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1. Introduction and preliminaries

Let M be a complete non-compact Riemannian manifold.(Xet P, ) be the Brownian motion o, that is, the stochastic
process generated by the Laplace—Beltrami operatdret alsop(z, x, y) be the heat kernel oM, that is, the minimal positive
fundamental solution of the heat equati®n = Au on (0, o0) x M. Thenp(t, x, y) is also the transition density &f;, which
means that for any Borel sdtc M,

Px(XtEA)Z/P(tsXsY)dy,
A

where d denotes the Riemannian measure.
Considerable efforts have been made to obtain upper and lower estimates of the hegp ternel). See, for instance,
[3,8,18,25,30,32] and the references therein. The aim of this paper is to estimate the hitting probability function

Vi (t,x) =Py (Is €[0,1]: X5 € K),

whereK C M is a fixed compact set. In wordg (7, x) is the probability that Brownian motion startedxahits K by timez.
Our goal is to obtain precise estimatesyg for all r > 0 andx outside a neighborhood @&, hence avoiding the somewhat
different question of the behavior @fx near the boundary df . In the context of Riemannian manifolds, this natural question
has been considered only in a handful of papers including [2,4]. We were led toggudy our attempt to develop sharp heat
kernel estimates on manifolds with more than one end. Indeed, the proof of the heat kernel estimates announced in [20] depends
in a crucial way on the results of the present paper (see [21]). In this context, it turns out to be important to estimate also the
time derivatived; Y ¢ (¢, x) which is a positive function.

We develop a general approach which allows to obtain estimatéscoin terms of the heat kerngl(z, x, y) or closely
related objects such as the Dirichlet heat kemmglz, x, y) of some open sdV. In the case wheX; is transient, that isM
is non-parabolic, we show that the behaviongf (¢, x), away fromK, is comparable to that ojé p(s,x, y)ds, wherey is a
reference point o8 K . If (X;);~¢ is recurrent, that isM is parabolic, we obtain similar estimates throujghpy (s, x,y)ds,
whereU is a certain region slightly larger than := M \ K. We also show thad; ¢ (¢, x) is comparable tp g (7, x, y) where
y stays at a certain distance frahk'. For precise statements, see Theorems 3.3, 3.5, 3.7 and Corollaries 3.9, 3.10.

Using the known results concerning the heat kerpél, x, y) and the results of [23] ompy (¢, x, y), we obtain in
Theorems 4.4 and 4.6 some specific bounds/gnfor important classes of manifolds, including manifolds of non-negative
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Ricci curvature. Some examples are presented in Section 5. Consider, for instance, tHe<®eand K being the unit ball
centered at the origin. Then our results imply the following estimategy fdarge enough:

(i) If 0 <t < 2/x|2 then

¢ ex C|x|2 <Ur(tx) < —ex Wl
log|x| M r )k ’x\log|x| )

for some positive constants, c.
(ii) If + >2|x|? then

log+/t —log|x|
log v/

Here the relationf ~ g means that the ratig/g is bounded by positive constants from above and below, for a specified
range of the variables.

We develop these results below in the somewhat more general framework of weighted manifolds, possibly with a non-trivial
boundary. We now explain this framework in detail.

I
and 9y g >~ oglx|

Yt x) = logn?

1.1. Weighted manifolds

Let M be a Riemannian manifold of dimensidh possibly with a boundary which will be then denotedday. (Note that
8M is a part ofM so that all points o M are interior points oM as a topological space.) The Riemannian mefrjdnduces
the geodesic distancKx, y) between points, y € M.

Given a smooth positive functianon M, let i be the measure aif given by du(x) = o (x) dx where d is the Riemannian
measure. Similarly, let” be the measure with the densitywith respect to the Riemannian measure of codimension 1 on any
smooth hypersurface, in particular, 8. The pair(M, ) is calleda weighted manifoldand it will serve as the underlying
space in this paper.

1.2. The differential operators

For any smooth functiorf on M, denote byV f its gradient that is, the vector field given by

N
i_ ij of
V=8 g
j=1 J

wheregi/ are the entries of the inverse of the metric tengpr A weighted manifold possesstie divergenceliv,, defined by
1 X ,
div,F:=——)Y —(o./gF"),
w NG 1:2; o, (o F')

whereF is a smooth vector field angl:= det||g;; || If o = 1 then diy, is the Riemannian divergence div
The Laplace operaton, of (M, ) is the second order differential operator defined by

Auf =div (V) =0 tdiv(eV f).

We say that a smooth functiofion (M, n) is harmonicif A, f =0in M\ §M anddf/on =0 onsM wheren is the inward
unit normal vector field oM.

1.3. Boundaries and integration by parts

For any set2 c M, seté2 =M N 2. If 2 is open therf2 can be itself considered as a manifold with bounda®y. Let
352 be the topological boundary &2 in M. WhensM = @, we say that a s&2 C M has smooth boundary #¢2 is a smooth
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Fig. 1. The boundary 2 consists of two componeni§, and I satisfying (i) and (ii), respectively.

submanifold (without boundary) of codimension 1. In general, we have a more complicated definition of smooth boundary
which takes into accourst2 as well as possible intersection@f2 with M.

Definition 1.1. We say that a se® C M has smooth boundary if each componéhof 352 satisfies one of the following two
conditions (see Fig. 1):

(i) eitherI" is a smooth submanifold i of codimension 1 whose boundasy™ lies onsM, and I is transversal té M at
8T (including the casél” = 0);
(ii) or I' liesinsM andI” has smooth boundary as a subset &f.

Assume thak2 is an open set with smooth boundary, andhlée the inward normal unit vector field @12 ands$2. Then,
for sufficiently regular functiong, g, we have the integration-by-parts formulas

a
[esurau==[@wrvodi— [ eihaw and (LD
Q Q 92Us82
0 b

ngufdu=ffAMng+ f (f%—g%) du'. (1.2)

Q Q 92Us82
In the absence afs$2, the standard regularity condition sufficient for (1.1) and (1.2) is

frgeck@yncl(@). (1.3)
In general, if

fgeR(2):=C22\s2)nCcH 2\ (02 N52)) N LX), (1.4)

then (1.1) and (1.2) hold. The regularity cld@¢s2) coincides with (1.3) i6£2 is empty. Wherd §2 is non-empty then the proof
of (1.1) and (1.2) follows from [13, Proposition 2]. The point is that the interse@i@m 52 has codimension 2 and hence
does not affect the validity of (1.1) and (1.2) providéandg are bounded.
Let us observe that if2 C M is a precompact open set with smooth boundary then the (unique) weak sofutmthe
boundary value problem
af

AMfzo’ f|39=f0, %5[):0’

belongs toR(52) provided fp € C1(32).
1.4. The heat kernel

Let C3°(M) denote the set of smooth functions shwith compact support (functions froifig° (M) do not necessarily
vanish ons M). The operator\, with initial domainC§° (M) is essentially self-adjoint ik 2(M, ) and non-positive definite.
It gives rise to the heat semigroup = & 2+ which has a positive smooth symmetric kerpél, x, y) called theheat kernebf
(M, ). Alternatively, the heat kernel can be defined as the minimal positive solution) = p(¢, x, y) of the Cauchy problem
onM x (0, +00):

ou

= Ayu, ul;=0 = 8y, an =0, (1.5)
M
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(see [5,10,28]). The heat kernel satisfies the following properties:

o the semigroup identity

p(t,x,y)=/p(x,x,z)p(t—s,z,y)d,u(z), forallO<s <tandx,y e M; (2.6)
M

o the total mass inequality

/p(t,x,y) du(y) <1 (.7
M

The operatorA, generates a diffusion procegk;); »o on M (reflected a M) which will be calledthe Brownian motion
on (M, ). Denote byP, the law ofX; given Xg = x € M and byE, the corresponding expectation. The heat keynislequal
to the transition density fak; with respect to measure, that is, for any Borel sed ¢ M,

Py(X; e A) = / pt,x, y)du(y).
A

As any open sef2 C M can be regarded as a manifold with boundé&sy, all the constructions above can be repeated for
£2 yielding the heat semigroupz?tQ with the kernelpg (¢, x, y), which is called theDirichlet heat kernelof 2. We extend
po(t,x,y)toallx,y e M by setting itto O ifx or y is outsides2. Thenpg, vanishes and is continuous at regular points of the
boundaryd 2, and satisfies the Neumann boundary conditiod @n

Observe thapy, increases with2, a fact which follows from the parabolic comparison principle. {&t} be anexhaustion
of M, that is an increasing sequence of precompact oper€gets\f with smooth boundaried&;, such that &, = M. Then
the sequencepg, } of the corresponding heat kernels increases and converges to the global hegp Keeel10]).

