � entering C in state M , and
let M ′ be any other state. As in the proof of Proposition 4.5, restrict G and M to
the elementary components visited by �, and designate the last edge of � incident
with C as an external edge. In the resulting graph G�; � becomes an M�-alternating
crossing. Make the crossing � in state S(M�; �), and then switch to state M ′

� . Apply the
argument in Proposition 4.5 to conclude that there exists an M ′-alternating crossing
�′ in G� with the same endpoints and visiting the same elementary components as �.
Thus, �′ determines an M ′-alternating external path in G entering C at the very same
vertex as �. In this way we have shown that the entry points of external alternating
paths in C are the same with respect to all states of G.

Proposition 5.3. Let C be a viable internal elementary component of G. Then a
C-fork exists in any state M only if C is one-way, and the internal endpoints of the
fork are in the principal canonical class of C. The corresponding hidden edge in Ch

is impervious in Gh.

Proof. Let (
1;
2) be an M -alternating C-fork in G connecting vertices v1 and v2
belonging to a canonical class P of C. Suppose, by contradiction, that there exists
a negative external M -alternating path � entering Ch in a vertex v belonging to a
canonical class diNerent from P. By Lemma 4.9, � must avoid the fork (
1;
2). But
then a crossing would be obtained in Gh through �, a positive M -alternating path in Ch

from v to v1 (v2) and
1 (respectively,
2). We conclude that C is one-way with the
class P being principal. Observe that all vertices v in any principal canonical class P
are inaccessible. Indeed, if there was a positive external alternating path � leading to v,
then v �∼ u would hold for the vertex u where � enters C. This is impossible, however,
since u is also in class P. The edge (v1; v2) is therefore impervious.

Proposition 5.4. Component C is one-way in G i9 Ch is one-way in Gh, and the
principal canonical class of C is the same as that of Ch.

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 197

Proof. It is suRcient to prove that if C is one-way and internal, then Ch is also
one-way and its principal canonical class is that of C. On the contrary, assume that
C is one-way with principal canonical class P, yet, there exists a negative external
alternating path � in Gh with respect to some state M of Gh that enters Ch at a vertex
v belonging to a class diNerent from P. Using the Shortcut Principle (Theorem 4.14),
let us unfold the hidden edges on � one-by-one, starting from the external vertex, into
pairwise disjoint M -alternating loops until an intersection occurs with C at some vertex
u. This intersection will indeed occur, otherwise the unfolding of � would enter C at
vertex v. At the vertex u, an appropriate external subpath of the unfolding of � enters
C, therefore u is in class P. Extend � by a positive M -alternating path inside Ch up
to the vertex u to obtain an M -alternating path �′. It is now obvious that the Shortcut
Principle fails to work for �′, which is a contradiction.

De nition 5.5. Component C′ is two-way accessible from component C with respect
to some state M , in notation C�C′, if C′ is covered by an appropriate M -alternating
C-loop
. It is required, though, that if C is one-way and internal, then the endpoints
of
 not be in the principal canonical class of C.

Let C′ be two-way accessible from C via loop
. The endpoints of
 in C are called
the domain vertices of
, while the range vertices of
 (on C′) are the vertices at which

 8rst hits C′ from both ends. The common canonical class of the domain vertices in
C is also called domain, and the classes of the range vertices in C′ are called range
as well. Clearly, the two range classes are diNerent. The two negative alternating paths
connecting the domain and range vertices within
 are called the (C′-) branches of
.
According to De8nition 5.5, if C is internal and C�C′ via loop
, then there exists an

external alternating path entering C in a vertex belonging to a canonical class diNerent
from the domain of
. This observation will often be used in the sequel.

Lemma 5.6. If C�C′ with respect to M , then C′ cannot be one-way.

Proof. Let
 be a C-loop covering C′ from domain class P. Suppose 8rst that C is
viable. By Claim 2.4, at most one of C and C′ can be external. If C′ were external,
then C, being internal, could be entered by an external M -alternating path � in a vertex
belonging to a canonical class diNerent from P. By Lemma 4.9 and Corollary 4.10, �
avoids the loop
 and component C′, which contradicts Claim 2.4 again. We conclude
that C′ is internal. In this case, however, regardless of C being internal or external,
C′ can be entered by an external M -alternating path through C and the loop
 in both
range vertices of
, which proves that C′ is two-way.

Now let C be impervious, and assume by way of contradiction that C′ is viable, let
alone one-way. Let � be an external M -alternating path entering C′ at some vertex u.
Clearly, there exists a positive M -alternating path � connecting u with at least one of
the range vertices of
 inside C′. If � does not intersect with
, then C could be entered
through �; �, and an appropriate branch of
, contradicting that C is impervious. The
same contradiction arises if � does overlap with
, since in this case one can simply
switch from � to
 at the 8rst overlap to reach C from one direction.

