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1. Introduction and preliminaries

LetM be a complete non-compact Riemannian manifold. Let(Xt ,Px) be the Brownian motion onM , that is, the stochastic
process generated by the Laplace–Beltrami operator�. Let alsop(t, x, y) be the heat kernel onM , that is, the minimal positive
fundamental solution of the heat equation∂tu=�u on (0,∞)×M . Thenp(t, x, y) is also the transition density ofXt , which
means that for any Borel setA⊂M ,

Px(Xt ∈A)=
∫
A

p(t, x, y)dy,

where dy denotes the Riemannian measure.
Considerable efforts have been made to obtain upper and lower estimates of the heat kernelp(t, x, y). See, for instance,

[3,8,18,25,30,32] and the references therein. The aim of this paper is to estimate the hitting probability function

ψK(t, x) := Px

(∃s ∈ [0, t]: Xs ∈K
)
,

whereK ⊂M is a fixed compact set. In words,ψK(t, x) is the probability that Brownian motion started atx hitsK by time t .
Our goal is to obtain precise estimates onψK for all t > 0 andx outside a neighborhood ofK , hence avoiding the somewhat
different question of the behavior ofψK near the boundary ofK . In the context of Riemannian manifolds, this natural question
has been considered only in a handful of papers including [2,4]. We were led to studyψK in our attempt to develop sharp heat
kernel estimates on manifolds with more than one end. Indeed, the proof of the heat kernel estimates announced in [20] depends
in a crucial way on the results of the present paper (see [21]). In this context, it turns out to be important to estimate also the
time derivative∂tψK(t, x) which is a positive function.

We develop a general approach which allows to obtain estimates ofψK in terms of the heat kernelp(t, x, y) or closely
related objects such as the Dirichlet heat kernelpU (t, x, y) of some open setU . In the case whenXt is transient, that is,M
is non-parabolic, we show that the behavior ofψK(t, x), away fromK , is comparable to that of

∫ t
0 p(s, x, y)ds, wherey is a

reference point on∂K . If (Xt )t>0 is recurrent, that is,M is parabolic, we obtain similar estimates through
∫ t
0 pU (s, x, y)ds,

whereU is a certain region slightly larger thanΩ :=M \K . We also show that∂tψK(t, x) is comparable topΩ(t, x, y) where
y stays at a certain distance from∂K . For precise statements, see Theorems 3.3, 3.5, 3.7 and Corollaries 3.9, 3.10.

Using the known results concerning the heat kernelp(t, x, y) and the results of [23] onpU (t, x, y), we obtain in
Theorems 4.4 and 4.6 some specific bounds onψK for important classes of manifolds, including manifolds of non-negative
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Ricci curvature. Some examples are presented in Section 5. Consider, for instance, the caseM = R
2 andK being the unit ball

centered at the origin. Then our results imply the following estimates, for|x| large enough:

(i) If 0 < t < 2|x|2 then

c

log|x| exp

(
−C |x|

2

t

)
� ψK(t, x)� C

log |x| exp

(
−c |x|

2

t

)
,

for some positive constantsC,c.
(ii) If t � 2|x|2 then

ψK(t, x) log
√
t − log |x|

log
√
t

and ∂tψK  log |x|
t (logt)2

.

Here the relationf  g means that the ratiof/g is bounded by positive constants from above and below, for a specified
range of the variables.

We develop these results below in the somewhat more general framework of weighted manifolds, possibly with a non-trivial
boundary. We now explain this framework in detail.

1.1. Weighted manifolds

Let M be a Riemannian manifold of dimensionN , possibly with a boundary which will be then denoted byδM . (Note that
δM is a part ofM so that all points onδM are interior points ofM as a topological space.) The Riemannian metricgij induces
the geodesic distanced(x, y) between pointsx, y ∈M .

Given a smooth positive functionσ onM , letµ be the measure onM given by dµ(x)= σ(x)dx where dx is the Riemannian
measure. Similarly, letµ′ be the measure with the densityσ with respect to the Riemannian measure of codimension 1 on any
smooth hypersurface, in particular, onδM . The pair(M,µ) is calleda weighted manifold, and it will serve as the underlying
space in this paper.

1.2. The differential operators

For any smooth functionf onM , denote by∇f its gradient, that is, the vector field given by

(∇f )i =
N∑
j=1

gij
∂f

∂xj
,

wheregij are the entries of the inverse of the metric tensorgij . A weighted manifold possessesthe divergencedivµ defined by

divµF := 1

σ
√
g

N∑
i=1

∂

∂xi

(
σ
√
g F i

)
,

whereF is a smooth vector field andg := det‖gij ‖. If σ ≡ 1 then divµ is the Riemannian divergence divF .
The Laplace operator�µ of (M,µ) is the second order differential operator defined by

�µf := divµ(∇f )= σ−1div(σ∇ f ).

We say that a smooth functionf on (M,µ) is harmonicif �µf = 0 in M \ δM and∂f/∂n= 0 onδM wheren is the inward
unit normal vector field onδM .

1.3. Boundaries and integration by parts

For any setΩ ⊂M , setδΩ = δM ∩Ω . If Ω is open thenΩ can be itself considered as a manifold with boundaryδΩ . Let
∂Ω be the topological boundary ofΩ in M . WhenδM = ∅, we say that a setΩ ⊂M has smooth boundary if∂Ω is a smooth
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Fig. 1. The boundary∂Ω consists of two componentsΓ1 andΓ2 satisfying (i) and (ii), respectively.

submanifold (without boundary) of codimension 1. In general, we have a more complicated definition of smooth boundary
which takes into accountδΩ as well as possible intersection of∂Ω with δM .

Definition 1.1. We say that a setΩ ⊂M has smooth boundary if each componentΓ of ∂Ω satisfies one of the following two
conditions (see Fig. 1):

(i) eitherΓ is a smooth submanifold inM of codimension 1 whose boundaryδΓ lies onδM , andΓ is transversal toδM at
δΓ (including the caseδΓ = ∅);

(ii) or Γ lies in δM andΓ has smooth boundary as a subset ofδM .

Assume thatΩ is an open set with smooth boundary, and letn be the inward normal unit vector field on∂Ω andδΩ . Then,
for sufficiently regular functionsf,g, we have the integration-by-parts formulas∫

Ω

g�µf dµ=−
∫
Ω

(∇f,∇g)dµ−
∫

∂Ω∪δΩ
g
∂f

∂n
dµ′ and (1.1)

∫
Ω

g�µf dµ=
∫
Ω

f�µg dµ+
∫

∂Ω∪δΩ

(
f
∂g

∂n
− g

∂f

∂n

)
dµ′. (1.2)

In the absence ofδΩ , the standard regularity condition sufficient for (1.1) and (1.2) is

f,g ∈C2(Ω)∩C1(Ω). (1.3)

In general, if

f,g ∈R(Ω) :=C2(Ω \ δΩ)∩C1(Ω \ (∂Ω ∩ δΩ
))∩L∞(Ω), (1.4)

then (1.1) and (1.2) hold. The regularity classR(Ω) coincides with (1.3) ifδΩ is empty. WhenδΩ is non-empty then the proof
of (1.1) and (1.2) follows from [13, Proposition 2]. The point is that the intersection∂Ω ∩ δΩ has codimension 2 and hence
does not affect the validity of (1.1) and (1.2) providedf andg are bounded.

Let us observe that ifΩ ⊂M is a precompact open set with smooth boundary then the (unique) weak solutionf to the
boundary value problem

�µf = 0, f |∂Ω = f0,
∂f

∂n

∣∣∣∣
δΩ

= 0,

belongs toR(Ω) providedf0 ∈C1(∂Ω).

1.4. The heat kernel

Let C∞0 (M) denote the set of smooth functions onM with compact support (functions fromC∞0 (M) do not necessarily

vanish onδM). The operator�µ with initial domainC∞0 (M) is essentially self-adjoint inL2(M,µ) and non-positive definite.

It gives rise to the heat semigroupPt = et�µ which has a positive smooth symmetric kernelp(t, x, y) called theheat kernelof
(M,µ). Alternatively, the heat kernel can be defined as the minimal positive solutionu(t, x)= p(t, x, y) of the Cauchy problem
onM × (0,+∞):

∂tu=�µu, u|t=0 = δy,
∂u

∂n

∣∣∣∣
δM

= 0, (1.5)
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(see [5,10,28]). The heat kernel satisfies the following properties:

• the semigroup identity

p(t, x, y)=
∫
M

p(s, x, z)p(t − s, z, y)dµ(z), for all 0< s < t andx, y ∈M ; (1.6)

• the total mass inequality∫
M

p(t, x, y)dµ(y) � 1. (1.7)

The operator�µ generates a diffusion process(Xt )t�0 onM (reflected atδM) which will be calledthe Brownian motion
on (M,µ). Denote byPx the law ofXt givenX0 = x ∈M and byEx the corresponding expectation. The heat kernelp is equal
to the transition density forXt with respect to measureµ, that is, for any Borel setA⊂M ,

Px(Xt ∈A)=
∫
A

p(t, x, y)dµ(y).

As any open setΩ ⊂M can be regarded as a manifold with boundaryδΩ , all the constructions above can be repeated for
Ω yielding the heat semigroupPΩ

t with the kernelpΩ(t, x, y), which is called theDirichlet heat kernelof Ω . We extend
pΩ(t, x, y) to all x, y ∈M by setting it to 0 ifx or y is outsideΩ . ThenpΩ vanishes and is continuous at regular points of the
boundary∂Ω , and satisfies the Neumann boundary condition onδΩ .

Observe thatpΩ increases withΩ , a fact which follows from the parabolic comparison principle. Let{Ek} be anexhaustion
of M , that is an increasing sequence of precompact open setsEk ⊂M with smooth boundaries∂Ek such that∪kEk =M . Then
the sequence{pEk } of the corresponding heat kernels increases and converges to the global heat kernelp (see [10]).