1.5. Green function

TheGreen functiorof (M, ) is defined by

e8]

G(x,y) =/p(t,x,y) du(y). (1.8)
0

Equivalently,G (x, y) can be defined as the infimum of all positive fundamental solutions of the operatatith the Neumann
condition ond M. It is known that eitheG (x, y) = oo or G(x, y) < oo for all x # y.

Similarly, one definess o (x, y) for any open set2 C M. If £2 is precompact and/ \ £2 is non-empty therG g is the
fundamental solution o& ;, with the Dirichlet condition ord$2 and the Neumann condition é2. In this case&G ¢ (x, y) < 0o
forall x # y. If M is non-compact an€;} is an exhaustion oM then the sequenddy, } increases and converges@oas
k — oo.

1.6. Capacity

Given a non-empty closed sétand an open se® on M such thatF C £2, define thecapacitycap(F, §2) of the capacitor
(F, §2) as

cap(F, 2) := inf /V 24u. 1.9
o4 pelin) V|~ du (1.9)
dlr=1

HereLipg(£2) is the class of all Lipschitz functions compactly supporte®@inNote thatLipg(£2) can be replaced bg°(£2)
without changing the value of the capacity. Various properties of capacity can be found in [27, Section 2.2.1].
Assume thak?2 is precompacty F anda 2 are non-empty, and consider the following boundary value problef \rF

% —0. (1.10)

App =0, vlae =0, vlarp =1, 3 =
Nis2\F)
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The unique (Perron) solutiog of this problem is calledhe equilibrium potentiabf the capaciton F, £2). In general, the
equilibrium potential does not necessarily belong to the class of test functions in the definition of capacity. However, one
always has

cap(F, 2) = / IVol2 dic. (1.11)
Q\F

Moreover, ifU is a precompact open set with smooth boundary suchkhattU c £2 then

ad
cap(F, ) = / % d, (1.12)
AU
wheren is the inward unit normal vector field oh/. If 2 and F have smooth boundaries thenc R(£2 \ F), and (1.12)

follows from (1.1). In particular, in this case we have €aps2) > 0. .
The equilibrium potentiap is defined by (1.10) as a function ia \ K. Let us extendg by 1 in K and set

¢(x) =liminf ¢(y) forx edk.
y—>Xx

Theng becomes a lower semicontinuous superharmonic functigp.iSimilarly, we extendp by 0 outsides2.
If 2 = M then we write cagF) for cap(F, M). Given an open subsé? C M and a closed s&t C $2, define cap (K) as
the capacity ok in the manifolds2. From the definition, it easily follows that

cap, (K) =capk, £2).
1.7. Parabolicity

We say thal M, p) is parabolicif G (x, y) = oo, andnon-parabolicotherwise. For exampl&®? is parabolic if and only if
N < 2. Itis well known that the following properties are equivalent:

The weighted manifoldM, ) is parabolic.

The Brownian motionX; on (M, w) is recurrent.

For any compact set ¢ M, cap(F) =0.

For some compact sét ¢ M with non-empty interior, caf@) = 0.
Any positive superharmonic function @i, ) is constant.

See, for example, [12,19,31].

2. Basic propertiesof hitting probabilities
2.1. Definition of hitting probabilities

For any closed subsét c M, denote byrg the first time the Brownian motio; visits K, that is
g =inf{t >0: X; € K}.
SinceX; has continuous paths ardis closedg is a stopping time (see, e.g., [24, Chapter 1]). Let us set
Y (t,x) =Pr(zg <1). (2.1)

In other wordsrk (¢, x) is the probability that the Brownian motion hik§ by timet. Observe that/ g (¢, x) is an increasing
function inz, is bounded by 1, anttg (x, 1) =1if x € K.
We also define

Y (x) = timoo Yg (1, x) =Px(tg < 00), (2.2)

which is the probability that the Brownian motion ever hiis Clearly, 0< g (x) <1 onM andy g (x) =1 on K. Note that
the parabolicity ofiM, n) is equivalent to the fact thatg (x) = 1 for any/some compad® with non-empty interior. Let us
consider also a regularized versionyof defined by

@K(x) =Py(0< g < ).
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It is obvious from (2.1) thaf/k (x) < ¥k (x). Both functionsy g (x) antin (x) are harmonic in2 := M \ K and coincide
in £2. Also, they are equal to 1 in the interior &f. On 9 K, the functions/ g (x) andy g (x) may differ but it is known that

ulx e M: Yg(x) #¥g(x)} =0 (2.3)
(see [7,11]). We will frequently consider the difference

Y (x) =Yg, x) =Py (t <1 < 00).
Clearly, v g (x) — ¥k (¢, x) is the probability that Brownian motion ever hits and does it for the first timaftertime . There

is the following crucial relation betweefig (x) andvy g (¢, x).

Lemma 2.1. For an arbitrary closed seK Cc M, we have for alk > 0andx e M

Yk () — Vg (t.0) = PE Yk (x), (2.4)
where2 .= M\ K.

Proof. If x € K then the both sides of (2.4) vanish. Assume thats2 and consider the function
Prglﬁx(x)=[m(t,x,y)$1<(y)du(y).
M

Clearly, po (¢, x, y) du(y) is the law ofX; started atk and conditioned not to hit$2 (and henceX) by timez. Since@K (y)is
the probability that the Brownian motion hiis at some positive time started atthe Markov property implies theﬂtQ Y (x)
is the probability that the Brownian motion hiks, but does it after time. Hence, we obtain

YK () — Y, x) = PP Yg(x) = PEyg (v,

where the last equality holds for> 0 due to (2.3). O

Corollary 2.2. The functiony g (¢, x) satisfies in2 x (0, +o00) the heat equation

at‘//K = AMWK
and the Neumann conditidhy g /on =0 onés2.

Proof. By (2.4), since both/ g (x) and P,Q ¥k (x) satisfy these conditions, so dogg (¢, x). O

Remark 2.1. If we assume that the proce&s is stochastically complete, that iB;1 = 1, then we have also
PR1(x) =1— g (t,x). (2.5)

Indeed, the left-hand side of (2.5) is the probability that the Brownian motion with the killing boundary conditiad stays
in £2 until time¢. This is equal to the probability that the global Brownian motionmoes not hiv £2 up to the time, which
coincides with the right-hand side of (2.5).

2.2. Equilibrium measure
If (M, n) is non-parabolic an& c M is any compact set then the functigry (x) has the following representation

WK(x)sz(x,y)deK(y), VxeM, (2.6)
K
whereeg is the equilibrium measuref K (see [6]). We will only use the properties @ that itis a Radon measure supported
by 0K, it satisfies (2.6) and
ek (K) =capK). (2.7)
If K has smooth boundary then the measygas given by

aWK /
deg = ———du’, 2.8
e x an O (2.8)
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wheren is the normal vector field o8 K inward with respect td2 = M \ K. Let us outline the proof of (2.8). Suppogeis
harmonic in$2 andg satisfies inf2 \ 52 the equatiom\ ;g = —8x (Wherex € £2) and the Neumann condition @&s2. If the
integration by parts formula (1.2) can be applied then it yields

(28 N
f(x)—/(anf 8ng)du- (2.9)
082
Taking heref = ¢ andg = G(x, ) and observing thaf =1 onds2, we obtain
[ 9G(x,") /_/ 7
vew = [ 22w~ [ G K d (2.10)
882 Yol

This would imply (2.6) witheg defined by (2.8) if we show that the first integral in (2.10) vanishes. Indeed, by Definition 1.1
of smooth boundary, each componéntf 352 is either a smooth hypersurfaceM transversal té M or I" lies onsM. In the
first case,I” bounds a precompact open & C K so that

/ G ) g _ / AuG(x, ) du =0,

an
r Ko

sinceG(x, -) is harmonic insid& . In the second casé; c §M so thatdG/on=0onT".

However, for the functiong andg as above the integration by parts is illegal becai2zse not precompact. To complete the
proof, one must exhaudt by precompact regions and use the corresponding approximatioigfandG (as in the proof of
Lemma 2.4 below). Passage to the limit is possible by the local regularity of solutions of elliptic equations up to the boundary.

The following lemma will be used to obtain lower bounds fog (x, ¢) (see Lemma 3.6).