198 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Fig. 6. The proof of Lemma 5.8.

Proposition 5.7. The relation � is matching invariant.

Proof. By De8nition 5.5, if C�C′ via some C-loop
, then C�C′′ holds for every
elementary component C′′ covered by
. Lemma 5.6 then implies that all elemen-
tary components covered by
 are internal. Now the statement follows directly from
Proposition 4.5.

Let us 8x a state M for the rest of Section 5. All alternating paths, C-loops, etc.,
will be meant with respect to this state. Since all the concepts to be dealt with are
matching invariant, the choice of M is irrelevant.

Lemma 5.8. Let C1; : : : ; Cn (n¿2) be elementary components such that Ci�Ci+1 for
all 16i6n − 1 by appropriate Ci-loops
i with domain vertices p1

i ; p2
i and range

vertices qi; q′i .
(i) The components C1; : : : ; Cn are all di9erent.
(ii) For either choice q∈{qn; q′n} there exists j∈{1; 2} such that pj

1 is connected
to q by a negative alternating path � in Gh running essentially outside C1 ∪Cn.
Moreover, every edge of � is either on a loop
i or belongs to some elementary
component (Ci)h.

(iii) If v is a vertex in C1 such that v �∼pj
1 (j=1; 2), then there exists no alternating

path � in Gh running essentially outside C1 and connecting v with any vertex in
Cn.

Proof. Induction on n. For n=2 statements (i) and (ii) are straightforward, while (iii)
is equivalent to Corollary 4.10. Assume that all three statements hold for some n¿2,
and proceed to n+ 1. See Fig. 6 for an illustration.
(i) Assume, by contradiction, that Cn+1 =Cm for some 16m6n. Without loss of

generality we can take m=1. Then at least one C1-branch of
n+1 violates part (iii)
of the induction hypothesis when that branch is taken for �.
(ii) By (i) above we already know that Cn+1 is diNerent from all Ci; 16i6n.

Choose q∈{qn+1; q′n+1} arbitrarily, and let q be connected to pk
n by the branch
kn

of
n, where k ∈{1; 2}. Since qn �∼ q′n holds in (Cn)h, either qn �∼pk
n or q′n �∼pk

n . Say
qn �∼pk

n . Then there exists a positive alternating path �′ in (Cn)h between pk
n and qn.

On the other hand, the induction hypothesis provides an appropriate negative alternating
path �j between pj

1 and qn for some j∈{1; 2}, and Lemma 4.9 ensures that �j does not
overlap with
kn. Moreover, Corollary 4.10 ensures that �j does not reach Cn+1 either.

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 199

In this way �j�′
kn becomes a negative alternating path, which connects pj
1 with q in

Gh, running essentially outside C1 ∪Cn+1 with the desired edge composition.
(iii) Contrary to the statement, assume that an undesired alternating path � exists.

By the induction hypothesis, � connects v with a vertex u in Cn+1 in such a way that
it avoids all the components Ci; 16i6n, and loops
i; 16i6n − 1. Without loss
of generality we can also assume that � runs essentially outside Cn+1, so that it is
at vertex u where � 8rst hits any elementary component along the loop
n. Clearly,
u �∼ qn+1 or u �∼ q′n+1 holds in Cn+1, say u �∼ qn+1. A big alternating unit will then show
up in Gh containing �, a positive alternating path in (Cn+1)h connecting u with qn+1,
a positive alternating path or fork in (C1)h connecting v with p1

1 (p2
1), and a negative

alternating path connecting q with p1
1 (respectively, p2

1) according to (ii).

Corollary 5.9. With the parameters of Lemma 5:8, if v is an arbitrary vertex in Cn,
then there exists an alternating path � in Gh connecting v with one of p1

1 and p2
1 in

such a way that
(a) � is positive at the v end and negative at the other end,
(b) every edge of � is either on a loop
i, 16i6n− 1, or belongs to (Ci)h for some

26i6n.

Proof. Since v �∼ qn or v �∼ q′n, the statement follows directly from Lemma 5.8(ii).

Corollary 5.10. The transitive closure of � is asymmetric.

Proof. Immediate by Lemma 5.8(i).

Corollary 5.11. The connection C�C′ holds in G i9 Ch�C′
h holds in Gh.

Proof. It is suRcient to prove that Ch�C′
h implies C�C′. Let
h be a Ch-loop covering

C′
h, and unfold
h using the Shortcut Principle. By Lemma 5.6, none of the components

covered by
h are one-way, and by de8nition, the loop
h itself cannot be a single
hidden edge connecting two vertices belonging to the principal canonical class of a
one-way component either. Therefore, by Proposition 5.3,
h unfolds into a trail
. We
claim that
 is a C-loop, and therefore C�C′. To this end we need to verify that

avoids C. Should
 overlap with C, there would be a component D along
 such that
C�D and D�C, which contradicts Corollary 5.10.