1.5. Green function

TheGreen functionof (M,µ) is defined by

G(x,y)=
∞∫

0

p(t, x, y)dµ(y). (1.8)

Equivalently,G(x,y) can be defined as the infimum of all positive fundamental solutions of the operator�µ with the Neumann
condition onδM . It is known that eitherG(x,y)≡∞ or G(x,y) <∞ for all x �= y.

Similarly, one definesGΩ(x,y) for any open setΩ ⊂M . If Ω is precompact andM \Ω is non-empty thenGΩ is the
fundamental solution of�µ with the Dirichlet condition on∂Ω and the Neumann condition onδΩ . In this caseGΩ(x,y) <∞
for all x �= y. If M is non-compact and{Ek} is an exhaustion ofM then the sequence{GEk } increases and converges toG as
k→∞.

1.6. Capacity

Given a non-empty closed setF and an open setΩ onM such thatF ⊂Ω , define thecapacitycap(F,Ω) of the capacitor
(F,Ω) as

cap(F,Ω) := inf
φ∈Lip0(Ω)
φ|F=1

∫
Ω

|∇φ|2 dµ. (1.9)

HereLip0(Ω) is the class of all Lipschitz functions compactly supported inΩ. Note thatLip0(Ω) can be replaced byC∞0 (Ω)

without changing the value of the capacity. Various properties of capacity can be found in [27, Section 2.2.1].
Assume thatΩ is precompact,∂F and∂Ω are non-empty, and consider the following boundary value problem inΩ \ F

�µϕ = 0, ϕ|∂Ω = 0, ϕ|∂F = 1,
∂ϕ

∂n

∣∣∣∣
δ(Ω\F)

= 0. (1.10)
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The unique (Perron) solutionϕ of this problem is calledthe equilibrium potentialof the capacitor(F,Ω). In general, the
equilibrium potential does not necessarily belong to the class of test functions in the definition of capacity. However, one
always has

cap(F,Ω)=
∫

Ω\F
|∇ϕ|2 dµ. (1.11)

Moreover, ifU is a precompact open set with smooth boundary such thatK ⊂U ⊂Ω then

cap(F,Ω)=
∫
∂U

∂ϕ

∂n
dµ′, (1.12)

wheren is the inward unit normal vector field on∂U . If Ω andF have smooth boundaries thenϕ ∈R(Ω \ F), and (1.12)
follows from (1.1). In particular, in this case we have cap(F,Ω) > 0.

The equilibrium potentialϕ is defined by (1.10) as a function inΩ \K . Let us extendϕ by 1 in K̊ and set

ϕ(x)= lim inf
y→x

ϕ(y) for x ∈ ∂K.

Thenϕ becomes a lower semicontinuous superharmonic function inΩ . Similarly, we extendϕ by 0 outsideΩ.
If Ω =M then we write cap(F) for cap(F,M). Given an open subsetΩ ⊂M and a closed setK ⊂Ω , define capΩ(K) as

the capacity ofK in the manifoldΩ . From the definition, it easily follows that

capΩ(K)= cap(K,Ω).

1.7. Parabolicity

We say that(M,µ) is parabolic if G(x,y)≡∞, andnon-parabolicotherwise. For example,RN is parabolic if and only if
N � 2. It is well known that the following properties are equivalent:

• The weighted manifold(M,µ) is parabolic.
• The Brownian motionXt on (M,µ) is recurrent.
• For any compact setF ⊂M , cap(F)= 0.
• For some compact setF ⊂M with non-empty interior, cap(F)= 0.
• Any positive superharmonic function on(M,µ) is constant.

See, for example, [12,19,31].

2. Basic properties of hitting probabilities

2.1. Definition of hitting probabilities

For any closed subsetK ⊂M , denote byτK the first time the Brownian motionXt visitsK , that is

τK = inf{t � 0: Xt ∈K}.
SinceXt has continuous paths andK is closed,τK is a stopping time (see, e.g., [24, Chapter 1]). Let us set

ψK(t, x) := Px(τK � t). (2.1)

In other words,ψK(t, x) is the probability that the Brownian motion hitsK by time t . Observe thatψK(t, x) is an increasing
function in t , is bounded by 1, andψK(x, t)= 1 if x ∈K .

We also define

ψK(x) := lim
t→∞ψK(t, x)= Px(τK <∞), (2.2)

which is the probability that the Brownian motion ever hitsK . Clearly, 0� ψK(x) � 1 onM andψK(x)= 1 onK . Note that
the parabolicity of(M,µ) is equivalent to the fact thatψK(x) ≡ 1 for any/some compactK with non-empty interior. Let us
consider also a regularized version ofψK defined by

ψ̂K(x) := Px(0< τK <∞).
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It is obvious from (2.1) that̂ψK(x) � ψK(x). Both functionsψ̂K(x) andψK(x) are harmonic inΩ :=M \K and coincide
in Ω . Also, they are equal to 1 in the interior ofK . On∂K , the functionŝψK(x) andψK(x) may differ but it is known that

µ
{
x ∈M : ψK(x) �= ψ̂K(x)

}= 0 (2.3)

(see [7,11]). We will frequently consider the difference

ψK(x)−ψK(t, x)= Px(t < τK <∞).

Clearly,ψK(x)−ψK(t, x) is the probability that Brownian motion ever hitsK , and does it for the first timeafter time t . There
is the following crucial relation betweenψK(x) andψK(t, x).

Lemma 2.1. For an arbitrary closed setK ⊂M , we have for allt > 0 andx ∈M

ψK(x)−ψK(t, x)= PΩ
t ψK(x), (2.4)

whereΩ :=M \K .

Proof. If x ∈K then the both sides of (2.4) vanish. Assume thatx ∈Ω and consider the function

PΩ
t ψ̂K(x)=

∫
M

pΩ(t, x, y)ψ̂K (y)dµ(y).

Clearly,pΩ(t, x, y)dµ(y) is the law ofXt started atx and conditioned not to hit∂Ω (and henceK) by time t . Sinceψ̂K(y) is
the probability that the Brownian motion hitsK at some positive time started aty, the Markov property implies thatPΩ

t ψ̂K(x)

is the probability that the Brownian motion hitsK , but does it after timet . Hence, we obtain

ψK(x)−ψK(t, x)= PΩ
t ψ̂K(x)= PΩ

t ψK(x),

where the last equality holds fort > 0 due to (2.3). ✷
Corollary 2.2. The functionψK(t, x) satisfies inΩ × (0,+∞) the heat equation

∂tψK =�µψK

and the Neumann condition∂ψK/∂n= 0 on δΩ .

Proof. By (2.4), since bothψK(x) andPΩ
t ψK(x) satisfy these conditions, so doesψK(t, x). ✷

Remark 2.1. If we assume that the processXt is stochastically complete, that is,Pt1≡ 1, then we have also

PΩ
t 1(x)= 1−ψK(t, x). (2.5)

Indeed, the left-hand side of (2.5) is the probability that the Brownian motion with the killing boundary condition on∂Ω stays
in Ω until time t . This is equal to the probability that the global Brownian motion onM does not hit∂Ω up to the timet , which
coincides with the right-hand side of (2.5).

2.2. Equilibrium measure

If (M,µ) is non-parabolic andK ⊂M is any compact set then the functionψK(x) has the following representation

ψK(x)=
∫
K

G(x,y)deK (y), ∀x ∈M, (2.6)

whereeK is the equilibrium measureof K (see [6]). We will only use the properties ofeK that it is a Radon measure supported
by ∂K , it satisfies (2.6) and

eK(K)= cap(K). (2.7)

If K has smooth boundary then the measureeK is given by

deK =−∂ψK

∂n
dµ′, (2.8)
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wheren is the normal vector field on∂K inward with respect toΩ =M \K . Let us outline the proof of (2.8). Supposef is
harmonic inΩ andg satisfies inΩ \ δΩ the equation�µg =−δx (wherex ∈Ω) and the Neumann condition onδΩ . If the
integration by parts formula (1.2) can be applied then it yields

f (x)=
∫
∂Ω

(
∂g

∂n
f − ∂f

∂n
g

)
dµ′. (2.9)

Taking heref =ψK andg =G(x, ·) and observing thatf ≡ 1 on∂Ω , we obtain

ψK(x)=
∫
∂Ω

∂G(x, ·)
∂n

dµ′ −
∫
∂Ω

G(x, ·) ∂ψK

∂n
dµ′. (2.10)

This would imply (2.6) witheK defined by (2.8) if we show that the first integral in (2.10) vanishes. Indeed, by Definition 1.1
of smooth boundary, each componentΓ of ∂Ω is either a smooth hypersurface inM transversal toδM or Γ lies onδM . In the
first case,Γ bounds a precompact open setK0 ⊂K so that∫

Γ

∂G(x, ·)
∂n

dµ′ = −
∫
K0

�µG(x, ·)dµ = 0,

sinceG(x, ·) is harmonic insideK . In the second case,Γ ⊂ δM so that∂G/∂n= 0 onΓ .
However, for the functionsf andg as above the integration by parts is illegal becauseΩ is not precompact. To complete the

proof, one must exhaustM by precompact regions and use the corresponding approximations forψK andG (as in the proof of
Lemma 2.4 below). Passage to the limit is possible by the local regularity of solutions of elliptic equations up to the boundary.

The following lemma will be used to obtain lower bounds forψK(x, t) (see Lemma 3.6).

Lemma 2.3. Let (M,µ) be non-parabolic,K be a compact subset ofM . SetΩ =M \K . Then, for allt > 0 andx ∈M ,

ψK(x)−ψK(x, t)=
∞∫

0

∫
Ω

∫
K

pΩ(t, x, y)p(s, y, z)deK (z)dµ(y)ds. (2.11)

The proof immediately follows from (2.4), (2.6) and (1.8).

2.3. The time derivative

The following lemma will be used to obtain upper bounds forψK and its time derivative.