Lemma2.3. Let (M, u) be non-parabolicK be a compact subset 8f. Set2 = M \ K. Then, for allz > 0andx € M,
o
v = vk = [ [ [ patrnpeyde@dums. (2.1)
02K
The proof immediately follows from (2.4), (2.6) and (1.8).
2.3. The time derivative

The following lemma will be used to obtain upper boundsy#qr and its time derivative.

Lemma 2.4. Let K C M be a compact set with non-empty smooth boundarys2Set M \ K. Then, for allz > 0 andx € £2,
we have

d
3tWK(fsx)=[%PQ(ﬁXN)dM/s (2.12)
)?]
wheren is the inward normal unit vector field ats2.

Proof. Denote for simplicityy g = v . The informal line of reasoning showing (2.12) runs as follows:

3t¢(’sx) = _3tP{Q¢(x)=_/3tPQ(tvxv)wdl’v=_/AuPQ(tsxs)Wdli
2 2
] Y ,
= _/pﬂ([axa')AMv/ d/'L+ / [%pﬂ(tvxv')‘//_pﬂ([axa')%] d,l,L
2 082U882
= /ainpﬂ(tsxs')du//v (2'13)

882
where we have applied (2.4), integration by parts as in (1.2), and the conditions

d d
A =0, =1, 50 =0, — =—1¢Y =00nd6S2.
u¥ Ylae relae an P2 8n1/1
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However, the integration by parts is a priori illegal sineis not precompact. To make this argument rigorous, we have to
approximates2 by precompact sets and then pass to the limit.

Let {&;} be anexhaustiorof M. By this we mean that eady, is a precompact open set with smooth boundfiy; also, we
assume thaf;, increase taf ask — oo. In addition we may assume that eaghcontainsk, and set2;, = 2 N &, =&, \ K.
We can considef}. itself as a manifold, instead @f, and perform the computations above for this manifold. Indeed, consider
on &y the corresponding heat kerngp, (¢, x, y) and the hitting probabilitieg (¢, x) andy (x). All these functions vanish on
d&;, and satisfy the Neumann boundary conditionsép. Integration-by-parts is justified if2; so that the computation above
yields

9
Yy (t,x) = / an P2 (t.x, y)di/ (). (2.14)
982

We are left to pass to the limit &s— oo. Itis known (see [3, Lemma 3, p. 187]) that for ally € £2 andz > 0
Vi) Sy (x) and pe (t,x,y) S polt x,y),

whence we conclude by (2.4) that

Y, x) /Y (t, x)
(in fact, monotonicity ofy (¢, x) in k is obvious; what we need from (2.4) is the convergence). By local properties of parabolic
equations, we obtain that

i (£, x) — 9 (1, x) (2.15)

for all x € £2 andz > 0. In other words, the left-hand side of (2.14) converges to that of (2.12)-asx. Sincepg, =0 on
082 andpg, is non-negative and increaseskirthe normal derivativép g, /dn on 352 is non-negative and also increasesin
Local estimates of solutions to the heat equation up to the boundary imply

a

d
— — onos.
an P /! anPe

By the monotone convergence theorem, we conclude that the right-hand side of (2.14) convergence to that of (2.12), which
finishes the proof. O

Remark 2.2. Integrating (2.12) irr from 0 to oo, we obtain

0Go(x, -

Yk (x) = f %d;ﬂ- (2.16)
a2

Alternatively, (2.16) can be deduced from (2.9) taking thére- v ¢ and g = G (x, -), which however, also requires an

approximation argument in the spirit of the proof above.

3. General estimates of hitting probabilities

Throughout this sectior,M, 1) is a weighted manifoldk C M is a compact set2 := M \ K, andK’ is a precompact
open neighborhood af . The main results are Theorems 3.3, 3.5 and 3.7 providing estimatggfor x).

3.1. Estimates based on the equilibrium potential

Lemma 3.1. Assume that botlk and K’ have non-empty smooth boundaries. Then, for any fungtierR (K’\ K) such that

dp
vlax =1, ¢lax’ =0, an =0, (3.1)
Nisk\K)
we have, for allk € £2 andr > 0,
K'\K K'\K

Remark 3.1. Sincepg (¢, x, y) andd; vk (¢, x) vanish ifx ¢ £2, (3.2) is, in fact, satisfied for all € M. See Fig. 2.
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Fig. 2. Setsk, K’ and functiong.

Proof. Letus denote for simplicity(z, y) :== pgo (¢, x, y) and letn be the inward normal vector field on the boundarydf, K .
By Lemma 2.4, we have

ou
e = [ S 3.3
oK
The functionu satisfies the heat equation
= Ayu. (3.4)

Multiply (3.4) by ¢2 and integrating ovek’\ K , we obtain
3 d¢?
/ <p23;ud;L= [ (pZAMuduz [ MAM(pZdM— / a—ﬁ(pzdu/—i— / %udu’.
K'\K K'"\K K'\K A(K'\K) d(K'\K)

Note that the terms containing integration o¥¢K’ \ K) vanish because botih and ¢ satisfy the Neumann condition on
8(K'\ K). Sinceulyx =0,¢lyx =1, 9|y’ =0and

32 3
WP L0 g
we obtain
d
/%du’: / uA,L(pzdu— / (p23;udu,
9K K\K K'\K

which together with (3.3) implies (3.2).0

Corollary 3.2. Let K and K’ have non-empty smooth boundaries. kdbe the equilibrium potential of capacitqiX, K').
Then, for allx € £ andr > 0O,

Ik (t,x) =2 f pot.x, )| Vel>du — / dpe(t,x, )p?du. (3.5)
K'\K K'\K
Proof. SinceA,¢ =0in £2, we obtain
Au(9?) = 07 Ydiv(o Ve?) = 290 ~Ldiv(o Vo) + 21Ve|? = 20 A 10 + 2|Vg|? = 2| Vg|2.
Substituting into (3.2) and using (3.1), we obtain (3.5)1

Theorem 3.3. Let K and K’ have non-empty boundaries. Then, for-alt £2 andr > 0,

qyk (t,x) <2capK,K') sup po(t,x,y)+w(K'\K) sup [dpo(t,x,y)| (3.6)
yEK\K yeK'\K

If in addition K" is a compact set such that ¢ K ¢ K’ then, for allx € £2 andt > O,

Yk (t.x) >2mcapK, K") inf po(r,x,y) —n(K'\K) sup [ pge(t.x,y)
yeK\K"” yeK\K

. 3.7)

wherem = infg» ¢ and g is the equilibrium potential of capacitaik, K”).
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Remark 3.2. If cap(K, K’) > 0 then the constant in (3.7) is positive. Indeed, if: = infx» ¢ = 0 theng(x) = O for some
x € K'. SinceK’ is connected, the strong minimum principle for superharmonic functions impke® in K’. However, this
contradicts ca@X, K’) > 0.

We precede the proof of Theorem 3.3 by the following lemma.

Lemma 3.4. Under the hypotheses of Theor8m and assuming thak and K’ have smooth boundaries, we have

| 19erdi= (infe) cank. &, 38)
K/\K//

Proof. If m :=infg» ¢ =0 then (3.8) holds trivially. Assuming > 0, consider the sets
Up={xeM: ¢(x)>1r}.
As follows from Sard’s theorem, for almost alkOA < 1 the set/;, has a smooth boundary. Taking<: < b < m so thatoU,
anddU,, are smooth, we havk” c U, c U, C K’ (see Fig. 3) and
IVol?du > f IVol? du = / wg—(ﬁ du’ = f wg—(ﬁ du’ — / wg—(ﬁ du’ = (b —a)capK, K'),
K'\K" U \Up (U, \Up) U, U,
where we have applied (1.1), (1.10) and (1.12). Letting0 andb 1+ m we obtain (3.8). O

Proof of Theorem 3.3. Let {K,} be a decreasing sequence of compact sets with non-empty smooth boundaries such that
M, K» = K and {K}} be an increasing sequence of open sets with non-empty smooth boundaries sudl &jat= K'.
Denote by, the equilibrium potential ofX,,, K},). Since
Venl?di = cap(Ky, Kp,),
K)\Ky
the identity (3.5) implies

‘Qll
vk, x) <2caf Ky, K;)  sup  pg,(t,x,y) — 9P wf(x). (3.9)
yeKI\Kn

Clearly, as1 — oo,

Yk, (X)) \ Yk x) and pg, (t,x,y) /' po(t,x,y),

(cf. the discussion in Section 2.3). In particular, we have algo, (1, x) — 9V (t,x) asyg, solves the heat equation.
Also, ¢, converges te locally uniformly in K’ \ K, which together with (1.12) yields

cap(K,, K,) — capK, K')
(see also [27, 2.2.1 (jii)—(iv)]). SinceQ ¢, < 1 andpg, < pe, the dominated convergence theorem yields

2
P o2(x) — PP ?(x),

Fig. 3. SetdJ, andUj,.
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forallx € £2,¢ > 0. SinceP,Q” w,%(x) solves the heat equation, this implies also the convergence of the time derivatives. Hence,
passing to the limit in (3.9) and applying

|0, P2 p2(x)| < / |0 2 (t.x, y)| du(y) S u(K'\K) sup |d;p(t.x.y)|. (3.10)
yeK'"\K
K\K

we obtain (3.6).
To prove (3.7), choose a decreasing sequéik¢g of compact sets such th@l, K,/ = K” andk,, C K,/ C K;,. By (3.5)
and (3.8), we obtain

Bk (1x) > 2 f VoulPdu  inf po (tx.y) — f 0 pe, (1, %, o2 de.
y

eK/\K/!
K\K}) K/ \Kn
H / H n 2
> 2(!1?);(/7,1) cap(Kn,Kn)ydl(r){K”pgn(t,x,y)— |3 Py g ().

