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Existence results for a variety of singular fourth order boundary value problems 
of the form y” =f(r, y. y’, y”) are given. Here our nonlinear termfmay be singular 
at I = 0, I = I, y  = 0, and/or y” = 0. For example, some singularities of thk type y-” 
and Iy”I -* are included Also we discuss and treat the extension of these results to 
nth order boundary value problems. #c 1991 Academic Press. Inc. 

1. INTRODUCTION 

This paper presents existence results for solutions to nonlinear fourth 
order boundary value problems of the form 

Y’” = f( t, Y1 Y’, Y”), o<r<1; Y E 4 (1.1) 

where B specifies suitable boundary conditions. In the problems discussed 
in this paper we allow our nonlinear term f to be singular at I = 0, t = 1, 
y = 0, and/or y” = 0. In particular singularities in y of the type y -” for a > 0 
small, in y” of the type Iy”l -’ for 6>0 small and in z of the form 
t -“( 1 - r)-@ for a, /.l> 0 small are included. 

Most of the available literature on fourth order boundary value 
problems, for example Cl, 2, 9, 12-14, 163, discuss the case whenfis either 
continuous or a Caratheodory function. Recently the author in [19] 
discussed problems of the form y’” =f(r, y, y’), where J could be singular 
at t = 0, t = 1, y = 0, and/or y’ = 0; however, the analysis presented in this 
paper is quite different although as before we use the Topological Trans- 
versality of Andrzej Granas to obtain our main existence theorems. For 
this paper we in fact restrict B to be 

(a) y(0) = a 2 0, y’( 1) = b 2 0, y”(O) = c < 0, y”‘( 1) = 0 

(b) y(O)=aaO, y’(O)=b>O, y”(l)=O, y”‘(l)=0 
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(c) y(O)=u>O, y’(O)=O, y’(l)=O, y:“‘(l)=0 

(d) y(O)=a>O, y’(l)=b>O, y”(O)=O, y”(l)=O. 

Many other boundary conditions, for example 

(e) y(0) = a 2 0, y’(O) = h > 0, y”(O) = 0, I*“‘( 1) = 0 

(f) .r(O)=a>O, y’(l)=h>,O, y”(l)=O, J”‘(l)=0 

(g) y(0) = a 3 0, y’(0) = h >/ 0, f’(0) = 0, y”( 1) = 0 

(h) ~~(0)=u~0,y’(1)=h>,0,~“(1)=0,$“(0)=0 

(i) y(0) = u >, 0, y’( 1 ) = h 2 0, y”(0) = c Q 0, J”( I ) = c < 0, 

could be considered, in fact each of the above boundary conditions has a 
natural dual version when 0 and 1 are interchanged. However, the analysis 
of these other boundary conditions is quite similar to that given in this 
paper so for simplicity in reading and writing we omit the details. This 
paper is divided into four main sections: the first considers the case when 
our nonlinear term f is singular at J = 0 but not at y” = 0, the second part 
when f is singular at y” = 0 but not at y = 0, and the third part examines 
the problem when f is singular at both y = 0 and y” = 0. Also throughout 
these sections our nonlinear term may be singular at t = 0 and/or f = 1 as 
well. For the purposes of this paper we examine the nonlinear differential 
equation ~3” = f(r, y, J”). It should be noted here however that all the 
results of this paper could be extended to include equations of the form 
y”‘ = j’(r, J; I*‘, ,:“), where f has bounded dependence on its y’ variable for 
any fixed values of the other arguments. In the last section we discuss nth 
order singular boundary value problems of the form 

J *“I) = f( 1, y, ?“, 1,“). 0<1<1; ,VEB 

and obtain existence of solutions for a certain class of problems. Finally we 
summarize briefly the methods used to deduce the existence of a solution 
to (1.1). 

(i) We first examine approximating problems 

yr = f(t, I', y', y"), o<r< 1; ,VE B”. (1.2) 

The signs of y, y’, y”, and y”’ are deduced only from the properties off and 
the boundary condition B,. Then as a result problems of the form (1.2) do 
not involve singularities in J and/or y”. 

(ii) Existence of solutions to ( 1.2) is then deduced from the 
Topological Transversality theorem of A. Granas. Here the key idea is to 
obtain a priori bounds on solutions and their first four derivatives to (1.2). 

(iii) To show the existence of a solution to (1.1) we pass to the limit 
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in n. To apply this step we first need additional estimates independent of 
n on “some” of the a priori bounds obtained in step (ii). Also we need to 
show that the limit function y(and/or y”) has no zeros on (0, 1). 

