
INFORMATION AND CONTROL 15, 22-32 (1969) 

A New Approach to Clustering 

ENRIQUE H.  P~USPINI 

Space Biology Laboratory, University of California, Los Angeles 

A general formulation of data reduction and clustering processes 
is proposed. These procedures are regarded as mappings or trans- 
formations of the original space onto a "representation" or "code" 
space subjected to some constraints. Current clustering methods, as 
well as three other data reduction techniques, are specified within 
the framework of this formulation. A new method of representation 
of the reduced data, based on the idea of "fuzzy sets," is proposed to 
avoid some of the problems of current clustering procedures and to 
provide better insight into the structure of the original data. 

R :  

R+: 
Rn: 
X: 
P ( z ) :  
g: 

C: 
K:  
Tk, Vk: 
I :  
J :  

N: 
p: 
Sj: 
P (S~/x) : 
P(S~) : 
P ( x / S j ) :  

LIST OF SYMBOLS 

the real line 
the non-negative real numbers 
Euclidean n-dimensional space 
da ta  set 
density function defined in X 
grouping function 
representation set 
set of subindexes of constraints 
constraints on g 
opt imal i ty  conditions 
relaxed constraints 
distance function 
Lagrange multiplier 
natural  numbers 
Watanabe ' s  inter-relation function 
fuzzy sets 
degree of belongingness of x to Sj  
size of Sj  or a priori probabil i ty of S~ 
density function of the cluster Sj  
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Mj, M: 

HL:  
N: 
W~: 
U: 

mean distances with respect to class j and the whole popula- 
tion respectively 

normalized local entropy 
number of fuzzy sets 
weights on general constraint 
threshold in clustering 

1. INTRODUCTION 

The purpose of this paper is to introduce a general formulation of data 
reduction techniques and to outline a new view of the problem of nu- 
merical classification or clustering. The object of duster analysis is to 
classify experimental data in a certain number of sets where the elements 
of each set should be as similar as possible and dissimilar from those of 
other sets. This implies the existence of a measure of distance or simi- 
larity between the elements to be classified. The number of such classes 
may be fixed beforehand or may be a consequence of some constraints 
imposed on them. 

Present clustering techniques are in a primitive stage of development 
and no known procedure is exempt from the difficulties detailed in Nagy 
(1968). 

The problem of misclassifications originated by "bridges" or strays 
between sets, and that of pairs classified in different classes having a 
greater similarity than some pairs within the same set, represent two 
frequent difficulties. A survey of the methods and techniques of clustering 
may be found in Ba/l (1965). 

To allow a comparative study of data reduction techniques, we present 
first a mathematical formulation of these processes in Section 2. Section 
3 is dedicated to the characterization of some of the present techniques 
in terms of such formulation. This will serve to emphasize the differences 
between them. Our approach is introduced in Section 4. 

• , - ' . ' • ~  

A B C D E 

FIG. 1. Nagy (1968) has illustrated the major difficulties found in cluster 
analysis: (a) and (c) bridges between clusters; (b) nonspherical clusters; (d) 
linearly nonseparable clusters; (e) unequal cluster populations. 
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2. A MATHEMATICAL FORMULATION OF DATA 
REDUCTION TECHNIQUES 

Given a set X and a probabil i ty measure P in X,  then a data reduction 
technique is a set C called the code or representation space and a function 
g:X ~ C called the grouping function tha t  satisfies the following con- 
straint:  

For each element k of a set K there are two functions, 

Tk:X X X --~ R, 
(1) 

Vk:C × C---> R, 

and for all (x, y) E X X X, 

Tk(x, y) = Vk(g(x), g(y)).  (2) 

In  other words, we are t rying to classify a "sample"  of X characterized 
by  the density function P,  and C is our set of names or representatives 
for our original da ta  contained in X.  The  g is the function tha t  pairs each 
element with its name or representat ion. /Tk,  Vk} is a set of constraints 
tha t  requires tha t  some properties of the elements in X should be pre- 
served after transformation.  For example, in cluster analysis "close ele- 
ments  should be assigned to the same class." 

The  set g(X) = {g(x) :x C X} is called the reduction of X. 
Sometimes we look not  only for grouping functions tha t  satisfy the 

constraints but  for one tha t  is best in some sense: 

I:C --~ R, I(g) = min. (3) 

In  other instances, the constraints are so restrictive tha t  no grouping 
function exists. We can relax then some of those conditions so tha t  they 
will hold approximately.  For example, if we have K = 11, • • . ,  N}, and 
we decide to relax all conditions, we can make 

N 

J(g) = ~ Wk 2 f f  [Tk(x, y) -- V~(g(x), g(y) )]dP(x) dP(y) 
~=1 (4 )  

---- min. 