Passing to the limit as — oo and using (3.10), we obtain (3.7)O

Theorem 3.5. Assume thatap K, K’) > 0. Then we have, for akt ¢ K’ andr > 0,

t
wK(t,x)<20ar[K,K’)/ sup po(s,x,y)ds and (3.11)
yeK'\K
0
o0
wK(X)—WK(I,X)SZCaF(K,K/)[ sup po(s.x,y)ds +u(K'\K) sup pg(t,x,y). (3.12)
yeK'\K yeK'\K

t

Let in additionK’ be connected an&”” be a compact set such th&tc K’ c K’. Then, for allx ¢ K’ andt > 0,

o0
VK (x) = Y (t, ) > 2mcap(K, K') f it P2 X ) ds (3.13)
t

wherem :=infg» ¢ > 0 andg is the equilibrium potential of capacitdik, K').

Proof. Assume first thak and K’ have smooth boundaries. Integrating (3.5) from @, e obtain
t
Yt x)= 2/ / P2 (s.x,)[Vo|? duds — / pe(t,x, )e?du,
0 K'\K K'\K

where we have useg (0, x, y) = 0 because # y (indeed, we have ¢ K’ andy € K’). Hence,

t
vceo<z[ [ pawaorveldids, (3.14)
0 K'\K
which obviously implies (3.11). Similarly, integrating (3.5) frano co, we obtain

o0
wK<x>—wK<r,x>=2[ f po(s.x. Vel duds + [ ot e, (3.15)
t KN\K KN\K

whence the upper bound (3.12) follows. Finally, restricting the first integration in (3.18) Y&k’ and using (3.8), we obtain
(3.13). The positivity ofn is explained in Remark 3.2.
For generalk, K’, we use the same approximation procedure as in the previous proof.

Remark 3.3. By lettingt — oo in (3.14), we obtain, for alk ¢ K’,

wK(x)<2f Go (. »IVelR du(y) < 2cagK. K') sup Go(x.y). (3.16)
yekK\K
KN\K
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Note thatG o (x, y) in (3.16) andpg (s, x, y) in (3.11), (3.12) can be replaced Ia}(x, y) and p(s, x, y), respectively, since
po < pandGg < G. Let us mention for comparison that (2.6) implies

capK) inf G(x,y) <vygx) <capK) sup G(x,y). (3.17)
yedK yedK

3.2. Estimates based on the equilibrium measure

Lemma 3.6. Assum&M, 1) is non-parabolic. Then, for alt ¢ K andr > 0,

t
wK(t,x)>//p(s,x,y)dsde1<(y), (3.18)
K O

whereeg is the equilibrium measure & .

Proof. Denotes2 := M \ K. Applying Lemma 2.3 and the semi-group identity (1.6), we obtain

oo o
Yg@x) —ygt.x) = ///Pn(t,x,z)p(s,z,y)ds deK(y)du(z)S// [/p(t,x,z)p(s,z,y)du(z)} ds deg (y)
2Kk0 KoL

o o0
< //p(t+s,x,y)dsdeK(y)=[fp(s,x,y)dsdeK(y). (3.19)
K 0 Kt
Hence, by (2.6) and (1.8),
o o t
l//K(t,X)>ffp(Av,x,y)dsdeK(y)—ffp(s,x,y)dsdezf(y)=ffp(s,x,y)dsdezf(y),
K 0 K t K 0

which was to be proved. O

Theorem 3.7. Let (M, ) be non-parabolic. Then, forall ¢ K andr > 0,

t
Vg, x) = cap(K)[ inf p(s,x,y)ds and (3.20)
yedK
0
o
Yr (@) =Ygt x) < cap(K)/ sup p(s, x, y) ds. (3.21)
yedK

t

Proof. Indeed, then (3.20) follows from (3.18), (2.7) and the fact thatsits ond K. Similarly, (3.21) follows from (3.19).
Note that (3.20) holds also for a parabolic manif@ld, 1) as in this case the right-hand side of (3.20) vanishes due to
capkK)=0. O

Estimate (3.20) is trivially true also for paraboli#/, 1) as in this case cgi) = 0. However, Theorem 3.7 can give in this
case a non-trivial lower bound fafg (7, x) as in Corollary 3.8 below. To state it, let us introduce the notion of conductivity.
For any two disjoint non-empty sesand B in M, define theconductivitybetweenA and B by

condA, B) = inf Vol?du.
dA, B) L /I »|“du
¢la=1, p|p=0M

Clearly, condA, B) is symmetric inA, B. Also, each of the setd, B can be replaced by its boundary. Comparing with the
definition (1.9) of capacity we see thatAfis compact and is an open set containing then

condA, M\ D)< inf / |V(p|2d;L =capA, D). (3.22)
@eLipg(D)
pla=l M
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oK

)/ o
K

Fig. 4. Possible locations & and F'.

If in addition D is precompact then equality takes place in (3.22).

Corollary 3.8. Let F ¢ M be a compact set such thaék and F are non-empty and disjoirfsee Fig4). SetU = M \ F. Then,
forall x e U\ K andz > 0,

1
wK(t,x)>cond3K,F)f inf py(s,x,y)ds. (3.23)
yedK
0

Remark 3.4. Note that condb K, F) > 0 whenever bottk and F have non-empty interior. In this case, (3.23) provides a non-
trivial lower bound fory g (¢, x) regardless ofM, u) being parabolic or not. A particularly interesting application for (3.23) is
whenF C K. In this case, we have

conddk, F) =cond F, M \ K) = cap(F, K) (3.24)

so that con@ K, F) depends only on the intrinsic propertiesiof

Proof. Let us apply Theorem 3.7 to estimate from belgyg (¢, x) — the hitting probability of the compact séK in
manifold (U, n) (note thab K C U). Itis obvious that ifx ¢ K then

Yk (1, x) =Yk (1, %),
and ifx e U \ K then

Yok (t,x) = Yk vt x).

Applying (3.20) to the manifoldU, 1) and the compadiK, we obtain

t
1//3K’U(t,x)>cagj(81()/ inf py(s,x,y)ds.
yedK
0

Observing that
cap; (0K)=capdK,U) > conddk, F), (3.25)

and collecting together all the above estimates, we obtain (3.23).
3.3. Two-sided estimates
Here we collect together the estimates of Theorems 3.5 and 3.7.
Corollary 3.9. Let (M, 1) be non-parabolic and ¢ M be a compact set such theap(K) > 0.

(1) Then, for allx ¢ K’ andt > 0

t t
CaF(K)/ inf p(s,x,y)ds <¥g(r,x) <20a|c[K,K’)/ sup pg(s, x,y)ds. (3.26)
5 yedK 5 yeK'\K
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(2) Let K’ be connected anfi”” be a compact set such th&tc K ¢ K’. Then, for allx ¢ K’ andz > 0,
o

[e )
c[ inf  po(s,x,y)ds <yYgx) —vg(,x) < CaF(K)[ sup p(s,x, y)ds, (3.27)
J YEK\K" J yedK

wherec > 0 depends oK, K’ and K"
Proof. Indeed, the estimates (3.26) follow from (3.11) and (3.20), and the estimates (3.27) follow from (3.21) and (3.13).

Corollary 3.10. Let (M, 1) be parabolic and lef C K bea compact set sudap(F, 1%) >0.SetU=M\F.