Lemma 2.4. LetK ⊂M be a compact set with non-empty smooth boundary. SetΩ :=M \K . Then, for allt > 0 andx ∈Ω ,
we have

∂tψK(t, x)=
∫
∂Ω

∂

∂n
pΩ(t, x, ·)dµ′, (2.12)

wheren is the inward normal unit vector field at∂Ω .

Proof. Denote for simplicityψK =ψ . The informal line of reasoning showing (2.12) runs as follows:

∂tψ(t, x) = −∂tPΩ
t ψ(x)=−

∫
Ω

∂tpΩ(t, x, ·)ψ dµ=−
∫
Ω

�µpΩ(t, x, ·)ψ dµ

= −
∫
Ω

pΩ(t, x, ·)�µψ dµ+
∫

∂Ω∪δΩ

[
∂

∂n
pΩ(t, x, ·)ψ − pΩ(t, x, ·) ∂ψ

∂n

]
dµ′

=
∫
∂Ω

∂

∂n
pΩ(t, x, ·)dµ′, (2.13)

where we have applied (2.4), integration by parts as in (1.2), and the conditions

�µψ = 0, ψ |∂Ω = 1, pΩ |∂Ω = 0,
∂

∂n
pΩ = ∂

∂n
ψ = 0 onδΩ.
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However, the integration by parts is a priori illegal sinceΩ is not precompact. To make this argument rigorous, we have to
approximateΩ by precompact sets and then pass to the limit.

Let {Ek} be anexhaustionof M . By this we mean that eachEk is a precompact open set with smooth boundary∂Ek ; also, we
assume thatEk increase toM ask→∞. In addition we may assume that eachEk containsK , and setΩk =Ω ∩ Ek = Ek \K .
We can considerEk itself as a manifold, instead ofM , and perform the computations above for this manifold. Indeed, consider
onEk the corresponding heat kernelpΩk

(t, x, y) and the hitting probabilitiesψk(t, x) andψk(x). All these functions vanish on
∂Ek and satisfy the Neumann boundary condition onδEk . Integration-by-parts is justified inΩk so that the computation above
yields

∂tψk(t, x)=
∫
∂Ω

∂

∂n
pΩk

(t, x, y)dµ′(y). (2.14)

We are left to pass to the limit ask→∞. It is known (see [3, Lemma 3, p. 187]) that for allx, y ∈Ω andt > 0

ψk(x)↗ ψ(x) and pΩk
(t, x, y)↗ pΩ(t, x, y),

whence we conclude by (2.4) that

ψk(t, x)↗ψ(t, x)

(in fact, monotonicity ofψk(t, x) in k is obvious; what we need from (2.4) is the convergence). By local properties of parabolic
equations, we obtain that

∂tψk(t, x)→ ∂tψ(t, x) (2.15)

for all x ∈Ω andt > 0. In other words, the left-hand side of (2.14) converges to that of (2.12) ask→∞. SincepΩk
= 0 on

∂Ω andpΩk
is non-negative and increases ink, the normal derivative∂pΩk

/∂n on ∂Ω is non-negative and also increases ink.
Local estimates of solutions to the heat equation up to the boundary imply

∂

∂n
pΩk

↗ ∂

∂n
pΩ on ∂Ω.

By the monotone convergence theorem, we conclude that the right-hand side of (2.14) convergence to that of (2.12), which
finishes the proof. ✷
Remark 2.2. Integrating (2.12) int from 0 to∞, we obtain

ψK(x)=
∫
∂Ω

∂GΩ(x, ·)
∂n

dµ′. (2.16)

Alternatively, (2.16) can be deduced from (2.9) taking theref = ψK and g = GΩ(x, ·), which however, also requires an
approximation argument in the spirit of the proof above.

3. General estimates of hitting probabilities

Throughout this section,(M,µ) is a weighted manifold,K ⊂M is a compact set,Ω :=M \K , andK ′ is a precompact
open neighborhood ofK . The main results are Theorems 3.3, 3.5 and 3.7 providing estimates forψK(t, x).

3.1. Estimates based on the equilibrium potential

Lemma 3.1. Assume that bothK andK ′ have non-empty smooth boundaries. Then, for any functionϕ ∈R(K ′\K) such that

ϕ|∂K = 1, ϕ|∂K ′ = 0,
∂ϕ

∂n

∣∣∣∣
δ(K ′\K)

= 0, (3.1)

we have, for allx ∈Ω and t > 0,

∂tψK(t, x)=
∫

K ′\K
pΩ(t, x, ·)�µ

(
ϕ2)dµ−

∫
K ′\K

∂tpΩ(t, x, ·)ϕ2 dµ. (3.2)

Remark 3.1. SincepΩ(t, x, y) and∂tψK(t, x) vanish ifx /∈Ω , (3.2) is, in fact, satisfied for allx ∈M . See Fig. 2.
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Fig. 2. SetsK , K ′ and functionφ.

Proof. Let us denote for simplicityu(t, y) := pΩ(t, x, y) and letn be the inward normal vector field on the boundary ofK ′ \K .
By Lemma 2.4, we have

∂tψK(t, x)=
∫
∂K

∂u

∂n
dµ′. (3.3)

The functionu satisfies the heat equation

∂tu=�µu. (3.4)

Multiply (3.4) by ϕ2 and integrating overK ′\K , we obtain∫
K ′\K

ϕ2∂tudµ=
∫

K ′\K
ϕ2�µudµ=

∫
K ′\K

u�µϕ
2 dµ−

∫
∂(K ′\K)

∂u

∂n
ϕ2 dµ′ +

∫
∂(K ′\K)

∂ϕ2

∂n
udµ′.

Note that the terms containing integration overδ(K ′ \ K) vanish because bothu andϕ satisfy the Neumann condition on
δ(K ′ \K). Sinceu|∂K = 0, ϕ|∂K = 1, ϕ|∂K ′ = 0 and

∂ϕ2

∂n

∣∣∣∣
∂K ′

= 2ϕ
∂ϕ

∂n

∣∣∣∣
∂K ′

= 0,

we obtain∫
∂K

∂u

∂n
dµ′ =

∫
K ′\K

u�µϕ
2 dµ−

∫
K ′\K

ϕ2∂t udµ,

which together with (3.3) implies (3.2).✷
Corollary 3.2. Let K andK ′ have non-empty smooth boundaries. Letϕ be the equilibrium potential of capacitor(K,K ′).
Then, for allx ∈Ω and t > 0,

∂tψK(t, x)= 2
∫

K ′\K
pΩ(t, x, ·)|∇ϕ|2 dµ−

∫
K ′\K

∂tpΩ(t, x, ·)ϕ2 dµ. (3.5)

Proof. Since�µϕ = 0 in Ω , we obtain

�µ

(
ϕ2)= σ−1div

(
σ∇ϕ2)= 2ϕσ−1div(σ∇ϕ)+ 2|∇ϕ|2 = 2ϕ�µϕ + 2|∇ϕ|2 = 2|∇ϕ|2.

Substituting into (3.2) and using (3.1), we obtain (3.5).✷
Theorem 3.3. LetK andK ′ have non-empty boundaries. Then, for allx ∈Ω and t > 0,

∂tψK(t, x)� 2cap(K,K ′) sup
y∈K ′\K

pΩ(t, x, y)+µ(K ′\K) sup
y∈K ′\K

∣∣∂tpΩ(t, x, y)
∣∣. (3.6)

If in additionK ′′ is a compact set such thatK ⊂K ′′ ⊂K ′ then, for allx ∈Ω and t > 0,

∂tψK(t, x)� 2mcap(K,K ′) inf
y∈K ′\K ′′ pΩ(t, x, y)−µ(K ′\K) sup

y∈K ′\K
∣∣∂tpΩ(t, x, y)

∣∣, (3.7)

wherem= infK ′′ ϕ andϕ is the equilibrium potential of capacitor(K,K ′).
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Remark 3.2. If cap(K,K ′) > 0 then the constantm in (3.7) is positive. Indeed, ifm = infK ′′ ϕ = 0 thenϕ(x) = 0 for some
x ∈K ′. SinceK ′ is connected, the strong minimum principle for superharmonic functions impliesϕ ≡ 0 in K ′. However, this
contradicts cap(K,K ′) > 0.

We precede the proof of Theorem 3.3 by the following lemma.

Lemma 3.4. Under the hypotheses of Theorem3.3and assuming thatK andK ′ have smooth boundaries, we have∫
K ′\K ′′

|∇ϕ|2 dµ�
(

inf
K ′′ ϕ

)
cap(K,K ′). (3.8)

Proof. If m := infK ′′ ϕ = 0 then (3.8) holds trivially. Assumingm> 0, consider the sets

Uλ =
{
x ∈M : ϕ(x) > λ

}
.

As follows from Sard’s theorem, for almost all 0< λ< 1 the setUλ has a smooth boundary. Taking 0< a < b <m so that∂Ua

and∂Ub are smooth, we haveK ′′ ⊂Ub ⊂Ua ⊂K ′ (see Fig. 3) and∫
K ′\K ′′

|∇ϕ|2 dµ�
∫

Ua\Ub

|∇ϕ|2 dµ=
∫

∂(Ua\Ub)

ϕ
∂ϕ

∂n
dµ′ =

∫
∂Ub

ϕ
∂ϕ

∂n
dµ′ −

∫
∂Ua

ϕ
∂ϕ

∂n
dµ′ = (b− a)cap(K,K ′),

where we have applied (1.1), (1.10) and (1.12). Lettinga ↓ 0 andb ↑m we obtain (3.8). ✷
Proof of Theorem 3.3. Let {Kn} be a decreasing sequence of compact sets with non-empty smooth boundaries such that⋂

n Kn = K and {K ′
n} be an increasing sequence of open sets with non-empty smooth boundaries such that

⋃
n K

′
n = K ′.