Lemma 5.12. For every two-way C′ there exists a viable C such that C�C′.

Proof. Assuming that C′ is two-way, let �1 and �2 be two external alternating paths
entering C′ in diNerent canonical classes. Clearly, �1 and �2 must overlap. If e is the
last overlapping allowed edge along �1 and �2, then it is easy to see that Ch�C′

h holds
for the elementary component C containing e. Thus, by Corollary 5.11, C�C′.

Let �∗ denote the re0exive and transitive closure of �. By Corollary 5.10, �∗ is a
partial order.

200 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Lemma 5.13. Let C1 and C2 be two di9erent elementary components of G such that
C1�∗C and C2�∗C for some elementary component C. Then C1 and C2 cannot both
be one-way.

Proof. Based on Proposition 5.4 and Corollary 5.11 we can change the present setting
from graph G to graph Gh. Let C1 =C1

1�C
2
1� : : : �C

n
1 =C and C2 =C1

2�C
2
2� : : : C

m
2 =C

for appropriate components Ci
j; j=1; 2; 16i6n (m) via some loops
ij. By Lemma

5.8(ii) there exists a negative alternating path �1 connecting a domain vertex v1 in
C1
1 with a range vertex vn in Cn

1 , running essentially outside C1 ∪Cn
1 with an appro-

priate edge composition. If �1 covers C2, then C1�∗C2, therefore C2 is not one-way
by Lemma 5.6. Otherwise follow �1 starting from v1, and let C′ be the 8rst among
those elementary components covered by �1 that are also covered by some of the
Ci
2-loops
i2. Note that C′ exists, as C is always a candidate to be chosen for C′ at

last. Clearly, C2�∗C′ via the column of loops
12; : : : ;

i
2 for some 16i6m − 1. Let

v be the vertex in C′ where �1 enters this component, and let �′
1 denote the subpath

of �1 from v1 to v. Apply Corollary 5.9 to obtain an alternating path �2 connecting v
with a domain vertex v2 in C2, so that �2 is positive at the v end and negative at the
v2 end. By the choice of C′; �= �′

1�2 is a negative alternating path between v1 and
v2 running essentially outside C1 ∪C2. We shall make use of the path � in the next
paragraph.
Let the vertices v1 and v2 belong to canonical classes P1 and P2, and assume by

way of contradiction that both C1 and C2 are one-way. According to Claim 2.4, one
of C1 and C2, say C1, is internal. Then there exists an external alternating path �1
entering C1 at some vertex u1 belonging to its principal class R1. Clearly, P1 �=R1

and P2 is not principal either, for Pj, j=1; 2 are the domain classes of the Cj-loops

1j . Without loss of generality we can assume that �1 does not reach C2. Indeed, if
�1 reached C2, then C2 would also be internal and we could continue the proof with
C2 and the pre8x of �1 that enters C2. If �1 and � overlap, then it is straightfor-
ward to assemble an external alternating path from parts of �1 and � which enters
C1 or C2 in the non-principal canonical class P1 (respectively, P2). This contradicts
both of these components being one-way. Assume therefore that �1 and � are edge-
disjoint. Then �1, a suitable positive alternating path in C between u1 and v1, and
� will form an external alternating path entering C2 in class P2, which is again a
contradiction.

Lemma 5.14. Let C be one-way, and suppose that C�∗C′. Then every external alter-
nating path entering C′ must enter C ?rst.

Proof. Let C =C1� : : : �Cn =C′ via a column of Ci-loops
i; 16i6n − 1. Contrary
to the statement of the lemma, assume that there exists an external alternating path �
entering C′ at vertex v without having visited C 8rst. Without loss of generality we
can assume that � does not overlap with any of the loops
i. But then it is possible
to enter C at a domain vertex of
1 through � and an appropriate continuation from v
that is available by Corollary 5.9. This is a contradiction, since the canonical class of
any domain vertex is not supposed to be principal.

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 201

De nition 5.15. A family of elementary components in G is a block of the partition
determined by the equivalence relation (�∪ �−1)∗. A family F is viable if every
elementary component in F is such. An impervious family is one that is not viable.

As we observed in the proof of Lemma 5.6, for elementary components C and C′

such that C�C′; C is viable iN C′ is viable. Thus, any impervious family will consist
of impervious elementary components only.

Theorem 5.16. Every viable family contains a unique one-way elementary compo-
nent, called the root of the family. Every member of the family is only accessible
through the vertices belonging to the principal canonical class of the root by external
alternating paths.