(1) Then, for allx ¢ K’ andt > 0,
t t
cap(F, IE’)[ inf py(s,x,y)ds < Yy (¢, x) < 2capk, K/)/ sup po(s,x,y)ds. (3.28)
o yGaK 5 yEK’\K
(2) LetK’ be connected an&” be a compact set such th&tc K” c K’. Then, for allx ¢ K’ andt > 0,

oo oo

c/ inf  po(s,x,y)ds <1—yg(r,x) < cap(F, 13)/ sup py (s, x,y)ds, (3.29)
J yeK K" / yeak

wherec > 0 depends oiF, K, K’ andK” .
Proof. The upper bound in (3.28) follows from (3.11), and the lower bound in (3.29) follows from (3.13). The other two
estimates here follow from the corresponding estimates of Corollary 3.9 when applied to the céiipaictthe manifold
(U, w), and to the sek” \ F instead ofK’. Indeed,dK C U, and forx ¢ K we haveyk (1, x) = ¥y (1, x) andyg (x) = 1.

The fact that ca@F) > 0 implies that(U, u) is nop-parabolic.
We are left to verify that cap(d K) = cap(F, K). Indeed, we have (cf. (3.24) and (3.25))

cap (3K) =capdk,U) =conddK, F) + cap(K) = cap(F, K)

as capk) = 0 by the parabolicity ofM, n). O

4. Specific estimates of hitting probabilities

In this section, we present estimates$op x (¢, x) andy k (¢, x) which depend on additional assumptions on the heat kernel.
The main results are Theorems 4.4 and 4.6.

For anys > 0 and any se! C M, let A5 denote the ope#-neighborhood ofA. Throughout the section, we fix> O,
a compact seK C M, and a reference pointe K. Denotes2 := M \ K and|x| :=d(x, 0).

4.1. Upper estimates |

Proposition 4.1. Assume that there exists a constagtsuch that, for allx € £2 and for all¢ > 0,

Co

(t,x,x) < ——, 4.1
)2} G0 (4.1)
where f (x, t) is a positive function oM x (0, +00) which possesses the following regularity properties:
(i) foranyx € M, the functionf (x, t) iS monotone increasing in
(ii) forsomey > landforallx e M,0<11 <19,
fx,vt) < fx,yt) 4.2)

o S VT fnr
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(iii) for somex > Oforall x,y e M,t >0,

f(x, 1) d(x,y)\*
<Col1 ) 4.3
FOn 1) °< 7 ) “.3)

If cap(K, Ks) > Othen, for allx ¢ Ko5,t >0,

t
2
Yk (t,x) < Ccapk, Ka)f & eXp(—Cﬁ) (4.4)
f(o,ks) K
0
[ & pEs\K)
Y (x) — Yk, x) <C<CaF(K,K5)f Ty + FloxD) ) (4.5)
t
and
Cu(Ks\ K) Ix?
gt x) < Wex <—C ; >, (4.6)

wherekx > 0 depends ory, ¢ > 0 depends ondiamK)/§, and C depends o, «, y, and(diamkK)/s.
Example4.1. Suppose thagb o (7, x, x) < Cot*"‘/2 forall x € 2, ¢ > 0 and somer > 0. In this case, we can s¢{x, t) = z”‘/z,
which satisfies (4.2) and (4.3) (the latter is trivially satisfied wheng\(er t) does not depend ar). Then (4.4) and (4.6) yield

2
Y (t,x) < W% exp(—cﬁ> 4.7
X

t
and
oYk (t,x) < Lexp(—cﬁ)
1%/2 t
If « > 2 then (4.5) implies

VK (X) — Wi (t, x) < Crime/2,

Proof of Proposition 4.1. Applying (4.3), we obtain, for alk € M,s >0, ¢ > 0,
2\ /2 2
L _ L jey ¢ (1+ﬂ) <L exp(gﬁ). 4.8)
fx,s8)  flo,s8) f(x,s) ~ f(o,8) s f(o,s) K
By [17, Theorem 3.1], the hypotheses (4.1) and (4.2) imply, for afl € £2 andr > 0,

4Co d%(x.y)
m([’x’y)gJf—(x,xr)f‘<y,x_r>exp<_° : )

with anyc € (0, 1/4) and some = «(c, ¥) > 0. Applying here the estimate (4.8) foe= ¢, we obtain

c d?(x,y) x4 1yl?
t,x,y) < expl — .
pa(t,x,y) Fo.xD P( S— +¢& ; )

Choosings small enough, we obtain for afle K5 \ K andx € M \ Ko,

C |x|2
oD exp(—cT). (4.9)

Then (4.4) follows from (3.11) and (4.9).
Estimate (4.5) follows from (3.12) and (4.9). To prove (4.6), let us first estidape; (¢, x, y)|. By [17, Corollary 3.3], the
hypotheses (4.1) and (4.2) imply, for ally € £2 andr > 0,

2
¢ exp(—cd (x’y)).
tv f(x,kt) f(y,kt) t

p(t,x,y) <

|alpﬂ([axay)|< (410)
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Using (4.8) and assuminge K3 \ K andx € M \ K5 as above we obtain

c |x|2> c P ( |x|2) c’ ( /|x|2)
B X, < expl —c— |=—5————exp|l —c— | < ——exp| -'— ). 4.11
[depa(t.x.y)| 1f (0, 1) p( 7 2o 1 O 2 ok AT (4.11)
Substituting (4.9) and (4.11) into (3.6) we obtain, foe M \ K5,

2
vt < (cagt g+ LIV €l Y,

82 f(o,kt)
We are left to apply the elementary inequality
Ks\K
cap(k, Ky) < L8

which follows from the definition of the capacity (1.9) if we use the tent test functian.
4.2. Upper estimates Il

Let
B(x,r)={yeM:d(x,y) <r}
denote the geodesic ball of radiusentered at, and set
Vix,r) :=,u(B(x,r)).

Consider the following two conditions which in general may be true or not:

V(x,2r) < CoV(x,r), forallxeM, r>0, and (4.12)

pt,x,x) < forallx e M, r > 0. (4.13)

Co
4CRVON
Obviously, (4.12) and (4.13) are satisfied B . More generally, (4.12) and (4.13) are satisfietififs a complete Riemannian
manifold with non-negative Ricci curvature (see [25]). Other examples are provided by unbounded convex sukfets of
regarded as manifolds with boundary. Necessary and sufficient conditions for (4.12) and (4.13) in terms of certain Faber—Krahn
type inequality can be found in [15, Proposition 5.2]. If (4.13) holds then the parabolicit¥ oft) is equivalent to

Tods
— =o0. 4.14
fV(x,ﬁ) > (4.14)
For allz, r > 0, define the function
t
2 ds
Hort) = — 4 / u . (4.15)
V(o,r) V (o, +/s) N
72

Corollary 4.2. Let (M, 1) be a complete non-compact manifold satisfyihd 2)and (4.13) and letcapK) > 0. Then, for all
x ¢ Kos andt > 0,

2
Yk (t,x) < CcapK, Ks)H (|x|, 1) exp(—cﬁ) (4.16)
S
T
A)
Yi(x) =Yg, x) < CcaF(K)[ m, (4.17)
t

and

YK, x) <

2
CuKs\K) (_C@) (4.18)

V (0, /1)82
wherec > 0 depends ofidiamK) /8, and C depends orCg and (diamK)/$.
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Proof. We obtain (4.16) and (4.18) from Proposition 4.1. Let us &gt, t) = V (x, +/7). Then the hypothesis (4.12) implies
both (4.2) and (4.3). Indeed, we have, for all positivandz,, by (4.12),

V(x,\/E) <C<Cv(x7 \/4_[2)
Vi, Jin Vi)

whence (4.2) follows withy = 4.
To show (4.3), let us observe that (4.12) implies, for same0,

o
Ve R C(g) 7 (4.19)
Vix,r) r
forall x e M andR > r > 0. Therefore,
Vv d d o
(x, /1) < V(. J/t+d(x, ) < C<1+ (x,y)> ’ (4.20)
V(y, /1) V(y, /1) NG
which was to be proved.
Obviously, (4.13) implies (4.1). The estimate (4.4) of Proposition 4.1 gives
t
Yg(t,x)<Ccapk, K )/ex ( <12 ds (4.21)
,X) S , —C— | 0—, .
K 8 4 s ) V(o,/s)
0
where we have eliminatedby (4.19). Observing that
t
, 2cr? /‘ exp(—cr?/s) ds , cr?
T ) 22 2 TP < - .
cH(r,t) exp( ; < Vo, 75 < C'H(r,1)exp > (4.22)
0

(whereC’, ¢/ > 0 depend o andCg) we obtain (4.16).
Estimate (4.17) follows from inequality (3.21) of Theorem 3.7 using the fact that fareall/ \ K5 andy € 9K,

C
p(t,x,y) < m,

which is deduced from (4.13) and (4.12) in the same way as (4.9).
Finally, (4.18) follows from (4.6). O

The next statement provides an upper bound/@riz, x) using a different approach.