Denote byϕn the equilibrium potential of(Kn,K
′
n). Since∫

K ′
n\Kn

|∇ϕn|2 dµ= cap
(
Kn,K

′
n

)
,

the identity (3.5) implies

∂tψKn
(t, x)� 2cap

(
Kn,K

′
n

)
sup

y∈K ′
n\Kn

pΩn
(t, x, y)− ∂tP

Ωn
t ϕ2

n(x). (3.9)

Clearly, asn→∞,

ψKn
(t, x)↘ψK(t, x) and pΩn

(t, x, y)↗ pΩ(t, x, y),

(cf. the discussion in Section 2.3). In particular, we have also∂tψKn
(t, x) −→ ∂tψK(t, x) asψKn

solves the heat equation.
Also, ϕn converges toϕ locally uniformly inK ′ \K , which together with (1.12) yields

cap
(
Kn,K

′
n

)→ cap(K,K ′)
(see also [27, 2.2.1 (iii)–(iv)]). Since 0� ϕn � 1 andpΩn

� pΩ , the dominated convergence theorem yields

P
Ωn
t ϕ2

n(x)−→ PΩ
t ϕ2(x),

Fig. 3. SetsUa andUb .
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for all x ∈Ω , t > 0. SincePΩn
t ϕ2

n(x) solves the heat equation, this implies also the convergence of the time derivatives. Hence,
passing to the limit in (3.9) and applying∣∣∂tPΩ

t ϕ2(x)
∣∣� ∫

K ′\K

∣∣∂tpΩ(t, x, y)
∣∣ dµ(y)�µ(K ′ \K) sup

y∈K ′\K
∣∣∂tp(t, x, y)∣∣, (3.10)

we obtain (3.6).
To prove (3.7), choose a decreasing sequence{K ′′

n } of compact sets such that
⋂

n K
′′
n =K ′′ andKn ⊂K ′′

n ⊂K ′
n. By (3.5)

and (3.8), we obtain

∂tψKn
(t, x) � 2

∫
K ′
n\K ′′

n

|∇ϕn|2 dµ inf
y∈K ′

n\K ′′
n

pΩn
(t, x, y)−

∫
K ′
n\Kn

∂tpΩn
(t, x, ·)ϕ2

n dµ.

� 2
(

inf
K ′′
n

ϕn

)
cap
(
Kn,K

′
n

)
inf

y∈K ′\K ′′pΩn
(t, x, y)− ∣∣∂tPΩn

t ϕ2
n(x)

∣∣.
Passing to the limit asn→∞ and using (3.10), we obtain (3.7).✷
Theorem 3.5. Assume thatcap(K,K ′) > 0. Then we have, for allx /∈K ′ and t > 0,

ψK(t, x)� 2cap(K,K ′)
t∫

0

sup
y∈K ′\K

pΩ(s, x, y)ds and (3.11)

ψK(x)−ψK(t, x)� 2cap(K,K ′)
∞∫
t

sup
y∈K ′\K

pΩ(s, x, y)ds +µ(K ′\K) sup
y∈K ′\K

pΩ(t, x, y). (3.12)

Let in additionK ′ be connected andK ′′ be a compact set such thatK ⊂K ′′ ⊂K ′. Then, for allx /∈K ′ and t > 0,

ψK(x)−ψK(t, x)� 2mcap(K,K ′)
∞∫
t

inf
y∈K ′\K ′′pΩ(s, x, y)ds, (3.13)

wherem := infK ′′ ϕ > 0 andϕ is the equilibrium potential of capacitor(K,K ′).

Proof. Assume first thatK andK ′ have smooth boundaries. Integrating (3.5) from 0 tot , we obtain

ψK(t, x)= 2

t∫
0

∫
K ′\K

pΩ(s, x, ·)|∇ϕ|2 dµds −
∫

K ′\K
pΩ(t, x, ·)ϕ2 dµ,

where we have usedpΩ(0, x, y) = 0 becausex �= y (indeed, we havex /∈K ′ andy ∈K ′). Hence,

ψK(t, x)� 2

t∫
0

∫
K ′\K

pΩ(s, x, ·)|∇ϕ|2 dµds, (3.14)

which obviously implies (3.11). Similarly, integrating (3.5) fromt to∞, we obtain

ψK(x)−ψK(t, x)= 2

∞∫
t

∫
K ′\K

pΩ(s, x, ·)|∇ϕ|2 dµds +
∫

K ′\K
pΩ(t, x, ·)ϕ2 dµ, (3.15)

whence the upper bound (3.12) follows. Finally, restricting the first integration in (3.15) toK ′ \K ′′ and using (3.8), we obtain
(3.13). The positivity ofm is explained in Remark 3.2.

For generalK , K ′, we use the same approximation procedure as in the previous proof.✷
Remark 3.3. By letting t →∞ in (3.14), we obtain, for allx /∈K ′,

ψK(x)� 2
∫

K ′\K
GΩ(x,y)|∇ϕ|2 dµ(y)� 2cap(K,K ′) sup

y∈K ′\K
GΩ(x,y). (3.16)
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Note thatGΩ(x,y) in (3.16) andpΩ(s, x, y) in (3.11), (3.12) can be replaced byG(x,y) andp(s, x, y), respectively, since
pΩ � p andGΩ �G. Let us mention for comparison that (2.6) implies

cap(K) inf
y∈∂KG(x,y) � ψK(x) � cap(K) sup

y∈∂K
G(x,y). (3.17)

3.2. Estimates based on the equilibrium measure

Lemma 3.6. Assume(M,µ) is non-parabolic. Then, for allx /∈K and t > 0,

ψK(t, x)�
∫
K

t∫
0

p(s, x, y)ds deK (y), (3.18)

whereeK is the equilibrium measure ofK .

Proof. DenoteΩ :=M \K . Applying Lemma 2.3 and the semi-group identity (1.6), we obtain

ψK(x)−ψK(t, x) =
∫
Ω

∫
K

∞∫
0

pΩ(t, x, z)p(s, z, y)ds deK (y)dµ(z)�
∫
K

∞∫
0

[∫
Ω

p(t, x, z)p(s, z, y)dµ(z)

]
ds deK(y)

�
∫
K

∞∫
0

p(t + s, x, y)ds deK(y)=
∫
K

∞∫
t

p(s, x, y)ds deK(y). (3.19)

Hence, by (2.6) and (1.8),

ψK(t, x)�
∫
K

∞∫
0

p(s, x, y)ds deK (y)−
∫
K

∞∫
t

p(s, x, y)ds deK (y)=
∫
K

t∫
0

p(s, x, y)ds deK (y),

which was to be proved.✷
Theorem 3.7. Let (M,µ) be non-parabolic. Then, for allx /∈K and t > 0,

ψK(t, x)� cap(K)

t∫
0

inf
y∈∂K p(s, x, y)ds and (3.20)

ψK(x)−ψK(t, x)� cap(K)

∞∫
t

sup
y∈∂K

p(s, x, y)ds. (3.21)

Proof. Indeed, then (3.20) follows from (3.18), (2.7) and the fact thateK sits on∂K . Similarly, (3.21) follows from (3.19).
Note that (3.20) holds also for a parabolic manifold(M,µ) as in this case the right-hand side of (3.20) vanishes due to
cap(K)= 0. ✷

Estimate (3.20) is trivially true also for parabolic(M,µ) as in this case cap(K)= 0. However, Theorem 3.7 can give in this
case a non-trivial lower bound forψK(t, x) as in Corollary 3.8 below. To state it, let us introduce the notion of conductivity.
For any two disjoint non-empty setsA andB in M , define theconductivitybetweenA andB by

cond(A,B)= inf
ϕ∈Lip(M)

ϕ|A=1, ϕ|B=0

∫
M

|∇ϕ|2 dµ.

Clearly, cond(A,B) is symmetric inA, B. Also, each of the setsA, B can be replaced by its boundary. Comparing with the
definition (1.9) of capacity we see that ifA is compact andD is an open set containingA then

cond(A,M \D)� inf
ϕ∈Lip0(D)
ϕ|A=1

∫
M

|∇ϕ|2 dµ= cap(A,D). (3.22)
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Fig. 4. Possible locations ofK andF .

If in additionD is precompact then equality takes place in (3.22).

Corollary 3.8. LetF ⊂M be a compact set such that∂K andF are non-empty and disjoint(see Fig.4). SetU =M \F . Then,
for all x ∈ U \K and t > 0,

ψK(t, x)� cond(∂K,F)

t∫
0

inf
y∈∂K pU (s, x, y)ds. (3.23)

Remark 3.4. Note that cond(∂K,F) > 0 whenever bothK andF have non-empty interior. In this case, (3.23) provides a non-
trivial lower bound forψK(t, x) regardless of(M,µ) being parabolic or not. A particularly interesting application for (3.23) is
whenF ⊂ K̊ . In this case, we have

cond(∂K,F)= cond(F,M \K)= cap
(
F, K̊

)
(3.24)

so that cond(∂K,F) depends only on the intrinsic properties ofK .

Proof. Let us apply Theorem 3.7 to estimate from belowψ∂K,U (t, x) – the hitting probability of the compact set∂K in
manifold(U,µ) (note that∂K ⊂U ). It is obvious that ifx /∈K then

ψK(t, x)=ψ∂K(t, x),

and ifx ∈U \K then

ψ∂K(t, x)� ψ∂K,U (t, x).

Applying (3.20) to the manifold(U,µ) and the compact∂K , we obtain

ψ∂K,U (t, x)� capU (∂K)

t∫
0

inf
y∈∂K pU (s, x, y)ds.

Observing that

capU (∂K)= cap(∂K,U)� cond(∂K,F), (3.25)

and collecting together all the above estimates, we obtain (3.23).✷
3.3. Two-sided estimates

Here we collect together the estimates of Theorems 3.5 and 3.7.

Corollary 3.9. Let (M,µ) be non-parabolic andK ⊂M be a compact set such thatcap(K) > 0.