2. SINGULARITKS AT y=O BUT NOT AT y"=O 

Each boundary condition has its own set of ideas so for simplicity we 
discuss them individually. 

A. y(O)=O, y’(l)=haO, y”(O)=c<O, y”‘(l)=0 

Here we examine the two point boundary value problem 

y’” =f(t, Y, v”), o<t<1 

v(O) =o, y’(l)=b20, y”( 0) = c < 0, y”‘(l)=0 
(2.1) 

with the following conditions being satisfied: 

f is continuous on [0, l] x (0, 0~) x (-co, 0] with J>O 
on (0, 1)x(0, =0)x(-co, co) and lim,,,+f(t,y,q)=co 
uniformly on compact subsets of (0, 1) x ( - co, cc ) (2.2) 

O<f(4 .h4)6g(~)&Iql) on (0, 1)x(0, ~)x(-m,Ol, 
where g > 0 is continuous and nonincreasing on (0, co) 
and I$ is continuous on [0, 30) (2.3) 

u is nondecreasing on (0, co) 
4(u) 

Suppose there exists constants A 2 0, B 2 0, 0 < r < 1 such 
that for all z E [0, co ) 

(2.5) 

First by a solution to (2.1) we mean a function ye C’[O, l] n C’(0, l] n 
C4(0, 1) that satisfies the differential equation and boundary conditions. 
To establish the existence of a solution to (2.1) we first consider for 
n E N+ = { 1,2, . . . } the problems 

Y’” =f(t, Y, Y”X o<t<1 

Y(o)=;, 
(2.6”) 

y’(l)=b>O, y”(0) = c < 0, y”‘( 1) = 0. 
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The strategy is to show (2.6”) has a solution for each n and then we use 
a compactness argument via the Arzela-Ascoli Theorem to show that (2.1 ) 
has a solution. 

THEOREM 2.1. Suppose (2.2), (2.3), (2.4), and (2.5) are sati.s$ed. For 
j. E [ 0, 1 ] consider the family of problems 

Y”’ = if-T(f, y, y”). o<t<1 

I:(o)=;, 
(2.7:) 

y’( 1) = h >, 0, y”( 0) = (‘, f”( I ) = 0 

for Jixed n E N + . Then there exist constants MO. M, , M,, M3, and M., 
independent of I such that for r E [O, 1 ] 

LGy(t)wJ, h<y’(t)<M,, - M* d f( 1) < c, 
n 

- M, < y”‘( 1) d 0, 0 d y”‘(t) < M4 

for each solution ye C4[0, I] to (2.7:). 

Proof The case ). = 0 is trivial so assume 0 < i. 6 I. Now condition (2.2) 
implies y > 0 on (0, 1) and as a result we have y” > 0, y”’ < 0 on (0, 1); thus 
y” CC is strictly decreasing on (0, 1) and as a result y’> h on (0, 1) which 
in turn implies y > l/n is strictly increasing on (0, 1). In addition we have 
from assumption (2.4) 

so integrating from t to 1 using condition (2.4) yields 

[-y”(t)+c][--y”‘(t)]= [-y”(t)+c] r’ 

f+q -y”(t) + c) &-y”(r)+C)J, y”‘(s)d*~ 

<g(y(f)) I’ C -Yb)l ds I 

since y and - y” are strictly increasing on (0, I ) and g is nonincreasing on 
(0, cx,). Thus 

-[-y”(t)+c] y”‘(t) 

4 -Y”(t) + c) 
Gg(v(t))Cy’(t) - bl Gg(Y(t)) Y’(l) 

and so integration from 0 to t yields 
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Define I(z) = si (U/&U)) du so I is an increasing map from [0, cc ) onto 
[0, co) and therefore has an increasing inverse 1. I. So we have 

- y”(I) < I l(j~“g(u)du)-c 

y’(t) < I 1 (jr”gwiu)+h-c. (2.9) 

Finally integration from 0 to 1 will give 

Y(l)GI I(,:“’ ) g(u)du +h+ 1 -c<A[y(l)]‘+B+b+ 1 -c 

using assumption (2.5). Thus there exists a constant M,>O such that 
y( 1) < M,. In addition (2.8) and (2.9) yield 

and 

Remark. Note MO, M,, and Mz are independent of n. 

Now returning to the inequality y”’ < I.g( y) $( - y”) we have 0 6 y’“(t) < 
g( l/n) supt .c.M1, 4(q) = M, and integration yields M3. 1 

THEOREM 2.2. Suppose (2.2), (2.3), (2.4), and (2.5) are satisfied. Then a 
C4[0, l] solution of (2.6”) exists. 