The  more general formulation for this K will be, 

3 c K ,  

T~(x, y) = Vk(g(x), g(y)),  k E J, 
(5) 

I(g) + ~J(g) = min; W~ -- 0, if k E J .  
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3. SOME SPECIFIC EXAMPLES 

A. CURRENT CLUSTERING METHODS 

Here X = finite sample from R ~, 
P = point probability in X, 
C = N or a subset of it, 

g(x~)  = m (the number of the cluster to which xi belongs). 
The properties Tk and Vk vary greatly for each particular method but  

they are usually stated in terms of a distance function ~:X X X --~ R + 
(the non-negative real numbers) tha t  satisfies: 

1. ~(x,x) = 0, 2. ~(x,y)  = ~(y ,x) .  

A typical set of constraints can be described by 

T = ~1 if~(x, y) > U 
[o otherwise, 

V = 0 if g ( x )  = g ( y )  ; 1 otherwise, 

thus requiring that  points distant more than some threshold U to be 
placed in different clusters. A similar set may require that  points suffi- 
ciently close may be classified in the same set. Constraints of the number 
of elements of g ( X )  are usual. In other cases, restricting properties are 
not invoked and the clumping properties of g are obtained from the 
optimality condition. 

Usually, all the constraints are not satisfied and some sort of compro- 
mise is reached. This results in the anomalies described in Sectionl. Even 
when g exists, its determination is by no means easy; reallocation and 
correction processes are common (c f .  Lance and Williams, 1967; Ball, 
1965). These procedures may be used sequentially to generate hier- 
archical classifications. 

B. FACTOR ANALYSIS AND RELATED TECHNIQUES 

Factor analysis is a procedure to find linear relations between data 
sampled from a linear space. We shall restrict our description to finite di- 
mensional Euclidean spaces. Let, then 

X = subset of R ~, 
C = R '~, m ( n. 

The idea is to represent x E X as 

x = g lV1  + • " "6 g,,,V,,,, where V~ E R ~, g~ E R, 1 - i - m, 
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then 

and here 

and 

RUSPINI 

g:x -+ (gl , " " ,  g.,), 

Tx.(x ,  y) = kz  + ~y, 

V~.(u, v) = ~,u + ~v. 

In other words, g is required to be linear. The constraints cannot be 
satisfied in general so that  the relaxed forms 

f (x - gl(x) Vl) 2dP(x) = 

- -  g~(x) V2] dP(x) = f [(x - gl(x) V1) 

min 
gl(~).vl 

min 
o~($),v2 

and so forth, are used. 

C. T~m INFORMATION THEORETICAL CORrELaTION 
~/~ETHOD OF WATANABE 

X = subset of the set of all m-tuples with binary components (0 or 1) ; 
m is finite. 

C = N .  
P (x )  is the probability function of the elements of X. A function p 

(the inter-relation) is then defined (Watanabe, 1965). This inter-rela- 
tion function measures the resemblance between the two sets, determined 
by the number of their similar or correlated binary components. I t  can 
be shown that  the inter-relation between two sets is zero if and only if 
they are statistically independent. 

Two points x and y are said to be stuck if no set Y exists such tha t  
x C X -  Y , y  6 Y, and 

p ( X  -- Y, Y)  = rain p ( X  -- Z, Z) ,  
z c x  

where the minimization is carried over all nonvoid proper subsets of X.  

T(x,  y) = 1 if and only if x and y are stuck, 

, = 0 otherwise. 



A NEW APPROACH TO CLUSTERING 27 

V is such that 

= f 0  if u ~ v ,  
V(u, v) \1 i f  ~ = v .  

g is selected so that Card g(X) = number of classes, is ~ maximum. 
(This is indeed a consequence of the preceding constraints and as a con- 
straint is unnecessary.) 

In this method the internal structure of each subclass determines the 
classification in groups that ~re not inter-related (or "redundant"). 
Watanabe (1965) gives an example using an information measure as his 
inter-relation. Distances are not used; rather sharing of ~ number of at- 
tributes by each group is the reason for the common label applied to its 
members. The method is then applied iteratively to produce a hierarchy. 

D. TEE INFORMATION I\/[EASURE OF WALLACE AND BOULTON 

Here, as in the preceding examples, the space X is a subset of R ~ and 
C is ~ set of real vectors such that 

(a) the first element of g(x) 6 C represents the number of the class 
to which x belongs, 

(b) the next element of g(x) represents the type of class to which x 
belongs. This can be anyone of a predefined dictionary of classes (Ex: 
normal, uniform, etc.), 

(c) the next r elements where r is variable are the parameters of the 
class %0 which x belongs, 

(d) the next s elements ~re devoted to specify the position of x 
with respect to the class (ex.: distance of x to the mean in some units in 
normal distributions). 
The length of the vector g(x) is then variable depending on the class se- 
lected and the amount of information needed to specify that class and 
the position of m within that set. All the attributes are used for classifica- 
tion while the number of possible choices for classes is limited by the size 
of the dictionary of classes. 