(1) Then, for allx /∈K ′ and t > 0

cap(K)

t∫
0

inf
y∈∂K p(s, x, y)ds � ψK(t, x)� 2cap(K,K ′)

t∫
0

sup
y∈K ′\K

pΩ(s, x, y)ds. (3.26)
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(2) LetK ′ be connected andK ′′ be a compact set such thatK ⊂K ′′ ⊂K ′. Then, for allx /∈K ′ and t > 0,

c

∞∫
t

inf
y∈K ′\K ′′ pΩ(s, x, y)ds �ψK(x)−ψK(t, x)� cap(K)

∞∫
t

sup
y∈∂K

p(s, x, y)ds, (3.27)

wherec > 0 depends onK , K ′ andK ′′.

Proof. Indeed, the estimates (3.26) follow from (3.11) and (3.20), and the estimates (3.27) follow from (3.21) and (3.13).✷
Corollary 3.10. Let (M,µ) be parabolic and letF ⊂ K̊ be a compact set suchcap(F, K̊) > 0. SetU =M \ F .

(1) Then, for allx /∈K ′ and t > 0,

cap
(
F, K̊

) t∫
0

inf
y∈∂K pU (s, x, y)ds �ψK(t, x)� 2cap(K,K ′)

t∫
0

sup
y∈K ′\K

pΩ(s, x, y)ds. (3.28)

(2) LetK ′ be connected andK ′′ be a compact set such thatK ⊂K ′′ ⊂K ′. Then, for allx /∈K ′ and t > 0,

c

∞∫
t

inf
y∈K ′\K ′′ pΩ(s, x, y)ds � 1−ψK(t, x)� cap

(
F, K̊

) ∞∫
t

sup
y∈∂K

pU(s, x, y)ds, (3.29)

wherec > 0 depends onF , K , K ′ andK ′′.

Proof. The upper bound in (3.28) follows from (3.11), and the lower bound in (3.29) follows from (3.13). The other two
estimates here follow from the corresponding estimates of Corollary 3.9 when applied to the compact∂K on the manifold
(U,µ), and to the setK ′ \F instead ofK ′. Indeed,∂K ⊂U , and forx /∈K we haveψK(t, x)=ψ∂K,U (t, x) andψK(x)= 1.
The fact that cap(F) > 0 implies that(U,µ) is non-parabolic.

We are left to verify that capU (∂K)= cap(F, K̊). Indeed, we have (cf. (3.24) and (3.25))

capU (∂K)= cap(∂K,U)= cond(∂K,F)+ cap(K)= cap
(
F, K̊

)
,

as cap(K)= 0 by the parabolicity of(M,µ). ✷

4. Specific estimates of hitting probabilities

In this section, we present estimates of∂tψK(t, x) andψK(t, x) which depend on additional assumptions on the heat kernel.
The main results are Theorems 4.4 and 4.6.

For anyδ > 0 and any setA ⊂M , let Aδ denote the openδ-neighborhood ofA. Throughout the section, we fixδ > 0,
a compact setK ⊂M , and a reference pointo ∈K . DenoteΩ :=M \K and|x| := d(x, o).

4.1. Upper estimates I

Proposition 4.1. Assume that there exists a constantC0 such that, for allx ∈Ω and for all t > 0,

pΩ(t, x, x) � C0

f (x, t)
, (4.1)

wheref (x, t) is a positive function onM × (0,+∞) which possesses the following regularity properties:

(i) for anyx ∈M , the functionf (x, t) is monotone increasing int ;
(ii) for someγ > 1 and for allx ∈M , 0< t1 < t2,

f (x, γ t1)

f (x, t1)
�C0

f (x, γ t2)

f (x, t2)
; (4.2)
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(iii) for someα > 0 for all x, y ∈M , t > 0,

f (x, t)

f (y, t)
� C0

(
1+ d(x, y)√

t

)α
. (4.3)

If cap(K,Kδ) > 0 then, for allx /∈K2δ , t > 0 ,

ψK(t, x)� C cap(K,Kδ)

t∫
0

ds

f (o, κs)
exp

(
−c |x|

2

s

)
, (4.4)

ψK(x)−ψK(t, x)� C

(
cap(K,Kδ)

∞∫
t

ds

f (o, κs)
+ µ(Kδ \K)

f (o, κt)

)
, (4.5)

and

∂tψK(t, x)� C µ(Kδ \K)

f (o, κt)δ2
exp

(
−c |x|

2

t

)
, (4.6)

whereκ > 0 depends onγ , c > 0 depends on(diamK)/δ, andC depends onC0, α, γ , and(diamK)/δ.

Example 4.1. Suppose thatpΩ(t, x, x) � C0t
−α/2 for all x ∈Ω , t > 0 and someα > 0. In this case, we can setf (x, t)= tα/2,

which satisfies (4.2) and (4.3) (the latter is trivially satisfied wheneverf (x, t) does not depend onx). Then (4.4) and (4.6) yield

ψK(t, x)� C

|x|α−2
exp

(
−c |x|

2

t

)
(4.7)

and

∂tψK(t, x)� C

tα/2
exp

(
−c |x|

2

t

)
.

If α > 2 then (4.5) implies

ψK(x)−ψK(t, x)� Ct1−α/2.

Proof of Proposition 4.1. Applying (4.3), we obtain, for allx ∈M , s > 0, ε > 0,

1

f (x, s)
= 1

f (o, s)

f (o, s)

f (x, s)
� C

f (o, s)

(
1+ |x|2

s

)α/2
� Cε

f (o, s)
exp

(
ε
|x|2
s

)
. (4.8)

By [17, Theorem 3.1], the hypotheses (4.1) and (4.2) imply, for allx, y ∈Ω andt > 0,

pΩ(t, x, y) � 4C0√
f (x, κt)f (y, κt)

exp

(
−c d

2(x, y)

t

)
,

with anyc ∈ (0,1/4) and someκ = κ(c, γ ) > 0. Applying here the estimate (4.8) fors = κt , we obtain

pΩ(t, x, y) � C

f (o, κt)
exp

(
−c d

2(x, y)

t
+ ε

|x|2 + |y|2
t

)
.

Choosingε small enough, we obtain for ally ∈Kδ \K andx ∈M \K2δ ,

pΩ(t, x, y) � C

f (o, κt)
exp

(
−c |x|

2

t

)
. (4.9)

Then (4.4) follows from (3.11) and (4.9).
Estimate (4.5) follows from (3.12) and (4.9). To prove (4.6), let us first estimate|∂tpΩ(t, x, y)|. By [17, Corollary 3.3], the

hypotheses (4.1) and (4.2) imply, for allx, y ∈Ω andt > 0,

∣∣∂tpΩ(t, x, y)
∣∣� C

t
√
f (x, κt)f (y, κt)

exp

(
−c d

2(x, y)

t

)
. (4.10)
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Using (4.8) and assumingy ∈Kδ \K andx ∈M \K2δ as above we obtain∣∣∂tpΩ(t, x, y)
∣∣� C

tf (o, κt)
exp

(
−c |x|

2

t

)
= C

|x|2f (o, κt)
|x|2
t

exp

(
−c |x|

2

t

)
� C′

δ2f (o, κt)
exp

(
−c′ |x|

2

t

)
. (4.11)

Substituting (4.9) and (4.11) into (3.6) we obtain, forx ∈M \K2δ ,

∂tψK(t, x)�
(

cap(K,Kδ)+ µ(Kδ\K)

δ2

)
C

f (o, κt)
exp

(
−c |x|

2

t

)
.

We are left to apply the elementary inequality

cap(K,Kδ)� µ(Kδ\K)

δ2
,

which follows from the definition of the capacity (1.9) if we use the tent test function.✷
4.2. Upper estimates II

Let

B(x, r)= {y ∈M : d(x, y) < r
}

denote the geodesic ball of radiusr centered atx, and set

V (x, r) :=µ
(
B(x, r)

)
.

Consider the following two conditions which in general may be true or not:

V (x,2r)� C0V (x, r), for all x ∈M, r > 0, and (4.12)

p(t, x, x) � C0

V (x,
√
t)
, for all x ∈M, t > 0. (4.13)

Obviously, (4.12) and (4.13) are satisfied forR
N . More generally, (4.12) and (4.13) are satisfied ifM is a complete Riemannian

manifold with non-negative Ricci curvature (see [25]). Other examples are provided by unbounded convex subsets ofR
N

regarded as manifolds with boundary. Necessary and sufficient conditions for (4.12) and (4.13) in terms of certain Faber–Krahn
type inequality can be found in [15, Proposition 5.2]. If (4.13) holds then the parabolicity of(M,µ) is equivalent to

∞∫
ds

V (x,
√
s)
=∞. (4.14)

For all t, r > 0, define the function

H(r, t) := r2

V (o, r)
+
( t∫
r2

ds

V (o,
√
s)

)
+
. (4.15)

Corollary 4.2. Let (M,µ) be a complete non-compact manifold satisfying(4.12)and (4.13), and letcap(K) > 0. Then, for all
x /∈K2δ and t > 0,

ψK(t, x)� C cap(K,Kδ)H
(|x|, t)exp

(
−c |x|

2

s

)
, (4.16)

ψK(x)−ψK(t, x)� C cap(K)

∞∫
t

ds

V (o,
√
s)
, (4.17)

and

∂tψK(t, x)� C µ(Kδ \K)

V (o,
√
t)δ2

exp

(
−c |x|

2

t

)
, (4.18)

wherec > 0 depends on(diamK)/δ, andC depends onC0 and(diamK)/δ.
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Proof. We obtain (4.16) and (4.18) from Proposition 4.1. Let us setf (x, t) = V (x,
√
t). Then the hypothesis (4.12) implies

both (4.2) and (4.3). Indeed, we have, for all positivet1 andt2, by (4.12),

V (x,
√

4t1)

V (x,
√
t1)

� C � C
V (x,

√
4t2)

V (x,
√
t2)

,

whence (4.2) follows withγ = 4.
To show (4.3), let us observe that (4.12) implies, for someα > 0,

V (x,R)

V (x, r)
� C

(
R

r

)α
, (4.19)

for all x ∈M andR � r > 0. Therefore,

V (x,
√
t)

V (y,
√
t)

� V (y,
√
t + d(x, y))

V (y,
√
t)

� C

(
1+ d(x, y)√

t

)α
, (4.20)

which was to be proved.
Obviously, (4.13) implies (4.1). The estimate (4.4) of Proposition 4.1 gives

ψK(t, x)� C cap(K,Kδ)

t∫
0

exp
(
−c |x|

2

s

)
ds

V (o,
√
s)
, (4.21)

where we have eliminatedκ by (4.19). Observing that

c′H(r, t)exp

(
−2cr2

t

)
�

t∫
0

exp(−cr2/s)ds

V (o,
√
s)

� C′H(r, t)exp

(
−cr2

2t

)
(4.22)

(whereC′, c′ > 0 depend onc andC0) we obtain (4.16).
Estimate (4.17) follows from inequality (3.21) of Theorem 3.7 using the fact that for allx ∈M \Kδ andy ∈ ∂K ,

p(t, x, y) � C

V (o,
√
t)
,

which is deduced from (4.13) and (4.12) in the same way as (4.9).
Finally, (4.18) follows from (4.6). ✷
The next statement provides an upper bound onψK(t, x) using a different approach.