Proof: Consider the family of problems 

y” = if*(r, y, y”), 0<1<1 

J’(O)=!, 

(2.10”) 
y’(l)=h>O, y”(0) = c, y”‘( 1) = 0, 

where f * > 0 is any continuous extension of J from y 2 l/n, y” ,< 0. Now 
every solution II of (2.10;) satisfies u > l/n, u”< c and hence is a solution 
of (2.7:); also the conclusions of Theorem 2.1 remain valid for solutions 
to (2.10;). Let C*,[O, 1 J= {uEC4[0, l] :u(O)= l/n, u’(l)=& u”(O)=c, 
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u”‘(l) = O)Y C”,[O, 11 = (u E C4[0, 1] : u(0) = 0, u’(1) = 0, u”(0) = 0, 
u”‘( 1) = 0 } and 

u= {UEC”,[O, 1] : lulo<Mo+ 1, lu’(o<M, + 1, lu”(,<M,+ 1, 

(u”‘(~ < M, + 1, (u”‘IO< M4 + 1 }. 

where JuIO = supto.,, lu(r)l. Define mapping F,: C'[O, 1] -+ C[O, 11, 
j: C”,[O, 1] --) C’[O, 1] and L: C",[O, l] -+ C[O, 1] by F,o(r)=ij'*(t, c(z). 
r”(t)), ju = u and Lo( 1) = I?( 1). FA is continuous from the continuity of j* 
and j is completely continuous by the Arzela-Ascoli Theorem. Now define 
N: C”,,[O, I] -+ C[O, 1] by Nv(r) = r’“(f), so N ’ is a continuous linear 
operator by the Bounded Inverse Theorem. Thus L ’ exists and is given 
by 

(L-'g)(x)=i+(h-(.)x+$+(N -'g)(x) 

and so is continuous. Now the map H,: ii -+ C"[O, 1] given by 
Hj.u = L 'F, ju is a compact homotopy with the fixed points of H, being 
precisely the solutions to (2.103. The choice of U guarantees that this 
homotopy is fixed point free on the boundary of U. Since the constant map 
H,(u) = l/n + (h - c)t + ct2/2 E U is essential [8] the Topological Transver- 
sality Theorem [8] assures that H, has a fixed point; i.e., (2.10;) has a 
solution and therefore (2.6”) has a solution. 1 

Now Theorem 2.2 implies (2.6”) has a solution )I” for each n. In addition 
we showed that there are constants M,, M,, M2 independent of n such 
that 

for each solution y to (2.6”). The next argument is broken into three cases, 
when h>O, 6=0 and c<O, and finally h=O and c=O. 

Case (1). h > 0. 

Then we claim there is a constant M, independent of n such 
that l~“‘l~ < M,; to see this note y’” < g(.v) q5( - y”) < Og( y), where 
D = supt c.M23 d(q). Integration from t to 1 with the fact that y 2 hr for 
r E [0, I ] yields 
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Case (2). b=O and c<O. 

Suppose we have 

f 
1 g(ub ‘I2 du < x,. (2.11) 
0 

Then we claim that there is a constant M3 independent of n such that 
(y”‘10 < M3; to see this note y(t) 2 - ct2/2 and so yic‘ < g(y) d( -v”) d 
g( -ct2/2) D and integration from z to 1 proves the claim. 

Case (3). b = 0 and c = 0. 

f 
1 

Suppose there exists p > 3 with g”(u) du < cc. (2.12) 
0 

Then we claim there is a constant M, independent of n such that 
Jy”‘(, < M,; to see this note 

where l/q=(p- 1)/(2p)-E, l/m=(p-1)/(2p)+s, with .s<(p-3)/(2p). 
Also note l/p + l/q+ l/m = 1 and p > q>m. Now integrate from t to 1 
using the Generalized Holders integral inequality to obtain 

2 [-y”‘(t)](m+l”m<< {foMo g”(u) duf” 

and our claim is established. 

THEOREM 2.3. (i) Let b > 0 and suppose (2.2), (2.3), (2.4), and (2.5) are 
satisfied. Then a C*[O, l] n C3(0, l] n C4(0, 1) solution of (2.1) exists. 

(ii) Let b =0 and c< 0 and suppose (2.2), (2.3), (2.4), (2.5), and 
(2.11) are satisfied. Then a C’[O, l] n C3(0, l] n C4(0, 1) solution of (2.1) 
exists. 

(iii) Let b =0 and c=O and suppose (2.2), (2.3), (2.4), (2.5), and 
(2.12) are satisfied. In addition assume 

For any constants M > 0, K > - c there exists n(t) 
continuous on [O, 1 ] and positioe on (0, 1) such rhar 
f(c Y, q) 2 rl(r) on (0, 1) x (0, Ml x C-K cl. 