Proposition 4.3. Let (M, ) be a complete non-compact manifold satisfyiad.2)and (4.13) Then, for any € (0, 1/4), for
all xe M\ K andt > 0,

2
d (X; K)>, (4.23)

Y, x) < CeXp(—c

whereC depends o€y andc.

Proof. We apply the fact that (4.12) and (4.13) imply the following mean value type inequality (see [15, Proposition 5.2 and

Eq. (3.5)]):
If a function u(z, y) satisfies the heat equatiohu = A, u in cylinder B(x,r) x [t/2,t] and the Neumann condition
du/dn=00n3B(x,r) then

2\ B p
2 "\ ;/ / 2
u (t,x)<C<< t) +r2>tv(x,r) u“(s, y) du(y) ds, (4.24)
t/2B(x,r)

with some constant8 > 0 and C > 0 depending only on the constants(th12)and (4.13).
The following inequality was proved in [16, Theorem3]:

3 Inequality (4.25) is arL.2 version of Takeda’s inequality [33], see also [26].
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If afunctionu(t, y), 0 < u < 1, satisfies the heat equatidpu = A, u in cylinder A, x (0, s] (WwhereA C M is a precompact
se)), the Neumann conditiodu /dn =0 on A, and the initial conditioru(0, x) =0in A,, then

r2 S r2

fuz(y, $)du(y) < /L(Ar)<— + —2> exp(—— + l>~ (4.25)
K r 2s

A

Givenx ¢ K, letus setl =d(x, K),r = (1—¢)d andA = B(x, ed) wheree € (0, 1). Then the function(z, y) = ¥ g (¢, y)
satisfies both (4.24) and (4.25). Integrating (4.25) from ¢ /2 tot, we obtain

t

K )d ( )d < Ct ( d) — — |expl — =
]ﬁ (s,y u(y)as < Vi(x, + > P .
t/2B(x,ed)

Therefore, applying (4.24) iB(x, ed) and (4.12), we obtain

2\ B+1 2 2
x//,%(t,x)<c((r7) +(ri2) )exp(—rz—t) (4.26)

If £ < r2, then (4.26) yields (4.23). if > r2, then (4.23) follows fromyx <1. O

If x ¢ Ko then (4.23) can also be deduced from (4.16), provided the condition (4.14) holds, it is), is non-parabolic.
If (M, ) is parabolic then we do not know an alternative way of proving (4.23). Moreover, examples show that (4.23) is often
sharp for parabolic manifolds.

4.3. Two-sided estimates in the non-parabolic case

In this section, we obtain two-sided estimateg/qf (¢, x) in the case when the heat kernel satisfies the following estimate,
forall x,y € M andr > 0,
d?(x, y)>

_a exp(—Cl ) <p@,x,y) < _C2 eXP<—02
V()C, \/;) V()C, \/;) t

The estimate (4.27) is known to be equivalent to the doubling volume property (4.12) and a certain Poincaré inequality (see
[29,30]). In is known that (4.27) holds in the following settings:

d?(x,y)

(4.27)

e M is a complete Riemannian manifold of non-negative Ricci curvajuiig,the Riemannian volume (see [25]).
e M is a unbounded convex regionitlV considered as a manifold with boundagyis the Lebesgue measure (see [14]).
e M is anilpotent Lie groups with left-invariant Riemannian metrids the Haar measure (see [34]).

Many more examples of weighted manifolds where (4.27) holds can be found in [22]. It is known (see [29]) that (4.27) is
stable under quasiisometry @7, ).

Note that the hypotheses (4.12) and (4.13) from Section 4.2 imply the upper bound in (4.27) (cf. [17, Theorem 1.1]). On the
other hand, (4.27) implies both (4.12) and (4.13). Hence all results of Section 4.2 can be used in the present setting.

Theorem 4.4. Let (M, ) be a complete non-compact non-parabolic weighted manifold satis®i@@) and letcap K) > 0.
Then the following estimates hold

(1) Foranys > 0and forallx ¢ Kos, t > 0,

2 2
ccapK)H (|xl, 1) exp(—C%) <Yk (t,x) <CcapK, Ks)H(|x|, 1) exp(—c%), (4.28)

wherec, C > 0 depend orrq, ¢2, C1, Co, and (diamK)/s.
(2) For alarge enougts and for allx ¢ Kos, t > x|2,

e8]

o0
ds
cf <w1<(x)—w1<<r,x><cf
t

ds
V(o,/s)

t
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(3) For alarge enoughs and for allx ¢ Kps, t > 82,

c Jx |2 c 2

In (4.29)and (4.30)the constants, C > 0 depend omry, c2, C1, C2, and K.

Remark 4.1. Using the definition (4.15) of the functiaH (r, t), one can rewrite (4.28) as follows: ifO7 < 2x|2 then

cap(K)|x[? |x[? cap(K, Kg)|x|? |x|?
- —C— ) K < B —— —Cc— .
¢ V(o, |x]) eXp< ¢ t )\W(t’x)\c V (o, |x|) N ) (431
and if > 2|x|2 then
t t
cap(K)/L<¢ (t,x) < Ccap K K)/dis (4.32)
¢ Vo, s S TEEDS SV Vi ) '
Ix[2 Ix[2

Remark 4.2. Clearly, the estimate (4.29) can be obtained from (4.30) by integrating it frémoo, assuming: > x|2.
Nevertheless, we give below an independent proof for (4.29), as it is simpler than (4.30).

Proof. Let us observe that for all ¢ Kos5, y € K5\ K,

¢ |x|2> c ( |x|2>
_ —C—— ) < plt,x,y) < ———— —c—). 4.33
Vo, D) eXp( ) SPEEIS T O T (433
Indeed, this follows from (4.27) with swappedy, from
|y|2> 1 Ce ( |y|2>
— __expl—s=2— ) < < exp e =— 4.34
Vo, ) Xp( ) SVedD S Ve T (439

(see (4.20)) and from the fact thdtx, y) is comparable tdx| in the range in question. Given the estimates (4.33), (4.28)
follows from (3.26),p < p, and (4.22).
The upper bound in (4.29) follows in the same way from that of (3.27) since (4.33) implies

C
p(t,x,y) < m

(here we do not need neith&is large norr > |x|2). To prove the lower bound in (4.29), we use again (3.27) and the following
lower estimate fopg,

2
4. ) ) (4.35)

C
PQ(LL)’) >CP(CI,XJ’) 2 7exp<_c
V(y, V1) t

which holds for alk > 0 provided|x| and|y| are large enough (see [23, Theorem 3.1] — note that the non-paraboli¢is, of)
is important for (4.35)). Také large enough so that (4.35) holds fef, [y| > §/2 andK’ := K is connected; sek” = K5 ».
Then (4.35) implies, for aly € K’ \ K" andx ¢ Ko

x> —C ex <_ ﬁ) (4.36)
pQ ’x’y = V({)’ ﬁ) p (4 t . -

Assuming in additiorr > |x|2, we obtain the lower bound in (4.29) from that of (3.27).
The upper bound in (4.30) follows from (4.18). To prove the lower bound in (4.30), let us recall that by (3.7) xfer @ll
andt > 0,

Wyt x)2c inf  po@t.x,y)—C sup |dpe(. x| (4.37)
yEK\K" yeK\K
By po < p, (4.27), (4.10) and (4.20), we obtain, for ally € £2 andr > 0,

c d@,y?
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Forx ¢ Kys andy € K’ \ K, this implies

c |x|2>
9 X, ——— —c— . 4.39
rpattr ) < o exp( e (4.39)

Substituting (4.36) and (4.39) into (4.37) and assuming in additienx|2, we obtain
c C (= C/8%) c/2
Vio. V1) 1V~ Vie, Vi) ~ Vie. VD)

provideds is large enough. This proves the lower bound in (4.30) in the rar;gpc|2.