Proposition 4.3. Let (M,µ) be a complete non-compact manifold satisfying(4.12)and (4.13). Then, for anyc ∈ (0,1/4), for
all x ∈M \K and t > 0,

ψK(t, x)� C exp

(
−c d

2(x,K)

t

)
, (4.23)

whereC depends onC0 andc.

Proof. We apply the fact that (4.12) and (4.13) imply the following mean value type inequality (see [15, Proposition 5.2 and
Eq. (3.5)]):

If a function u(t, y) satisfies the heat equation∂t u = �µu in cylinder B(x, r) × [t/2, t] and the Neumann condition
∂u/∂n= 0 on δB(x, r) then

u2(t, x)�C

((
r2

t

)β
+ t

r2

)
1

tV (x, r)

t∫
t/2

∫
B(x,r)

u2(s, y)dµ(y)ds, (4.24)

with some constantsβ > 0 andC > 0 depending only on the constants in(4.12)and (4.13).
The following inequality was proved in [16, Theorem 3]:3

3 Inequality (4.25) is anL2 version of Takeda’s inequality [33], see also [26].
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If a functionu(t, y), 0� u� 1,satisfies the heat equation∂tu=�µu in cylinderAr× (0, s] (whereA⊂M is a precompact
set), the Neumann condition∂u/∂n = 0 on δAr , and the initial conditionu(0, x)= 0 in Ar , then∫

A

u2(y, s)dµ(y) �µ(Ar)

(
r2

s
+ s

r2

)
exp

(
− r2

2s
+ 1

)
. (4.25)

Givenx /∈K , let us setd = d(x,K), r = (1− ε)d andA= B(x, εd) whereε ∈ (0,1). Then the functionu(t, y)=ψK(t, y)

satisfies both (4.24) and (4.25). Integrating (4.25) ins from t/2 to t , we obtain

t∫
t/2

∫
B(x,εd)

ψ2
K(s, y)dµ(y)ds � CtV (x, d)

(
r2

t
+ t

r2

)
exp

(
− r2

2t

)
.

Therefore, applying (4.24) inB(x, εd) and (4.12), we obtain

ψ2
K(t, x)� C

((
r2

t

)β+1
+
(

t

r2

)2)
exp

(
− r2

2t

)
. (4.26)

If t � r2, then (4.26) yields (4.23). Ift > r2, then (4.23) follows fromψK � 1. ✷
If x /∈K2δ then (4.23) can also be deduced from (4.16), provided the condition (4.14) holds, that is,(M,µ) is non-parabolic.

If (M,µ) is parabolic then we do not know an alternative way of proving (4.23). Moreover, examples show that (4.23) is often
sharp for parabolic manifolds.

4.3. Two-sided estimates in the non-parabolic case

In this section, we obtain two-sided estimates ofψK(t, x) in the case when the heat kernel satisfies the following estimate,
for all x, y ∈M andt > 0,

c1

V (x,
√
t)

exp

(
−C1

d2(x, y)

t

)
� p(t, x, y) � C2

V (x,
√
t)

exp

(
−c2

d2(x, y)

t

)
. (4.27)

The estimate (4.27) is known to be equivalent to the doubling volume property (4.12) and a certain Poincaré inequality (see
[29,30]). In is known that (4.27) holds in the following settings:

• M is a complete Riemannian manifold of non-negative Ricci curvature,µ is the Riemannian volume (see [25]).
• M is a unbounded convex region inRN considered as a manifold with boundary,µ is the Lebesgue measure (see [14]).
• M is a nilpotent Lie groups with left-invariant Riemannian metric,µ is the Haar measure (see [34]).

Many more examples of weighted manifolds where (4.27) holds can be found in [22]. It is known (see [29]) that (4.27) is
stable under quasiisometry of(M,µ).

Note that the hypotheses (4.12) and (4.13) from Section 4.2 imply the upper bound in (4.27) (cf. [17, Theorem 1.1]). On the
other hand, (4.27) implies both (4.12) and (4.13). Hence all results of Section 4.2 can be used in the present setting.

Theorem 4.4. Let (M,µ) be a complete non-compact non-parabolic weighted manifold satisfying(4.27), and letcap(K) > 0.
Then the following estimates hold:

(1) For anyδ > 0 and for allx /∈K2δ , t > 0,

c cap(K)H
(|x|, t)exp

(
−C |x|

2

t

)
� ψK(t, x)� C cap(K,Kδ)H

(|x|, t)exp
(
−c |x|

2

t

)
, (4.28)

wherec,C > 0 depend onc1, c2, C1, C2, and(diamK)/δ.
(2) For a large enoughδ and for allx /∈K2δ , t � |x|2,

c

∞∫
t

ds

V (o,
√
s)

� ψK(x)−ψK(t, x)�C

∞∫
t

ds

V (o,
√
s)
. (4.29)
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(3) For a large enoughδ and for allx /∈K2δ , t � δ2,

c

V (o,
√
t)

exp

(
−C |x|

2

t

)
� ∂tψK(t, x)� C

V (o,
√
t)

exp

(
−c |x|

2

t

)
. (4.30)

In (4.29)and (4.30)the constantsc,C > 0 depend onc1, c2, C1, C2, andK .

Remark 4.1. Using the definition (4.15) of the functionH(r, t), one can rewrite (4.28) as follows: if 0< t < 2|x|2 then

c
cap(K)|x|2
V (o, |x|) exp

(
−C |x|

2

t

)
� ψK(t, x)� C

cap(K,Kδ)|x|2
V (o, |x|) exp

(
−c |x|

2

t

)
(4.31)

and if t � 2|x|2 then

c cap(K)

t∫
|x|2

ds

V (o,
√
s)

� ψK(t, x)� C cap(K,Kδ)

t∫
|x|2

ds

V (o,
√
s)
. (4.32)

Remark 4.2. Clearly, the estimate (4.29) can be obtained from (4.30) by integrating it fromt to ∞, assumingt � |x|2.
Nevertheless, we give below an independent proof for (4.29), as it is simpler than (4.30).

Proof. Let us observe that for allx /∈K2δ, y ∈Kδ \K ,

c

V (o,
√
t)

exp

(
−C |x|

2

t

)
� p(t, x, y) � C

V (o,
√
t)

exp

(
−c |x|

2

t

)
. (4.33)

Indeed, this follows from (4.27) with swappedx, y, from

cε

V (o,
√
t)

exp

(
−ε |y|

2

t

)
� 1

V (y,
√
t)

� Cε

V (o,
√
t)

exp

(
ε
|y|2
t

)
(4.34)

(see (4.20)) and from the fact thatd(x, y) is comparable to|x| in the range in question. Given the estimates (4.33), (4.28)
follows from (3.26),pΩ � p, and (4.22).

The upper bound in (4.29) follows in the same way from that of (3.27) since (4.33) implies

p(t, x, y) � C

V (o,
√
t)

(here we do not need neitherδ is large nort � |x|2). To prove the lower bound in (4.29), we use again (3.27) and the following
lower estimate forpΩ

pΩ(t, x, y) � cp(Ct, x, y) � c

V (y,
√
t)

exp

(
−C d(x, y)2

t

)
, (4.35)

which holds for allt > 0 provided|x| and|y| are large enough (see [23, Theorem 3.1] – note that the non-parabolicity of(M,µ)

is important for (4.35)). Takeδ large enough so that (4.35) holds for|x|, |y| � δ/2 andK ′ :=Kδ is connected; setK ′′ =Kδ/2.
Then (4.35) implies, for ally ∈K ′ \K ′′ andx /∈K2δ

pΩ(t, x, y) � c

V (o,
√
t)

exp

(
−c |x|

2

t

)
. (4.36)

Assuming in additiont � |x|2, we obtain the lower bound in (4.29) from that of (3.27).
The upper bound in (4.30) follows from (4.18). To prove the lower bound in (4.30), let us recall that by (3.7), for allx ∈Ω

andt > 0,

∂tψK(t, x)� c inf
y∈K ′\K ′′pΩ(t, x, y)−C sup

y∈K ′\K
∣∣∂tpΩ(t, x, y)

∣∣. (4.37)

By pΩ � p, (4.27), (4.10) and (4.20), we obtain, for allx, y ∈Ω andt > 0,∣∣∂tpΩ(t, x, y)
∣∣� C

tV (y,
√
t)

exp

(
−c d(x, y)

2

t

)
. (4.38)



134 A. Grigor’yan, L. Saloff-Coste / J. Math. Pures Appl. 81 (2002) 115–142

For x /∈K2δ andy ∈K ′ \K , this implies∣∣∂tpΩ(t, x, y)
∣∣� C

tV (o,
√
t)

exp

(
−c |x|

2

t

)
. (4.39)