Proof. By Corollary 5.10 and Lemma 5.12, each viable family does contain a one-way
elementary component. Let C1 and C2 be one-way elementary components in a family
F. By Lemma 5.6, there is no elementary component D in F such that D�Ci for either
i=1 or 2. Thus, there exists D∈F such that C1�∗D and C2�∗D. Lemma 5.13 then
implies that C1 =C2. The second statement of the theorem is equivalent to Lemma 5.14.

6. Families

We are now ready to further improve the results of Section 5, and provide an
amusing description of the exciting world of elementary components in G. As in the
second half of Section 5, let us 8x a state M of G for reasonings involving alternating
paths.

Lemma 6.1. Let D�C via some D-loop
, and let � be an alternating path in G
running essentially outside C ∪D, connecting any vertex u∈V (G) with a vertex v
in C. Then there exists an alternating path � in Gh connecting u with a domain vertex
of
 in such a way that it also covers C. The path � consists of edges belonging to

; � and Ch only, and it ends in a su@x that contains one of the C-branches of
 in
full.

Proof. Let v1 and v2 be the C-range vertices of
. Fix one of v1 and v2 as the desig-
nated range vertex vd with the property that vd �∼ v, and denote by
d the designated
C-branch of
, i.e., the branch that leads to vd. Denote by ud and un the corresponding
designated and non-designated domain vertices of
 in D. Furthermore, let C�=
 denote
the elementary component containing the last allowed edge e on
d before it reaches
vd such that e is also on �, and denote v�=
 the vertex of C�=
 where
d leaves this
component after traversing e on its way to vd. Observe that the valve e points � to
the direction vd on
, otherwise
, starting from vd, could be continued after e in an
alternating way on � to reach the vertex v �∼ vd in C, see Fig. 7. If � does not overlap
with
d, then take C�=
 =D and v�=
 = ud. In order to prove the statement of the lemma,

202 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Fig. 7. The proof of Lemma 6.1.

we are going to further strengthen it by imposing the following two restrictions on the
composition of �.
(i) � contains the interval of
 between v�=
 and vd,
(ii) � contains edges from Ch not on
 only if � does not overlap with
d, in which

case these edges constitute an arbitrary positive alternating path from v to vd.
Now the proof is an induction argument on the number n of common edges to
 and

�. If n=0, then the statement is obvious. Let n¿1, and suppose that the strengthened
statement holds in all possible situations where the number of common edges to

and � is less than n. If � does not overlap with
d, then we are through. If it does,
then consider the component C�=
 and the vertex v� where � arrives at this component
before traversing e, see Fig. 7. In the case when u∈C�=
 and � does not leave C�=

before arriving at e, the desired path � is easy to assemble from
 and �. Therefore
we can assume that u =∈C�=
. The vertex v� is then well-de8ned. As we have already
seen, v� �∼ v�=
, because the valve e on
 points to vd. In this way we have reproduced
the situation described in the lemma with C being C�=
 =C′; v being v� = v′, vd being
v�=
 = v′d and � being the pre8x �′ of the original � from u to v�. Notice that, in the
new arrangement, the vertex v�′=
 will be somewhere on the non-designated C-branch
of
. In order for this, one must only select the interval of
 from vd all the way to
un as the designated C′-branch.
Obviously, the path �′ has fewer edges in common with
 than �, so the induction

hypothesis can be applied to 8nd an appropriate path �′ satisfying the strengthened
statement of the lemma. Since the interval of
 between v�′=
 to v′d = v�=
 covers the
interval between v�=
 and vd, together with component C, the path �= �′ from u to
v will also cover C, and will satisfy (i). If �′ does not overlap with the designated
C′-branch of
, then, capitalizing on (ii) for �′, we can achieve that the part of �′

inside C′ =C�=
 becomes the obvious positive alternating path from v′ = v� to v′d = v�=

through the valve e. (See Fig. 7.) In this way � will consist of edges in � and
 only.
On the other hand, the assumption that �′ does overlap with the designated C′-branch
of
 yields the same result directly by (ii) of the induction hypothesis. Thus, � satis8es

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 203

(ii) as well. Finally, if �′ ends in a suRx that contains the entire designated C′-branch
of
, then �= �′ will end in a suRx that contains the entire non-designated C-branch
of
. Conversely, if the appropriate suRx for �′ is the non-designated C′-branch, then
(ii) ensures that �′ consists of edges in
 and � only. This fact, together with (i),
guarantees that the designated C-branch will do for � as the desired suRx. The proof
is now complete.

Theorem 6.2. Let C1; C2 and C be viable elementary components of G such that
C1�C; C2�C and C1 �=C2. Then one of the following two statements holds.
(a) There exists a viable elementary component D and a D-loop
 such that
 covers

all three of C1; C2 and C.
(b) There exists i∈{1; 2} and a Ci-loop
 such that
 covers both C3−i and C.