Clustering is then made trying to optimize the length of the codes, 
subiected to some restrictions, to insure a proper encoding and identifica- 
tion of each dat~ point. An information measure is used and the ~nalysis 
resembles the determination of optimal lengths of codes, as done in 
coding theory (here, more frequent classes have longer codes than un- 
frequent classes and ~re better specified than those). 

For more details, see Wallace and Boulton (1968). 
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4. NEW APPROACH 

A. NUMBER OF CLASSES FIXED 

The set X is usually a finite subset of R~; then let 

X = Ix1, . . . , x~}  c R ~, and 

C = { set of all N-tuples with positive 

elements and sum of its elements = 1}, 

A distance~ as described in 3A is presumed to be defined in X X X and 

g:x ---> (P(S~/x) ,  . . . ,  P(S• /x )  ). (6) 

The use of the probability notation will become clearer later. 
We regard numerical classification as the process of assigning to each 

data  point a certain degree of belongingness to each class $1, . - . ,  S ~ .  
In  tha t  sense, the S~.'s are "fuzzy sets" in the sense of Zadeh (1966). 
However, our fuzzy sets have a strong probabilistic meaning and our 
rules of operation are not  those proposed by  Zadeh but  those tha t  come 
naturally from probability theory. Figure 2 is an idealized example of 
such a classification applied to a dichotomy of a simple set. Several ad- 
vantages can be noted over conventional clustering representation: 
Points in the "core" or center of some class will have a degree = 1 of 

(t, o) X X co, ~) 

(.9, . I )X X ( . I ,  .9) 
(.7, 3 )  X X (.3, .7) 

(I ,  o) X X (o,  I )  
0/2, Vz ) 

(.8, .2) X X X (.2, .8) 

( t , o )  X X CO, i)  
(y, 3)X X (3,  .7) 

(.9, .~ )X X( . I ,  .9) 

c I ,o )  X X co, i) 
FIG. 2. A possibly "fuzzy set" dichotomy of a very simple set. The outer 

columns form the "core" of the set while the degree of indeterminacy varies with 
the distance to the core. The first number between parenthesis is the degree of 
belongingness to Set I and the second to Set II. 
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being members of that class, while boundary points, between the core 
and other classes may be identified as such. "Bridges" or stray points 
may be classified as undetermined points with a degree of indeterminacy 
proportionM to their similarity to "core" points. 

In this subsection, the number N of "fuzzy sets" is fixed. In subsection 
4B, some thought is given to theproblem of a variable number of subsets. 
Assuming now that X is finite, we introduce the following notations that 
will be useful later 

P(Sj)  = ~ P(x~)P(Sj/x~). (7) 
i = l  

N 

Note that P(Sj)  > 0 and ~ P(S~) = 1. P(S¢) is a measure of the 
j = l  

relative size of each class. 

P(x~/Si) = P(Ss/x~)P(xi) (8) 
P(Si) 

From (8) it is easy to see that 
hr 

P(x) = ~_, P(S , )P(x /S~) ,  
j = l  

and so the clustering process may be seen as the decomposition of the 
density function P(x) into the weighted sum of the component cluster 
densities P(x /S j )  with weights P(Si)  (the "a priori" probability of 
S~.). This is the main reason for the use of the probabilistic notation. The 
consideration of the degrees of belongingness as probabilities is very 
useful for pattern recognition purposes after the fuzzy sets or classes 
have been established. 

We now define 

M(x~) = ~ P(xk)~(x~ , xk), (9) 

(mean density of the population around x~) 

M~(x,) = ~ P(xk/S~)~(xi , xk). (10) 
k ~ l  

\ 
(mean density of the class S~ around x~). 



30 RUSPINI 

From (7) we see that 
~r 

P(Ss)Ms(x~) = M(x~). 
j=l  

To insure that the density funcgons P(x/Sj) really represent clusters, 
optimality conditions and constraints should be imposed. 

The use of both is greatly limited by computational difficulties. The 
procedures to carry out the numerical optimization are sophisticated 
enough to be, along with our numerical experiments, the object of a 
forthcoming paper. 