To obtain the lower bound fa¥; v g (¢, x) in the range>52 <t < |x|2, observe thas; Yk is a non-negative solution of the
heat equation ifi0, +o0) x £2. Hence, the full range lower bound in (4.30) follows by the standard chaining argument based on
the parabolic Harnack inequality that is a consequence of (4.27) (see, for instance, [1], [23, (2.18)] or [22, Theoremm 2.7]).

Yk (1, x) 2 (4.40)

Corollary 4.5. Referring to Theorem.4, assume in addition that, for somg > 0 ando > 2,

V(o,R R\*
OB Sl Y. vRsr=s (4.41)
V(o,r) r

(1) Foranys > 0, for all x ¢ Ko5 andz > 0,

2 2 2 2
ccapK)|x| exp(—cﬁ <tz < CCARK Kol (_C£ 7
V(o, IxI) t Vo, |x|) t
wherec, C > 0 depend orrg, c1, ¢2, C1, Co, and(diamK) /3.
(2) For a large enoughs and for allx ¢ K25 andz > |x|?,
Uy — vt <
—— < < x) — JX)S o ——
Vio.lx) K K V. Ix)

wherec, C > 0 depend orrq, ¢, C1, C2 and K.

(4.42)

Proof. The condition (4.41) implies, for all > §,

o]

cr? [ ds Ccr?

V(o,r) < V(o, /s) < Vio,r)’
2

(4.43)

whence we obtain by (4.15)

cr? <Hr< Ccr?
Vio,r) S V(o,r)’

The rest follows by Theorem 4.4.00

Example 4.2. To illustrate Corollary 4.5, tak& = B(o,r) ands = r. The result of [23, Lemma 4.3] provides the following
bound, forallR >2r >0

R

R
%[ s s gcap(B(a,r),B((),R))‘lgcf s
/

V(o,s)

V(o,s)

Y
assuming (4.12) and (4.13). Assuming also (4.41), we obtain for Rueh

R
cr

2 /‘ sds cr?
< < :
Vo, r) V(o,s) ~V(o,r)
r

Hence, (4.42) gives
cV(o,r)|x|? exp( c |x|2> < ) < CV(o,r)|x|? exp( |x|2)
—_— —-C— | < ) ——————5— —c—,
Vo, [xD)r2 ' Blon Vo, IxD)r2 :
forallo e M, r,r > 0 and allx € M such thatx| > 4r.
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4.4. Two-sided estimates in the parabolic case

This section describes sharp two-sided estimateg grin the case where the weighted maniféld, n) is parabolic and
satisfies some additional assumptions. Throughout this section, we also assumé, thasatisfies the two-sided heat kernel
bounds (4.27). This implies in particular the volume doubling property (4.12).

Given a pointo € M, we call the pailM, o) apointed manifold

Definition 4.1. We say that a pointed Riemannian manifglt, o) satisfies the condition (RCA), that is, haslatively
connected annuliif there existsA > 1 such that, for any > A2 and allx, y with |x| = |y| = r, there exists a continuous

pathy :[0, 1] - M with y (0) = x, ¥ (1) = y whose image is contained (o, Ar) \ B(o,r/A).

Define a functiorii(r) for all » > 0 by

r }”2
sds 1 dr
h(r).:l—i—([ V({)J)) =1+§<f7‘/(0,\/;)> . (4.44)
1 + 1 +

Theorem 4.6. Let (M, 1) be complete, non-compact, parabolic, and sat{gf7) and (RCA). Assume that, for some> 0,
the setF := B(o, ¢) does not intersedM. Lets > ¢ be large enough an@ (o, §) be contained irK.

(1) Forall x ¢ K5 we have the followingf 0 < < 2)x|2 then

clx|? Jx |2 Clx|? 2
Vo xDh(x) exp(_CT) SYKOD) S 5 DD exp<_°7> (4.45)
and ifr > 2/x|2 then
o ds C v ds
C ) )
NG) |f| Vo) SVEEOS S |/| Vio.s)' (4.46)
(2) Forall x ¢ Kos and? > |x|2,
h(|x]) h(lx])
g SLm ¥R <, (4.47)
(3) Forall x ¢ Kp5 andt > §2,
ch(lx]) exp(—C|x|2/1) o) < Ch(lx|) exp(—c|x|?/1) (4.48)

Vo, V) (h(|x]) + h(~/1))h (/1) V (0, VO (h(Ix]) + h(VD)h (VD)

Herec, C > 0 depend oy, cp, C1, Co from(4.27) on A from (RCA) as well as onk .

Remark 4.3. For the range > |x|2, (4.48) reads as follows:
ch(|x|) <P (t.x) < Ch(|x|)
Vo /2o TS Vi, Vo2
Integrating this fronr to co gives (4.47) (cf. (4.59)).

Remark 4.4. Theorem 4.6 requires tha& contains the ballB(o, §) of a large enough radiusé. As we will see from the

proof, § depends on the estimates of the Dirichlet heat kepaein the regionU = M \ F based on [23, Theorem 4.9]. This
makes applications of Theorem 4.6 to concrete situations somewhat difficult. However, combining [23, Theorem 4.9] with [23,
Corrolary 3.5], one can drop the assumption tkiatontainsB (o, §) replacing it by

K containsB(o, ¢) andM \ B(o, ¢) is connected.

Then, statement 1 of Theorem 4.6 holds forsalvith d(x, K) > 1. Statement 2 holds for all with |x| large enough. In
statement 3, the upper bound holds forxaWith d(x, K) > 1 whereas the lower bound holds for alwith |x| large enough.
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Proof. SetU = M \ F. By (3.28) we have, for alt ¢ K5 andr > 0,

t t

c/ inf py(s,y,x)ds < ¢Yg(t,x) < C/ sup py(s,y,x)ds. (4.49)
yedKs 5 yeKs\K

For any complete weighted parabolic manifgld, u) satisfying (4.27) and (RCA), [23, Theorem 4.9] yields the following
estimates for the Dirichlet heat kerngj; (¢, x, y) providedd (x, F) andd(y, F) are large enough:

Dxy) o 4Py D@ x.y) (_daxw>
cv(ym/;) (C . )épu(t,x,y)écv(y’ﬁ) exp{ —c— , (4.50)
where

D(t,x,y) = h(lxDh(lyD

(h(Ix]) + h (VD) R(Y)) + h (VD)
Taking$ large enough, we can assume that (4.50) holds for,all¢ K ands > 0. If in additionx ¢ K5 andy € K5 \ K then
(4.50) and (4.34) imply

D(t,x) x|? D(t,x) |x|?
c V.7 exp(—CT) <pyt,x,y)<C Vo Jh exp(—c7>, (4.51)
where
~ h(lx])
D(t,x) := . 4.52
O = D + DR (4:52)
Set
2
L) = h(r) exp(—ar</s)

5 (h(r) + h(SsHh(/5) V(0. /5)
Since the function&’ and# are doubling, one easily checks that, foe® < 22,

cr? r2 cr? r2
W eXp<—4“ T) <lp(r,t) < W eXp(—a Z) (4.53)

Fort > 2r2, we have instead,

t
ds
st S0 | o

t
4 ds
cehm [ V(0 J5R2(J5)

Moreover, forr > 1, we obtain

NG

}/‘ ds _[ pdp _ 1 B 1
2r2 VNN S ) Vio.p)(1+ [f(0do)/Ve.0)?  1+[1(@d)/Ve.0) 14 (ViGdo) Vo, 0)

1 v d
o Go
- h(r)h(ﬁ)/V(o,a)' (4.54)

Thus, fort > 2r2 andr > 1,

(4.55)

Vo, s) h(/1) Vio,s)

Collecting together (4.49), (4.51), (4.52), (4.53), and (4.55), we finish the proof of (4.45) and (4.46).
To prove (4.47) let us apply the estimate (3.29) which yields, far &llKs andr > 0,

Jt Jt
Ca /‘ sds < LD < Cq /‘ sds
h(«/;)r X la\lh1) X J

o0 o0

c/ inf  po(s,x,y)ds <1—vyg @, x) < C/ sup py (s, x, y)ds. (4.56)
J YEKs\Ks/2 / yedK
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If x ¢ K95 andt > |x|2 then (4.51) and (4.52) imply

Ch(|x])
sup py(t,x,y) <

veak Vo, VD21 (4.57)

The heat kernep,; admits the estimates similar to (4.50). Hence, i large enoughy ¢ Kos, y € K5 \ K52 andr > x|2,
we obtain

inf  po(t,x,y) > __chlxh
yeKs\Ks)2 V (0, VHR2(J1)

Substituting (4.57) and (4.58) into (4.56) and using the identity

[e¢]