Proof. We follow the idea of the proof of Lemma 5.13, working in the graph Gh

rather than in G. The switch is justi8ed by the fact that the unfolding of any Ch-loop

h in the spirit of Corollary 5.11 results in a C-loop
 that covers the elementary
components covered by
h.

Let Ci�C via some Ci-loops
i with domain classes Pi. If Ci is covered by
3−i for
either of i∈{1; 2}, then we are done. Suppose therefore that this is not the case, and,
as a further initial assumption, let C1 and C2 be both internal. Consider two external
alternating paths �1 and �2 entering C1 and C2 at some vertices w1 and w2 belonging
to canonical classes R1 �=P1 and R2 �=P2. By Corollary 4.10, �i cannot reach any of
the elementary components covered by
i. Then the following two cases are possible.
Case a: for both i=1; 2; �i does not overlap with either C3−i or
3−i.
As we observed in the proof of Lemma 5.13, there exists a negative alternating path

� connecting a domain vertex v1 of
1 with a domain vertex v2 of
2, so that � consists
of edges in
1;
2 and Ch only. Notice that, according to Lemma 6.1, we can now
assume that � does in fact cover C. Clearly, �1 and �2 must overlap, otherwise there
would be an alternating crossing in Gh containing �1; � and �2. Choose D to be the
elementary component containing the last overlapping allowed edge on say �1 before
it arrives in w1. This component will obviously satisfy (a).
Case b: there exists i∈{1; 2} such that �i overlaps with either C3−i or
3−i.
Assume, without loss of generality, that i=2, and let D be the elementary component

containing the last edge e on �2 before it reaches w2 such that e is also on
1 or C1,
see Fig. 8.
If D=C1, then consider the vertex u where �2 8nally leaves C1 before reaching w2.

The suRx of �2 from u to w2 can then be taken as one C2-branch of a C1-loop. The
other C2-branch of this loop is an appropriate path from either domain vertex of
1 to
a domain vertex of
2 through component C. The existence of such a path is ensured
by Lemma 6.1.
If D �=C1, then let D be located along the C-branch
11 of
1 associated with domain

vertex v11, and let the other branch,
21, originate from domain vertex v21. Furthermore,
denote by u1 and u2 the vertices in D where
11 arrives at, and subsequently leaves D
when traversing e, and let u be the vertex where �2 leaves D after e. We claim that
the valve e points �2, when coming from u, to the direction u1 on
11, so that u �∼ u1.

204 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Fig. 8. The proof of Theorem 6.2.

Indeed, by Lemma 6.1, there exists a negative alternating path �2 connecting u2 with
a domain vertex v2 of
2 in such a way that �2 does not overlap with the interval �
of �2 between u and w2. The assumption that the valve e on
11 points �2 to u2 would
then give rise to an alternating cycle in Gh through �2 and �, after 8lling in the gaps
with two appropriate positive alternating paths in C2 and D. This veri8es our claim
that u �∼ u1.
Apply Lemma 6.1 again to establish a negative alternating path � from v21 to a do-

main vertex v2 of
2, such that � covers C. Let $C2 denote a suitable positive alternating
path connecting v2 and w2 in (C2)h. Furthermore, let $D be a positive alternating path
in D connecting u1 with u through the valve e, consisting of edges in
11 and �2 only.
We claim that � and the pre8x
′1 of
11 from v11 to u1 are edge-disjoint. If this were
not the case, then let D′ denote the elementary component containing the last edge
f on � before it arrives in C2 such that f is also on
′1. Clearly, D

′ must be along
the loop
2, so that C2�D′. On the other hand, by appending the appropriate subpath
of
11 from D′ to D and the path $D to �, this path extends to a negative alternating
path �′ connecting D′ and C2. The path �′, coupled with the suRx of � between D′

and C2 as D′-branches, will then determine a D′-loop covering C2, which contradicts
C2�D′.
It is now clear that a C1-loop
 satisfying (b) can be constructed by joining �, the

paths � and $D, and the paths
′1 and $C2 .
To 8nish the proof, we now drop our initial assumption that both C1 and C2 are

internal. It is clear that only one of them, say C1, is external. Consider the external
alternating path �2 as described above, and observe that �2 must overlap with either
C1 or
1. (See Claim 2.4.) Thus, the argument in Case b applies, and the proof is
complete.

For an elementary component D, the scope of D is the set {C |D�C}.

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 205

Theorem 6.3. For every two-way elementary component C there exists a unique com-
ponent f(C) with the property that f(C)�C, and for every C′ such that C is in the
scope of C′, either f(C)=C′ or C′ is in the scope of f(C).

