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Abstract—In this paper, we give a new, quick proof for a known result on the global asymptotic
stability of continuocus-time nonlinear cascade systems. Next, we state and prove a similar result for
the global asymptotic stability of discrete-time nonlinear cascade systems. © 2002 Elsevier Science
Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, we study the stability problem of a nonlinear cascade system of the form

& = f(z,w),

w = s{w),

1)

where £ € R”, w € R™. We assume that f : R™ x R™ — R"™ and s : R™ — R™ are both C?! vector
fields. We also assume that f(0,0) = 0, s(0) = 0, so that (z,w) = (0,0} is an equilibrium of the
cascade system (1).

An interesting question in control systems is whether the asymptotic stability of the subsystems

z = f(z,0) and w = s{w) (2)

imply the asymptotic stability of the cascade system (1). Locally, this is true [1]. In [2], Seibert
and Suarez derived sufficient conditions for global asymptotic stability of the cascade system (1).

THEOREM 1. (See [2].) Suppose that z = 0 is a globally asymptotically stable equilibrium of the
subsystem

= f(l', O)v
w = 0 is a globally asymptotically stable equilibrium of the subsystem

w = s(w),

and that all the trajectories (z(t),w(t)) of (1) are bounded for t > 0. Then (z,w) = (0,0) is a
globally asymptotically stable equilibrium of the cascade system (1). [ |

0893-9659/02/8% - see front matter © 2002 Elsevier Science Ltd. All rights reserved. Typeset by AxS-TEX
PIL: $0893-9659(01)00130-6



276 V. SUNDARAPANDIAN

Interpreting w as an input, Theorem 1 can also be equivalently stated in the form of the
input-to-stability (ISS) results of Sontag [3,4]. We note that Sontag’s results also assume that the
trajectories of the cascade system (1) are bounded for ¢ > 0.

This paper is organized as follows. In Section 2, we give a new, quick proof of Theorem 1. In
Section 3, we derive a similar result for the discrete-time nonlinear cascade systems.

2. PROOF OF THEOREM 1

Our proof uses Massera’s converse Lyapunov theorem for asymptotic stability of nonlinear
systems [5] and LaSalle’s invariance principle for nonlinear autonomous systems [6].

Since w = 0 is a globally asymptotically stable equilibrium of the subsystem w = s(w), it
follows from Massera’s converse Lyapunov theorem [5] that there exists a C! Lyapunov function
U : R™ — R for the subsystem w = s{w).

Thus, U is a C! positive definite function on R™ and

U(w) = 5o w) - s(w)

is a negative definite function on R™.
To show that (x,w) = (0,0) is a globally asymptotically stable equilibrium of the cascade
system (1), we consider the candidate Lyapunov function

V(z,w) = Uw).

Then we have

V(z,w) =Uw) = %[j—(w) -s(w) <0, V(z,w) € R" x R™,

Hence, by LaSalle’s invariance principle (6], as t — 00, all trajectories (z(t),w(t)) of the cascade
system (1) (which are globally bounded for ¢t > 0) tend to the largest invariant subset of the locus
of points defined by

V(z,w) =U(w) =0.

Since U(w) is a negative definite function, it follows that U(w) =0 <= w = 0. Also, when
w = 0, the differential equation for z reduces to

z= f(:E’O)’

which has the origin £ = 0 as a globally asymptotically stable equilibrium.
Hence, we conclude that (z,w) = (0,0) is a globally asymptotically stable equilibrium of the
cascade system (1). ]

3. SUFFICIENT CONDITIONS FOR THE
DISCRETE-TIME NONLINEAR CASCADE SYSTEMS

In this section, we study the stability problem of a discrete-time nonlinear cascade system of
the form
T4l = f (Ik,UJk) ’
We+1 = 8 (wWk) s

where £ € R?, w € R™. We assume that f : R® x R™ — R" and s : R™ — R™ are both C! maps.
We also assume that f(0,0) = 0, s(0) = 0, so that (x,w) = (0,0) is an equilibrium of the cascade
system (3). Let Z, denote the set of all positive integers.

Now, we state and prove a theorem giving sufficient conditions for global asymptotic stability
of discrete-time nonlinear cascade systems of form (3).

(3)
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THEOREM 2. Suppose that x = 0 is a globally asymptotically stable equilibrium of the subsystem
Tit1 = f(2k,0),
w = 0 is a globally asymptotically stable equilibrium of the subsystem
wi41 = 8 (Wk)

and that all the trajectories (zx,wk) of (3) are bounded for k € Z,. Then (z,w) = (0,0) is a
globally asymptotically stable equilibrium of the cascade system (3).

PROOF. Since w = 0 is a globally asymptotically stable equilibrium of the subsystem wg4; =
s(wg), it follows from Lyapunov stability theory [7] that there exists a C! Lyapunov function
U : R™ — R for the subsystem w4, = s(wy). Thus, U is a C! positive definite function on R™

and
VU(w) =U(s(w)) - U(w)

is a negative definite function on R™.
To show that (z,w) = (0,0) is a globally asymptotically stable equilibrium of the cascade
system (3), we consider the candidate Lyapunov function

V(z,w) = U(w).
Then we have
VV(z,w) = VU(w) = U(s(w)) - U(w) <0, V(z,w) € R* x R™.

Hence, by LaSalle’s invariance principle {7}, as k£ — oo, all trajectories (xx,ws) of the cascade
system (3) (which are globally bounded for k € Z.) tend to the largest invariant subset of the
locus of points defined by

VViz,w) = VU(w) = 0.

Since VU (w) is a negative definite function, it follows that VU(w) = 0 <= w = 0. Also,
when w = 0, the difference equation for x reduces to

ZTet1 = f (2x,0),

which has the origin £ = 0 as a globally asymptotically stable equilibrium.
Hence, we conclude that (z,w) = (0,0) is a globally asymptotically stable equilibrium of the
cascade system (3). ]
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