Substituting (4.36) and (4.39) into (4.37) and assuming in additiont � |x|2, we obtain

∂tψK(t, x)� c

V (o,
√
t)
− C

tV (o,
√
t)

� (c−C/δ2)

V (o,
√
t)

� c/2

V (o,
√
t)
, (4.40)

providedδ is large enough. This proves the lower bound in (4.30) in the ranget � |x|2.
To obtain the lower bound for∂tψK(t, x) in the rangeδ2 � t � |x|2, observe that∂tψK is a non-negative solution of the

heat equation in(0,+∞)×Ω . Hence, the full range lower bound in (4.30) follows by the standard chaining argument based on
the parabolic Harnack inequality that is a consequence of (4.27) (see, for instance, [1], [23, (2.18)] or [22, Theorem 2.7]).✷
Corollary 4.5. Referring to Theorem4.4, assume in addition that, for somec0 > 0 andα > 2,

V (o,R)

V (o, r)
� c0

(
R

r

)α
, ∀R � r > δ. (4.41)

(1) For anyδ > 0, for all x /∈K2δ and t > 0,

c cap(K)|x|2
V (o, |x|) exp

(
−C |x|

2

t

)
� ψK(t, x)� C cap(K,Kδ)|x|2

V (o, |x|) exp

(
−C |x|

2

t

)
, (4.42)

wherec,C > 0 depend onc0, c1, c2, C1, C2, and(diamK)/δ.
(2) For a large enoughδ and for allx /∈K2δ and t � |x|2,

c |x|2
V (o, |x|) �ψK(x)−ψK(t, x)� C|x|2

V (o, |x|)
wherec,C > 0 depend onc1, c2, C1, C2 andK .

Proof. The condition (4.41) implies, for allr > δ,

cr2

V (o, r)
�

∞∫
r2

ds

V (o,
√
s)

� Cr2

V (o, r)
, (4.43)

whence we obtain by (4.15)

cr2

V (o, r)
�H(r, t)� Cr2

V (o, r)
.

The rest follows by Theorem 4.4.✷
Example 4.2. To illustrate Corollary 4.5, takeK = B(o, r) andδ = r . The result of [23, Lemma 4.3] provides the following
bound, for allR � 2r > 0

1

2

R∫
r

s ds

V (o, s)
� cap

(
B(o, r),B(o,R)

)−1 � C

R∫
r

s ds

V (o, s)

assuming (4.12) and (4.13). Assuming also (4.41), we obtain for suchR, r

cr2

V (o, r)
�

R∫
r

s ds

V (o, s)
� Cr2

V (o, r)
.

Hence, (4.42) gives

c V (o, r)|x|2
V (o, |x|)r2

exp

(
−C |x|

2

t

)
� ψB(o,r)(t, x)� CV (o, r)|x|2

V (o, |x|)r2
exp

(
−c |x|

2

t

)
,

for all o ∈M , r, t > 0 and allx ∈M such that|x|> 4r .
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4.4. Two-sided estimates in the parabolic case

This section describes sharp two-sided estimates onψK in the case where the weighted manifold(M,µ) is parabolic and
satisfies some additional assumptions. Throughout this section, we also assume that(M,µ) satisfies the two-sided heat kernel
bounds (4.27). This implies in particular the volume doubling property (4.12).

Given a pointo ∈M , we call the pair(M,o) apointed manifold.

Definition 4.1. We say that a pointed Riemannian manifold(M,o) satisfies the condition (RCA), that is, hasrelatively
connected annuli, if there existsA > 1 such that, for anyr > A2 and allx, y with |x| = |y| = r , there exists a continuous
pathγ : [0,1] →M with γ (0)= x, γ (1)= y whose image is contained inB(o,Ar) \B(o, r/A).

Define a functionh(r) for all r > 0 by

h(r) := 1+
( r∫

1

s ds

V (o, s)

)
+
= 1+ 1

2

( r2∫
1

dt

V (o,
√
t)

)
+
. (4.44)

Theorem 4.6. Let (M,µ) be complete, non-compact, parabolic, and satisfy(4.27)and (RCA). Assume that, for someε > 0,
the setF := B(o, ε) does not intersectδM . Letδ > ε be large enough andB(o, δ) be contained inK .

(1) For all x /∈K2δ we have the following: if 0< t < 2|x|2 then

c|x|2
V (o, |x|)h(|x|) exp

(
−C |x|

2

t

)
� ψK(t, x)� C|x|2

V (o, |x|)h(|x|) exp

(
−c |x|

2

t

)
(4.45)

and if t � 2|x|2 then

c

h(
√
t)

√
t∫

|x|

s ds

V (o, s)
� ψK(t, x)� C

h(
√
t)

√
t∫

|x|

s ds

V (o, s)
. (4.46)

(2) For all x /∈K2δ and t � |x|2,

c
h(|x|)
h(
√
t)

� 1−ψK(t, x)�C
h(|x|)
h(
√
t)
. (4.47)

(3) For all x /∈K2δ and t � δ2,

ch(|x|)exp(−C|x|2/t)
V (o,

√
t)(h(|x|)+ h(

√
t))h(

√
t)

� ∂tψK(t, x)� Ch(|x|)exp(−c|x|2/t)
V (o,

√
t)(h(|x|)+ h(

√
t))h(

√
t)
. (4.48)

Herec,C > 0 depend onc1, c2, C1, C2 from (4.27), onA from (RCA) as well as onK .

Remark 4.3. For the ranget � |x|2, (4.48) reads as follows:

ch(|x|)
V (o,

√
t)h2(

√
t)

� ∂tψK(t, x)� Ch(|x|)
V (o,

√
t)h2(

√
t)
.

Integrating this fromt to∞ gives (4.47) (cf. (4.59)).

Remark 4.4. Theorem 4.6 requires thatK contains the ballB(o, δ) of a large enough radiusδ. As we will see from the
proof, δ depends on the estimates of the Dirichlet heat kernelpU in the regionU =M \ F based on [23, Theorem 4.9]. This
makes applications of Theorem 4.6 to concrete situations somewhat difficult. However, combining [23, Theorem 4.9] with [23,
Corrolary 3.5], one can drop the assumption thatK containsB(o, δ) replacing it by

K containsB(o, ε) andM \B(o, ε) is connected.

Then, statement 1 of Theorem 4.6 holds for allx with d(x,K) � 1. Statement 2 holds for allx with |x| large enough. In
statement 3, the upper bound holds for allx with d(x,K)� 1 whereas the lower bound holds for allx with |x| large enough.
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Proof. SetU =M \ F . By (3.28) we have, for allx /∈Kδ andt > 0,

c

t∫
0

inf
y∈∂Kδ

pU (s, y, x)ds �ψK(t, x)�C

t∫
0

sup
y∈Kδ\K

pU(s, y, x)ds. (4.49)

For any complete weighted parabolic manifold(M,µ) satisfying (4.27) and (RCA), [23, Theorem 4.9] yields the following
estimates for the Dirichlet heat kernelpU (t, x, y) providedd(x,F) andd(y,F) are large enough:

c
D(t, x, y)

V (y,
√
t)

exp

(
−C d2(x, y)

t

)
� pU (t, x, y) � C

D(t, x, y)

V (y,
√
t)

exp

(
−c d

2(x, y)

t

)
, (4.50)

where

D(t, x, y) := h(|x|)h(|y|)
(h(|x|)+ h(

√
t))(h(|y|)+ h(

√
t))

.

Takingδ large enough, we can assume that (4.50) holds for allx, y /∈K andt > 0. If in additionx /∈K2δ andy ∈Kδ \K then
(4.50) and (4.34) imply

c
D̃(t, x)

V (o,
√
t)

exp
(
−C |x|

2

t

)
� pU (t, x, y) �C

D̃(t, x)

V (o,
√
t)

exp
(
−c |x|

2

t

)
, (4.51)

where

D̃(t, x) := h(|x|)
(h(|x|)+ h(

√
t))h(

√
t)
. (4.52)

Set

Ia(r, t) :=
t∫

0

h(r)

(h(r)+ h(
√
s))h(

√
s)

exp(−ar2/s)

V (o,
√
s)

ds.

Since the functionsV andh are doubling, one easily checks that, for 0< t < 2r2,

cr2

V (o, r)h(r)
exp

(
−4a

r2

t

)
� Ia(r, t)� Cr2

V (o, r)h(r)
exp

(
−a r

2

2t

)
. (4.53)

For t � 2r2, we have instead,

ce−ah(r)
t∫

r2

ds

V (o,
√
s)h2(

√
s)

� Ia(r, t)�Ch(r)

t∫
r2

ds

V (o,
√
s)h2(

√
s)
.