Proof. The uniqueness of f(C) is obvious by Corollary 5.10. To prove its existence,
let C1 be an arbitrary elementary component such that C1�C. Such a component exists
by Lemma 5.12. If C1 has the desired property of f(C), then we are through. Otherwise
there exists a component D such that D�C but not C1�D. By Theorem 6.2, there exists
C2 such that either C2 =D and C2�C1, or C2�D; C2�C1 and C2�C. In both cases,
C2�C1 and C2�C. Continuing in this way, a sequence C1; C2; : : : ; Cn; : : : of elementary
components can be constructed, so that for every 16i6n; Ci�C and Ci+1�Ci. By
Corollary 5.10 this sequence must be 8nite, therefore the last element of the sequence
is f(C).

De nition 6.4. For every two-way elementary component C the father of C is the
component f(C) in Theorem 6.3.

Theorem 6.5. Every two-way elementary component C is only accessible through its
father by external alternating paths. Furthermore, for every external alternating path
� leading to C, the last vertex of � that is in f(C) belongs to a unique canoni-
cal class of that component, which is the common domain class of all f(C)-loops
covering C.

Proof. Corollary 5.11 implies that the father–son relationship in Gh is the same as that
in G. Therefore we can carry out the proof in Gh.
By way of contradiction, assume that � is an external alternating path entering C

without visiting f(C) 8rst. Let f(C)�C via an f(C)-loop
 with domain class P.
Then, according to Lemma 6.1, there exists an external alternating path � leading to a
domain vertex v of
 such that � covers C and it consists of the edges in �; Ch and

 only. Concerning f(C), there exists an external alternating path �′ entering f(C) at
vertex v′ in canonical class R �=P. As we have already observed several times, � and �′

must overlap. Consider the elementary component D containing the last allowed edge
on � in common with �′ before it reaches v. By Lemma 6.1 and Corollary 4.10, D
comes before C on �, so that both C and f(C) are covered by an appropriate D-loop.
This, however, contradicts that f(C) is the father of C. The second statement of the
theorem follows directly from Corollary 4.10.

We say that two distinct elementary components C1 and C2 are distant cousins if
they are in the same distance from their closest common ancestor in the family tree.
Component C1 is a distant uncle of component C2 if the distance of C1 from the closest
common ancestor of C1 and C2 is one greater than that of C2. Note that, according to
these de8nitions, brothers are distant cousins and fathers are distant uncles, too.

Proposition 6.6. If D�C holds for viable elementary components D and C, then either
D is a distant uncle of C, or C and D are distant cousins.

206 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

Proof. By de8nition, D�C implies that either D=f(C) or f(C)�D. In the latter case
we have either f(C)=f(D) or f(D)�f(C). Continuing in this fashion we obtain that
there exists a smallest i¿1 such that either fi−1(D)=fi(C) or fi(C)=fi(D), where
f0(D)=D, and for every j¿0; fj+1(D)=f(fj(D)). If fi−1(D)=fi(C), then D is
a distant uncle of C, while fi(C)=fi(D) means that C and D are distant cousins.

Corollary 6.7. If D�C1 and D�C2 holds for two distinct viable elementary components
C1; C2, then either C1 and C2 are distant cousins, or Ci is a distant uncle of C3−i

for one of i∈{1; 2}.

Proof. Immediate by Proposition 6.6.

We can look at the members of a viable family F as individuals belonging to a
strange species with the following reproduction rules. A male individual is an elemen-
tary component of F, and a female individual is a canonical class of some elemen-
tary component. All females are therefore dependents on a particular male for their
lives. Males, on the other hand, are born together with their potential mates. (Observe
polygamy.) A mating process initiated by male C with female P is associated with
a C-loop
 from domain P. The potential oNsprings arising from this process are the
elementary components covered by
. Note that, by Corollary 4.10, each son of C will
have a unique mother, as one would normally expect. Not all elementary components
along
 are, however, oNsprings of the couple (C; P). It may be the case that com-
ponent D along
 is already “alive” as a distant cousin or distant nephew of C. (See
Proposition 6.6.) In this case we say that D is a stillborn son of the couple (C; P).
Component D can be a stillborn son of several other components, but the transitive
closure of the stillborn relationship is asymmetric by Corollary 5.10. That is, if compo-
nents C =D1; D2; : : : ; Dn for any n¿2 are such that Di+1 is a stillborn son of Di, then
Dn �=C. The root, denoted r(F), being the unique one-way component in the family,
is the ultimate forefather of F, the root of the family tree. The family F is called
external if r(F) is such.
Now let us have a closer look at the arrangement of the forbidden edges inside a

family F.

Theorem 6.8. An edge e in a viable family F is impervious i9 both endpoints of
e are in the principal canonical class of the root. Every forbidden edge e con-
necting two di9erent elementary components in F is part of a C-loop for some
C ∈F.