Two optimality conditions have been used so far: 
(I.) For each point i, let S(~) be such that 

P( S(Ux~) = max P( Sj/xl). 
l<=i<N 

The parenthetical subscript notation is then introduced to indicate the 
most likely cluster assignment. Then g is selected to make 

[P(x,) P(S(~))M(~)(x')'] 2, (11) 
i _l 

a minimum. 
(II.) Here g is selected to make 

FP(Ss)Mi(x')7 P(Sjx~), (12) ,=1 ~ P(x,) ,=1 ~ P(S~) k M(x~) J 

a minimum. 
Constraint (11) tries to minimize the average mean density of a point 

to the cluster to which it most likely belongs. Formula (12) tries to 
minimize (in the average) the products P(SJX~)Mj(x~) so that large 
mean densities will correspond to small degrees of belongingness and vice 
versa. 

These two formulas have been applied to several examples and al- 
though some points are classified as undetermined, most are classified 
absolutely and the usual problems remain. For that reason, the following 
constraint is introduced: 

T(x, y) = F(~(x, y) ), (13) 

V(g(x), g(y)) = (i=~ (P(Sjx) - P(SHy))2)I/2. (14) 
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where F:R + --~ R + is a nonnegative non-decreasing function not 
identically zero such that F(0) = 0. This constraint requires that the 
map g preserves the distance structure, transforming pairs of similar 
points into pa~s of similar codes. 

In general, this constraint cannot be satisfied by any g, and so the ap- 
proach detailed in (4) is used. Here: 

J(g) = ~ ~ P(x,)P(xl:)(F(~(x, ,  x~)) -- V(g(x,), g(xk))) ~. (15) 
k ~ l  i = l  

Experiments with simple sets are encouraging and a computational 
technique is being developed. Numerical experience shows that the re- 
sults of using constraints (11) and (12) provide a good starting point for 
the numerical methods used in the minimization of condition (15). The 
possibility of making F variable over a set of feasible functions to im- 
prove J is foreseen. 

B. ON THE NUMBER OF CLUSTERS 

Some of the already defined quantities may be useful in determining 
the optimal number of clusters N. 

First it may be noted that J(g) as defined in the preceding paragraph 
is not a decreasing function of the number of clusters and is likely that 
for some N it may be a minimum. 

Considerations on the diameter of a set and the distance between sets 
are invoked usually as constraints to determine N. 

(a) 

SET I S E T  ]3: 

(b) 

SET I 

SET TI i'~ SET 
~ERMINED 

F~G. 3. The dichotomy of (a) doesn't have undetermined points and the local 
entropy (14) is low. The partition in three sets creates ~ number of undetermined 
points suggesting that two sets were sufficient. 
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In  our approach, a function m a y  be useful 

) HL = - - ( l o g N )  -1 ~'~P(x~) P(Sj/x~) log P(  Sj/x~) (16) 
i=1 i~ l  

(normalized local ent ropy of the classification). I n  the ideal case de- 
picted in Fig. 3, the local entropy of the classification in three sets is 
much higher than  tha t  of two sets, corresponding to a high number  of un- 
determined points produced as a result of the dichotomy of one cluster. 

5. SUMMARY 

We have  presented here a mathemat ica l  formulation tha t  permits  a 
unified view of data  reduction techniques. We have also proposed a new 
approach to numerical classification problems. This approach is in- 
trinsically free of the shape and size problems of other clustering methods 
and using proper constraints gives bet ter  information about  the struc- 
ture of the da ta  set. 

Furthermore,  formulation of constraints and opt imal i ty  conditions is 
easier in terms of this f ramework than  in the usual set description. 

ACKNOWLEDGMENTS 

The author wishes to thank D. O. Walter and R. T. Kado for helpful sugges- 
tions during the development of this research; M. Maddex for the typing of the 
manuscript; and Mrs. J. Payne for the illustrations of the article. Computational 
assistance was obtained from the Health Sciences Computing Facility, UCLA, 
supported by NIH Grant FR-3. This research was supported by the Advanced 
Research Projects Agency of the Department of Defense and was monitored by 
U.S. Army Medical Research and Development Command under Contract No. 
DADA 17-67-C-7124. 

RECEIVED: February  5, 1969; revised M a y  28, 1969. 

REFERENCES 

BALL, G. H. (1965), Data analysis in the social sciences: What about the details?, 
Proceedings, Fall Joint Computer Conference, 533-559. 

L.A-NCE, C. N.  AND WILLIAMS, W. T .  (1967), A general theory of classificatory sort- 
ing strategies. II.  Clustering systems, Computer Journal 10,271-277. 

NAG¥, G. (1968), State of the art in pattern recognition, Proc. IEEE. 56,836-882. 
WALLACE, C. S. AND BOULTON, D. 1VI. (1968), An information measure for classifi- 

cation, Computer Journal 11,185-194. 
WAWANAB~, S. (1965), Une explication mathematique du classement d'objets. In 

"Information and Prediction in Science" (Dockx, S. and Bernays, P., eds.). 
Academic Press, New York. 

ZADEH, L. A., (1965), Fuzzy sets, Inform. Control 8,338-353. 