Moreover, forr � 1, we obtain

1

2

t∫
r2

ds

V (o,
√
s)h2(

√
s)

=
√
t∫

r

ρ dρ

V (o,ρ)
(
1+ ∫ ρ1 (σ dσ)/V (o,σ )

)2 = 1

1+ ∫ r1 (σ dσ)/V (o,σ )
− 1

1+ ∫√t
1 (σ dσ)/V (o,σ )

= 1

h(r)h(
√
t)

√
t∫

r

σ dσ

V (o,σ )
. (4.54)

Thus, fort � 2r2 andr � 1,

ca

h(
√
t)

√
t∫

r

s ds

V (o, s)
� Ia(r, t)� Ca

h(
√
t)

√
t∫

r

s ds

V (o, s)
. (4.55)

Collecting together (4.49), (4.51), (4.52), (4.53), and (4.55), we finish the proof of (4.45) and (4.46).
To prove (4.47) let us apply the estimate (3.29) which yields, for allx /∈Kδ andt > 0,

c

∞∫
t

inf
y∈Kδ\Kδ/2

pΩ(s, x, y)ds � 1−ψK(t, x)�C

∞∫
t

sup
y∈∂K

pU (s, x, y)ds. (4.56)
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If x /∈K2δ andt � |x|2 then (4.51) and (4.52) imply

sup
y∈∂K

pU (t, x, y)� Ch(|x|)
V (o,

√
t)h2(

√
t)
. (4.57)

The heat kernelpΩ admits the estimates similar to (4.50). Hence, ifδ is large enough,x /∈ K2δ, y ∈Kδ \Kδ/2 andt � |x|2,
we obtain

inf
y∈Kδ\Kδ/2

pΩ(t, x, y) � ch(|x|)
V (o,

√
t)h2(

√
t)
. (4.58)

Substituting (4.57) and (4.58) into (4.56) and using the identity

∞∫
t

ds

V (o,
√
s)h2(

√
s)
= 2

h(
√
t)
, (4.59)

which is proved in the same way as (4.54), we obtain (4.47).
To prove (4.48), observe thatpΩ � pU whence by (4.50), for allx, y /∈K andt > 0,

pΩ(t, x, y) � C
D(t, x, y)

V (y,
√
t)

exp

(
−c d

2(x, y)

t

)
. (4.60)

By [9, Theorem 4], (4.60) implies

∣∣∂tpΩ(t, x, y)
∣∣� C

D(t, x, y)

tV (y,
√
t)

exp

(
−c d

2(x, y)

t

)
.

In particular, forx /∈K2δ, y ∈Kδ \K we obtain

pΩ(t, x, y) � Ch(|x|)exp(−c|x|2/t)
V (o,

√
t)(h(|x|)+ h(

√
t))h(

√
t)

and
∣∣∂tpΩ(t, x, y)

∣∣� C h(|x|)exp(−c|x|2/t)
tV (o,

√
t)(h(|x|)+ h(

√
t))h(

√
t)
. (4.61)

Substituting the above estimates into (3.6), we obtain the upper bound in (4.48). Ift � |x|2, x /∈K2δ , y ∈Kδ \Kδ/2, andδ is
large enough then (4.61) and (4.58) imply∣∣∂tpΩ(t, x, y)

∣∣� C h(|x|)
tV (o,

√
t)h2(

√
t)

� Ch(|x|)
δ2V (o,

√
t)h2(

√
t)
# pΩ(t, x, y).

Therefore, fort � |x|2 we obtain from (3.7)

∂tψK(t, x)� ch(|x|)
V (o,

√
t)h2(

√
t)
, (4.62)

which is equivalent to the lower bound in (4.48).
Assume now|x|2 � t � δ2. Let z be the point on a geodesic line connectingo andx, such that|z| = √

t/2. Since∂tψk

is a non-negative solution to the heat equation in ac
√
t-neighborhood of the geodesic line connectingz andx, the parabolic

Harnack inequality implies (see [23, (2.18)])

∂tψK(t, x)� c∂tψK

(
t

2
, z

)
exp

(
−C d(x, z)2

t

)
.

Applying (4.62) to estimate∂tψK(t/2, z), we obtain

∂tψK

(
t

2
, z

)
� c

V (o,
√
t)h(

√
t)

whence

∂tψK(t, x)� c

V (o,
√
t)h(

√
t)

exp

(
−C |x|

2

t

)
.

We are left to observe that in the range|x|2 � t this estimate is equivalent to the lower bound in (4.48).✷
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5. Examples

For two positive functionsf,g, the relationf ≈ g means that there are positive constantsc,C such thatc � f/g � C, for
a specified range of the arguments.

5.1. Surfaces of revolution

Consider the polar coordinatesx = (r, θ) around the origin inR2 and the following Riemannian metric

dr2+ f 2(r)dθ2,

wheref (r) is a smooth positive function on(0,+∞). Let M = {(r, θ): r � 1} be the manifold with boundary equipped with
this metric, and letµ be the Riemannian measure onM .

Obviously,(M,o) satisfies (RCA), for any pointo ∈M . It is proved in [22] that the two-sided Gaussian bound (4.27) holds
onM , in particular, for the following two classes off :

(a) f (r)= rα with α ∈ (−1,1];
(b) f (r)= r(1+ logr)−β with β > 0.

We assume in the sequel thatf is one of the functions in (a) and (b). Observe that ifα = 1 thenM is the exterior of a ball
in R

2. LetK = δM = {(r, θ): r = 1}. For any pointo ∈K ands � 1, we haveV (o, s)≈ sf (s)� s2 so that(M,µ) is parabolic.
Computing functionh by (4.44), we obtain, for large values of the argumentτ ,

h(τ)≈
 τ1−α, case(a), α < 1,

logτ, case(a), α = 1,
(logτ)1+β, case(b).

Applying Theorem 4.6, we obtain the following estimates forx = (r, θ), assumingr is large enough.

Case(a), α < 1. We have for allt > 0

cexp

(
−C r2

t

)
� ψK(t, x)� C exp

(
−c r

2

t

)
and, for allt � r2,

1−ψK(t, x)%
(

r√
t

)1−α
and ∂tψK(t, x) 1

t

(
r√
t

)1−α
.

Case(a), α = 1. We have:

(i) For all t < 2r2,

c

logr
exp

(
−C r2

t

)
� ψK(t, x)� C

logr
exp

(
−c r

2

t

)
.

(ii) For t � 2r2

ψK(t, x) log
√
t − logr

log
√
t

and 1−ψK(t, x) logr

logt
and ∂tψK  logr

t (log t)2
. (5.1)

(iii) If t � 2r2 and in additiona :=√
t/r = const then (5.1) implies

ψK(t, x) loga

logr
.

If t � r2+ε , ε > 0, thenψK(t, x) 1.
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Case(b). We have:

(i) If t < 2r2, then

c

logr
exp

(
−C r2

t

)
� ψK(t, x)

C

logr
exp

(
−c r

2

t

)
.

(ii) If t � 2r2 then

ψK(t, x) (log
√
t)1+β − (logr)1+β
(log

√
t)1+β , (5.2)

as well as

1−ψK(t, x)
(

logr

log t

)1+β
and ∂tψK(t, x) (logr)1+β

t (log t)2+β .

(iii) If t � 2r2 and in additiona :=√
t/r = const then (5.2) implies

ψK(t, x) loga

logr
.

If t � r2+ε , ε > 0, then (5.2) impliesψK(t, x)% 1.

5.2. Bodies of revolution

Let (r, u, v) be the Cartesian coordinates inR
3. Given a smooth positive functionf (r) on (0,+∞), consider the following

domain of revolution inR3 (see Fig. 5):

M = {(r, u, v) ∈R
3: r � 0,

√
u2+ v2 � f (r)

}
.

If f possesses a certain regularity atr = 0 (in particular,f (0) = 0) thenM can be regarded as a manifold with boundary.
Let us endowM with the Euclidean metric and the Lebesgue measureµ. Assume in the sequel thatf is concave, that isf ′′ � 0.
ThenM is convex as a subset ofR

3, and the result of [25] and [14] implies thatM satisfies (4.27).
Let o= (0,0,0) and

K = {x = (r, u, v) ∈M : 0 � r � 1
}
.

Clearly,(M,o) satisfies (RCA) and we have for anyτ > 0,V (o, τ)≈ τf 2(τ). Set

f (r)=√r logα(2+ r).

Then, for alls � 1,

V (o, s)≈ s2(1+ logs)α .

In particular,M is parabolic if and only ifα � 1. We will use Theorems 4.4 and 4.6 to obtains estimates forψK(t, x) where
x = (r, u, v) andr is large enough.

Fig. 5. The domain of revolution.
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Caseα > 1. In this case,(M,µ) is non-parabolic, and Theorem 4.4 gives the following estimates.

(i) If t < r2 then

c

(logr)α
exp

(
−C r2

t

)
� ψK(t, x)� C

(logr)α
exp

(
−c r

2

t

)
.

(ii) If t � r2 then

ψK(t, x) 1

(logr)α
+
[

1

(logr)α−1
− 1

(log
√
t)α−1

]
,

as well as

ψK(x)−ψK(t, x) 1

(logt)α−1
and ∂tψK  1

t (logt)α
.

(iii) If t � r2 anda :=√
t/r = const then

ψK(t, x) loga

(logr)α
.

If t � r2+ε , ε > 0, then

ψK(t, x) 1

(logr)α−1
.

Caseα < 1. In this case(M,µ) is parabolic. Computing the functionh(r) by (4.44) we obtain for largeτ

h(τ) 1+
τ∫

1

ds

s(1+ logs)α
 (logτ)1−α.

Hence, we obtain by Theorem 4.6:

(i) If t < 2r2, then

c

logr
exp

(
−C r2

t

)
�ψK(t, x)� C

logr
exp

(
−c r

2

t

)
.

(ii) If t � 2r2 then

ψK(t, x) (log
√
t)1−α − (logr)1−α
(log

√
t)1−α ,

as well as

1−ψK(t, x)
(

logr

log t

)1−α
and ∂tψK  (logr)1−α

t (logt)2−α .

(iii) If t � 2r2 anda := √
t/r = const then

ψK(t, x) loga

logr
.

If t � r2+ε , ε > 0, thenψK(t, x) 1.

Caseα = 1. Computing the functionh(r) by (4.44) we obtain for largeτ

h(τ) 1+
τ∫

1

ds

s(1+ logs)
 log logτ.

Theorem 4.6 then yields:

(i) If t < 2r2, then

cexp(−Cr2/t)

logr log logr
� ψK(t, x)� C exp(−cr2/t)

logr log logr
.
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(ii) If t � 2r2 then

ψK(t, x) log log
√
t − log logr

log log
√
t

,

as well as

1−ψK(t, x) log logr

log logt
and ∂tψK(t, x) log logr

t log t (log logt)2
.

(iii) Let t � 2r2. If a :=√
t/r = const then

ψK(t, x) loga

logr log logr
.

If a := log
√
t/ logr = const then

ψK(t, x) loga

log logr
.

If log
√
t � (logr)1+ε , ε > 0, thenψK(t, x) 1.
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