Proof. By Corollary 5.9, for every vertex v of a two-way elementary component C
there exists an alternating path � from a vertex u of the root to v inside F that is
positive at the v end and negative at the u end. We also know from the construction in
Lemma 5.8 that u is a domain vertex (i.e., non-principal), therefore � can be extended
to a positive external alternating path leading to v. The same holds true if v is an
internal vertex of the root, but belongs to a non-principal canonical class. Thus, every

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 207

edge incident with v is viable. This leaves room for any impervious edges inside F
only between two vertices belonging to the principal canonical class of the root. As
we have seen in Lemma 5.3, such edges are indeed impervious. This proves the 8rst
statement of the theorem. Observe that if one endpoint of a forbidden edge e is principal
in the root, then the other must be such, too. Indeed, otherwise either e would connect
two vertices in diNerent canonical classes of the root, or e, as a negative alternating
path, would violate Lemma 5.8(iii).
As to the second statement of the theorem, let e connect a vertex v1 in C1 with a

vertex v2 in C2 �=C1. We already know that neither v1 nor v2 is principal. Assuming
that Ci; i∈{1; 2}, is diNerent from r(F), let �i be a path connecting a suitable vertex
in r(F) with vi such that �i is negative at r(F) and positive at vi. (See Corollary 5.9.)
Since �i is positive at vi, �i does not pass through e. Therefore, if either C1 = r(F) or
C2 = r(F), then we are done. By the same token, if both C1 and C2 are diNerent from
the root, but �3−i covers Ci for either i=1 or 2, then e will be part of an appropriate
Ci-loop. Otherwise, let C be the elementary component containing the last allowed
edge on �1 before it reaches C1 that is also on �2. Clearly, it is now this component
for which there exists a C-loop containing the edge e.

Although Theorem 6.8 provides much information about the nature of forbidden
edges inside a viable family F, we would like to be yet more speci8c as to which
elementary components can and which cannot be connected by a forbidden
edge.

Theorem 6.9. Let e be a forbidden edge connecting two di9erent elementary com-
ponents C1 and C2 of a viable family F. Then one of the following two conditions
must be met.
(i) C1 and C2 are distant cousins,
(ii) C1 and C2 are in a distant uncle-nephew relationship with each other.

Proof. As we observed in the proof of Theorem 6.8, one of the following two state-
ments holds:
(1) C1�C2 or C2�C1;
(2) there exists C �=Ci; i=1; 2, such that C�C1 and C�C2.
In any case, the statement of the theorem follows from Proposition 6.6 and Corol-
lary 6.7.

Theorems 6.8 and 6.9 provide a satisfactory description of the forbidden edges inside
a family F, so now we concentrate on the ones that connect diNerent families.

Proposition 6.10. Let e be a viable forbidden edge of G connecting two di9erent
families F1 and F2. Then both F1 and F2 are viable, and exactly one endpoint of e
belongs to the principal canonical class of the root of either F1 or F2.

Proof. As we have seen in Theorem 6.8, for every internal vertex v of a family F,
there exists a positive external alternating path leading to v—that is, v is accessible—iN

208 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

v is not a principal vertex of r(F). By de8nition, at least one endpoint of the viable
edge e is accessible, thus falls into a viable family. Since this endpoint is not principal,
the other endpoint also marks a viable family, even if that endpoint is principal (as
we wish to prove). Suppose now, by contradiction, that both endpoints v1 and v2 of
e are non-principal, and let
1 and
2 be positive external alternating paths leading
to v1 and v2, respectively. The paths
1 and
2 must overlap, so that there exists a
C-loop
 for an appropriate elementary component C, which loop contains e. This is
a contradiction, for the endpoints of e are in diNerent families.

If e is a viable edge connecting families F1 and F2, then we write e :F1 �→F2 to
indicate that the principal endpoint of e is in F2.

Lemma 6.11. Let e1 :F1 �→F2; : : : ; en :Fn �→Fn+1 (n¿1) be viable edges among fam-
ilies Fi ; 16i6n+ 1. Then F1 �=Fn+1.

Proof. Assume, by contradiction, that Fn+1 =F1. Without loss of generality we can
assume that the families F1; : : : ;Fn are all diNerent. Then, using Corollary 5.9 and
Proposition 6.10, we can construct a negative alternating path � in Gh starting from a
vertex u of r(F1), going through the edges e1; : : : ; en−1 and families F2; : : : ;Fn, and
returning to a vertex v of F1 via en, so that � runs essentially outside r(F1). We know
that the vertex v is principal in r(F1), while u is not. The path � can then be closed
inside r(F1) to an inter-elementary alternating cycle, which is a contradiction.