Then a C*[O, 1 ] n C3(0, 1 ] n C4(0, 1) solution of (2.1) exists. 

(2.13) 
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Proof. Theorem 2.2 implies (2.6”) has a solution yn for each n. 
Moreover by the above arguments there exists constants M,, M, , Mz, and 
M, independent of n such that 

‘G IynloQMo, 
n 

b< I.K,lo<M,, I A I o < Mz 3 Iy:lo< M,. 

It follows that ( y,,}, { J$ }, {v;} are uniformly bounded and equicon- 
tinuous on [0, 11. Now the Arzela- Ascoli Theorem guarantees the 
existence of a subsequence yn. converging uniformly on [O. l] to some 
twice continuously differentiable function J, i.e., I.rn, - ~‘1 z -+ 0 for some 
J E C*[O, 11. Clearly y 2 0, y’ >, 6, y” Q 0 on [0, 1 ] with ~$0) = 0, JV’( 1) = h 
and ~“(0) = c. In fact J > 0 on (0, 11. To see this we need consider three 
cases, when h > 0, and b = 0 and c < 0 the result is trivial, whereas in the case 
b = 0 and c = 0 assumption (2.13) implies vr( r) 2 q(z) so either integrating 
four times and interchanging the order of integration or equivalently using 
the Green’s function (which is positive on (0, 1) x (0, I )) of the operator J”’ 
with the homogeneous boundary conditions corresponding to (2.1) we 
deduce that 

y”(r)>;+fJ’ ~(1 -+(I -f)2~.srl(.s)ds+ [‘(I -.s).s*s(.s)ds 
0 ‘0 

+ [‘r(l -.s).s~(s)ds+~~~~~(s)~~ 

.I 
+;, (---) t s 

I2 

I 
3 v(s) h. 

Now y,, satisfies the integral equation 

(1 - r)2 
~“~(~)=Y,~(l)-y;,~(l)(l -f)+J1::~u), 

so for (~(0, I] and SE [r, 1] we havef(s, y,,(s), y:,(.r))+f(.s, y(s), y”(s)) 
uniformly since f is uniformly continuous on compact subsets of 
PA 11 x (0, MO1 x C-M,, 01. From fh Y,,(S), vi,(s)) -+S(s, Y(J), Y”(S)) 
uniformly in [r, l] if r > 0 it follows that y E C4(0, I]. Thus letting n’ -+ x: 
yields 

(1 -t)? 
141) = y( 1) - y’( I)( 1 - I) + y”( 1) 2 

+ 
s 

’ (.s-f)3 
I 

6 f(s, y(s), y”(s)) ds. 
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From the integral equation we see that YE C4(0, 11, y“‘(r) =f(r, y(r), y”(r)) 
and y”‘( 1) = 0. 1 

Remark. For the case b=O it is possible to replace (2.12) by the 
following assumption and existence of a solution to (2.1) is guaranteed 
again: 

I 
I 

Suppose g(O(t)) dr < cc, where 
0 

+ I’1(l-~)~?(~)ds+J1~~q(s)dr 
f 

+;j’r(s’-;)q(S)dS. 
I 

The proof follows from the arguments above once we show that there is 
a constant M, independent of n such that (~“‘1~ < M, for each solution 
to (2.6”). To see this note (2.13) with the fact that M, and M2 are 
independent of n yields y’“(t) 3 q(r) so integration with the boundary 
conditions yields y(f) 2 0( 1). Thus y’” 6 g(y( t)) #( - y”(t)) < g(e(t)) D, 
where D = ~upr~,~~, 4(q), and integration gives the result. 

EXAMPLE. Consider the two point boundary value problem 

y”=y-“()y”lfl+ l), o<t<1; 

y(0) = y”(0) = y”‘( 1) = 0, y’(l)=b>O 

with 0 < a, /II < 1. In addition if b = 0 assume x < f. 

Take g( y ) = y. ’ and $(lq[) = )q18+ 1 and so (2.2) and (2.3) are satisfied. 
In addition (2.4) holds since 0 < j? < 1 and (2.5) is immediate also since 
0 <a < 1. Thus if b > 0 a C’[O, l] n C3(0, l] n C4(0, 1) solution exists by 
Theorem 2.3(i). Now if b = 0, then (2.13) holds with q(t) = M-“. Also since 
r < f, (2.12) is true. Thus a C’[O, l] n C3(0, l] n C4(0, 1) solution exists 
by Theorem 2.3(iii). 