(4.58)

/‘ ds _ 2
Vo, Vh2(Js)  h(J/D)

t

(4.59)

which is proved in the same way as (4.54), we obtain (4.47).
To prove (4.48), observe that, < py whence by (4.50), for alt, y ¢ K andr > 0,

D(t.x,y) __dz(x,y)>
pg(t,x,y)<C7V(yﬂ/;) exp( — ) (4.60)

By [9, Theorem 4], (4.60) implies
D 2
6%, (_Cd (x, y)).
tV(y, /1) t
In particular, forx ¢ Kos, y € K5 \ K we obtain

|3tPQ(f,an’)| <C

Ch(x|) exp(—c|x|?/1) C h(|x]) exp(—c|x[?/1)
V (0, VO (h(Ix]) + h(s/D)h(/T) 1V (0, V) (h(|x]) + h(VD)h(/1)

Substituting the above estimates into (3.6), we obtain the upper bound in (4.4&).|ﬂ12, x ¢ Kos, y € K5 \ K52, ands is
large enough then (4.61) and (4.58) imply

Ch(lx|) Ch(|x])
1V (0, VDh2(J1) ~ 82V (0, V/h2(JT)
Therefore, for > |x|? we obtain from (3.7)

ch(|x])
V(0. VDR2 (V1)

which is equivalent to the lower bound in (4.48).

Assume nowlx|2 >t > §2. Let z be the point on a geodesic line connectingnd x, such thatz| = /7/2. Sinced;
is a non-negative solution to the heat equation in/&-neighborhood of the geodesic line connectingnd x, the parabolic
Harnack inequality implies (see [23, (2.18)])

d(x,z)z)

t

(4.61)

and |3 po(t. x,y)| <

po,x,y) <

|0 po(t,x, y)| < L polt,x,y).

Ykt x) = (4.62)

Yk (t,x) 2ok (% Z) EXP<—C

Applying (4.62) to estimaté; vk (/2, z), we obtain

t c
we(32) > T imean

whence

Yk (1, x) 2

;ex <_Cﬁ>
Vo yohh A\ )

We are left to observe that in the rang¢2 > t this estimate is equivalent to the lower bound in (4.48n
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5. Examples

For two positive functions, g, the relationf ~ g means that there are positive constant such that < f/g < C, for
a specified range of the arguments.

5.1. Surfaces of revolution

Consider the polar coordinates= (r, 9) around the origin iR2 and the following Riemannian metric
dr? + f2(r) o2,

where f (r) is a smooth positive function of®, +o0). Let M = {(r, 6): r > 1} be the manifold with boundary equipped with
this metric, and lett be the Riemannian measure &h

Obviously, (M, o) satisfies (RCA), for any point € M. Itis proved in [22] that the two-sided Gaussian bound (4.27) holds
on M, in particular, for the following two classes gf.

@) f(r)=r¥witha e (—1,1];
(b) £(r)=rL+logr)—# with 8 > 0.

We assume in the sequel thatis one of the functions in (a) and (b). Observe that i 1 thenM is the exterior of a ball
inR2. LetK =8M = {(r,6): r = 1}. For any poinb € K ands > 1, we have¥ (o, s) ~ s (s) < 52 so that(M, u) is parabolic.
Computing functiom: by (4.44), we obtain, for large values of the argument

i casea), o < 1,
h(r) ~ | logr, case(a), a =1,
(logt)1*+#, case).

Applying Theorem 4.6, we obtain the following estimatesifet (r, 6), assuming is large enough.
Case(a),x <1. We have for alk > 0
2 2
cexp<—C 7) <yYg(t,x) < Cexp<—67>

and, for allt > r2,

r l-a 1/ r 1-a
1_WK(EX)X<$> and a,wK(t,x):;<_) .

Case(a),« =1. We have:

(i) Forallr <2r2,

¢ ex Cr2 <Y (tx) < —— ex r2
— —-C— ) < ,X) < —— —c— ).
logr a t K logr P t

(i) Fort>2r2

log+/t — logr Ilogr (5.1)

) and 1— g (1, x) and 3y logr
a2 Y - LX) —— ~ .
K log/t K ogt vk t(logt)2

(i) If ¢ > 2r2 and in additior: := +/7/r = const then (5.1) implies

Ukt ) ~ 294
KA " logr’

If t >r2T¢ ¢ >0, thenyg (7, x) >~ 1.
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Case(b). We have:

(i) If + <2r2, then

¢ ex cr2 <Yk (tx)— ex 2
logr a t \K’xlogr 7 )
(ii) If > 2r2 then
_ (logv/D1*# — (logr)1+h

,X) , 5.2
Yk (1. x) (log JOIP (5.2)
as well as
logr\ 14 (logr)1th

1“#1((&@—(@) and 3tWK(l‘7X)—W-

(iii) If t > 2r2 and in additiors := J/t/r = const then (5.2) implies
loga
V(2= logr”

If t >r2te ¢ >0, then (5.2) implies/ (¢, x) < 1.
5.2. Bodies of revolution

Let (, u, v) be the Cartesian coordinatesks. Given a smooth positive functiofi(r) on (0, +00), consider the following
domain of revolution ifR3 (see Fig. 5):

M:{(r,u,v)eRSZ r=0, \/méf(r)}.

If f possesses a certain regularity-at 0 (in particular, f (0) = 0) thenM can be regarded as a manifold with boundary.
Let us endowM with the Euclidean metric and the Lebesgue meagussume in the sequel thitis concave, that ig” < 0.
ThenM is convex as a subset B, and the result of [25] and [14] implies thaf satisfies (4.27).

Leto=(0,0,0) and

K={x=(r,u,v)€M: Ogrél}.

Clearly, (M, o) satisfies (RCA) and we have for any> 0, V (0, 1) & rfz(r). Set
fr)y=yrlog*(2+r).

Then, for alls > 1,
V(o,s)~ s2(1+logs)®.

In particular, M is parabolic if and only itx < 1. We will use Theorems 4.4 and 4.6 to obtains estimateg fofr, x) where
x = (r,u,v) andr is large enough.

\4

Fig. 5. The domain of revolution.
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Casea > 1. Inthis case(M, u) is non-parabolic, and Theorem 4.4 gives the following estimates.

(i) If t <r2then
2

—C exp( - ) <yt < —Cexpl — r?
(|Ogr)°‘ p P VKU, X) % (|Ogr)°‘ P Cl‘ .
(ii) If t >r2then

Ukt~ 1 +[ 1 B 1 ]
K52 = ogre " | dogre—t ~ (logvne—1]’
as well as

YK (0) — Y (1, %) = and 9y ~

(logre—1 t(logn®”
(i) If ¢ >r2 anda := /7/r = const then
loga
(logr)®”
If £ >r2+e, ¢ > 0, then
1

(logr)®—1

Y (t, x)

I/IK (l‘, x) ~
Casex < 1. Inthis case M, ) is parabolic. Computing the functidr(r) by (4.44) we obtain for large

h(t)~1+ ~ (log7)1~.

T
[ ds
s(1+ logs)®
1
Hence, we obtain by Theorem 4.6:

(i) If t <2r2, then
2

oo exp(—cr—) . eXp<_cf>.
logr t logr t
(i) If £ >2r? then
_ (logv/H)1=* — (logr)1—«

£, x)
Ve (logvn)l-«
as well as
logr\1—¢ (logr)l—«
1- t,x)>~ | — and 9, ~_—=_
Y <|ng) VK t(logt)2—
(i) If ¢ > 2r2 anda := /7/r = const then
(t.x) =~ loga
Vit x) = logr "

If t >r2te ¢ >0, thenyg (1, x) ~ 1.

Casex =1. Computing the functiork(r) by (4.44) we obtain for large
T

h(r):l—l—/

_ B ioglo
s(1+logs) — glogr.
1

Theorem 4.6 then yields:

(i) If + <2r2, then
cexp(—Cr2/) YRl < Cexp(—crz/t).
logr loglogr logrloglogr
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(i) If +>2r2 then

loglog+/t —loglo
PR | g/t —loglogr

loglog/t
as well as

loglogr loglogr

1- t,x)~——— and 9 LX) ——

Vi (. x) log logt K () tlogt (loglogt)?
(iii) Let 1 >2r2. If a := /7/r = const then

loga

Vi (0= logrloglogr”

If @ :=log+/t/logr = const then

w (t )wﬂ
KA ~ loglogr’

If log v/ > (logr)1*¢, & > 0, thenyg (7, x) ~ 1.
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