By Lemma 6.11, if e :F1 �→F2 for some families F1 and F2, then e′ :F1 �→F2 for
all viable edges e′ connecting F1 and F2. This establishes and justi8es �→ as a binary
relation between viable families. Let ∗�→ denote the re0exive and transitive closure
of �→.

Theorem 6.12. The relation ∗�→ is a partial order on the collection of all viable families
of G, by which the external families are maximal elements.

Proof. Immediate by Lemma 6.11.

Our closing theorem characterizes the relationship between the viable and impervious
parts of G. An impervious edge e∈E(G) is called principal impervious if at least one
of its endpoints belongs to the principal canonical class of the root of some viable
family.

Theorem 6.13. Removing the principal impervious edges from G disconnects the vi-
able families from the impervious ones.

Proof. Indeed, as we have seen earlier, any edge e incident with a viable family is
impervious iN e is a principal impervious edge. Thus, the removal of these edges
from G will leave no connection between the viable and the impervious families
of G.

M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210 209

7. Conclusion

We have given a complete description of the structure of elementary components
in a graph G having a perfect internal matching. As a 8rst step we proved that the
augmentation of G by its hidden edges does not change the elementary decomposition
of the graph. We also generalized the notion of canonical equivalence, and showed
that ∼ |C =∼Ch holds for every elementary component C of G.
Viable elementary components have been classi8ed as one-way or two-way, depend-

ing on whether they could be accessed by external alternating paths in one or more
than one canonical class. It was demonstrated that every two-way elementary compo-
nent C′ is indeed two-way accessible from another viable elementary component C via
an appropriate C-loop covering C′. The re0exive and transitive closure of the “two-
way accessible” relationship between elementary components (relation �∗) was proved
to be a partial order.
Elementary components have been grouped into families according to the partition

determined by the smallest equivalence relation containing �. It was shown that each
viable family contains a unique one-way elementary component, called the root of the
family, and that every member of the family is only accessible through the principal
canonical class of the root by external alternating paths.
A more sophisticated analysis of the relation � showed that the members of each

viable family can be arranged in a family tree, re0ecting the order in which they
can be reached by external alternating paths. The father of elementary component C
is the component f(C) having the property that C is in the scope of f(C), and
whenever C is in the scope of any elementary component D; D is in the scope of
f(C). The mother of C is the unique canonical class of f(C) from which all f(C)-
loops covering C originate. Forbidden edges connecting two elementary components
of the same viable family have been characterized in terms of the family relationship,
and a partial order has been de8ned on the collection of viable families along the lines
of forbidden edges connecting elementary components belonging to diNerent families.
Finally, impervious edges have been identi8ed as ones that are incident with a vertex
v in a viable elementary component C only if C is one-way and v lies in the principal
canonical class of C.

References

[1] M. Bartha, E. Gomb$as, A structure theorem for maximum internal matchings in graphs, Inform. Process.
Lett. 40 (1991) 289–294.

[2] M. Bartha, E. Gomb$as, The Gallai-Edmonds algebra of graphs, Research Report # 9105, Department
of Computer Science, Memorial University, St. John’s, Canada, 1991.

[3] M. Bartha, E. Gomb$as, On graphs with perfect internal matchings, Acta Cybernet. 12 (1995) 111–124.
[4] M. Bartha, H. JTurgensen, Characterizing 8nite undirected multigraphs as indexed algebras, Research

Report # 252, Department of Computer Science, The University of Western Ontario, London, Canada,
1989.

[5] M. Bartha, M. Kr$esz, Elementary decomposition of soliton automata, Acta Cybernet. 14 (2000)
631–652.

210 M. Bartha, M. Kr(esz / Theoretical Computer Science 299 (2003) 179–210

[6] F.L. Carter, Comformational switching at the molecular level, in: F.L. Carter (Ed.), Molecular Electronic
Devices, Marcel Dekker, Inc., New York, 1982, pp. 51–72.

[7] J. Dassow, H. JTurgensen, Soliton automata, J. Comput. System Sci. 40 (1990) 154–181.
[8] J. Dassow, H. JTurgensen, Soliton automata with a single exterior node, Theoret. Comput. Sci. 84 (1991)

281–292.
[9] J. Dassow, H. JTurgensen, The transition monoids of soliton trees, Research Report # 331, Department

of Computer Science, The University of Western Ontario, London, Canada, 1992.
[10] J. Dassow, H. JTurgensen, Soliton automata with at most one cycle, J. Comput. System Sci. 46 (1993)

155–197.
[11] F. G$ecseg, H. JTurgensen, Automata represented by products of soliton automata, Theoret. Comput. Sci.

74 (1990) 163–181.
[12] L. Lov$asz, M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

	Structuring the elementary components of graphs having a perfect internal matching
	Introduction
	Preliminaries
	The closure of open graphs
	Canonical equivalence
	Structuring the elementary components
	Families
	Conclusion
	References