B. y(O) = 0, y’(0) = b 2 0, y”( 1) = 0, y”‘( 1) = 0 

We begin by examining the two point boundary value problem 

Y’” =f(c Y* Y”), 0<1<1 

y(0) = 0, y’(0) = b 2 0, y”( 1) = 0, y”‘( 1) = 0 
(2.14) 
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with the following assumptions satisfied: 

f is continuous on [0, 1 ] x (0, x) x [O, r. ) with .f 2 0 on 
(0,1)x(0, cc)x(-30, %G) and lim,. .o+ f(t, ?;q)= CT, 
uniformly on compact subsets of (0, 1 )‘x ( - 3c1, x. ) (2.15) 

O<f(f,y,q)dg(y)~(q)on(O,l)x(O,~)x[O,~)where 
g > 0 is continuous and nonincreasing on (0, z. ) and 4 is 
continuous and nondecreasing on [0, x ) (2.16) 

Suppose there exist constants A 2 0, B 2 0, 0 < r < 2 such 
that for all ZE [0, ccj), with J(z) = j; (&r/#(u)), 

I ‘J- ‘[g(u)] dug AZ’+ B (2.17) 
0 

Suppose there exist constants C >, 0, D >, 0, 0 6 q < 2 such 
that for all ZE [O, 3~‘) 

q5( z) < Cz” + D. (2.18) 

To establish the existence of a solution to (2.14) we first consider for 
no N’ the problems 

f = f( t, )‘, y”), o<r<1 

y(o)=;, 
(2.19”) 

y’(O) = b 2 0, y”(l)=O, y”‘( I ) = 0. 

THEOREM 2.4. Suppose (2.15), (2.16), (2.17), and (2.18) ure satisfied. For 
i, E [0, I ] consider the family of problems 

):‘I’ = i:f( f, y, y”), O<f<l 

y(o)=;, 
(2.20:) 

y’(O) = b, y”( 1) = 0, y”‘( 1 ) = 0 

for fixed nE N’. Then there exist constants M,, M, , Mz, M,, und M, 
independent sf i. such that for I E [0, 1 ] 

k.V(fKMo, b6 y’(t)<M,, 0 < y”(r) d Ml, 
n 

-M,<y”‘(r)<O, O<y”(r)<M, 

for each solution YE C4[0, l] ro (2.20:). 

Prooj: Let 0 < I < 1. Now condition (2.15) implies y > 0 on (0, 1) and 
as a result we have y” > 0, y”’ < 0 on (0, 1); thus v” > 0 is strictly decreasing 
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on (0, 1) and as a result V’ > b on (0, 1) which in turn implies y > l/n is 
strictly increasing on (0, I). In addition -y”‘(r) ,< j: g(y(s)) &y”(s)) ds 
< g( v(t)) &y”(r)) since y is strictly increasing on (0, 1 ), y” is strictly 
decreasing on (0, 1 ), g is nonincreasing on (0, co), and q5 is nondecreasing 
on (0, co). Thus 

Define J(z) =j’; (d@(u)) so J is an increasing map from [0, co) onto 
[0, co) and therefore has an increasing inverse J- ‘. Thus y”(r) < 
J- ‘(g(y(r))) and so multiplying by y’ and integrating from 0 to r yields 

y’(t)< 2 J’“’ 
i I 

I,‘2 

J ‘(g(u))du+b2 . 
0 

(2.21) 

Finally integration from 0 to 1 together with (2.17) yields 

y(l)< {2A[.~(l)]‘+28+h2}“2+ I. 

Thus there exists a constant MO > 0 such that y( 1) ,< MO. In addition (2.21) 
implies M, . 

Remark. Note MO and M, are independent of n. 

Now integrate y’y’” <go’) #(v”) y’ from t to 1 to obtain 

-y’(t))?“‘(r) + [f’;)‘* < f$(y”(r)) J”” g(u) du. 
0 

Also since y’(t) y”‘(r) < 0 we have 

Thus there exists a constant M, > 0 such that y”(r) < M2 for I E [0, 11. 

Remark. Note M, is independent of n. 

Remark. Note (2.17) implies 1; g(u) du < 00 for all z > 0. To see this 
note for all z > 0 that J(q5(O)z) <z and so Ib J- ‘(g(u)) du 2 qS(O) I; g(u) du. 

Finally 0 < y’“(r) < g( l/n) &M,) = M, and integration yields M3. 1 

Essentially the same reasoning as in Theorem 2.2 establishes. 
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THEOREM 2.5. Suppose (2.15), (2.16) (2.17) and (2.18) ure sutisfied. 
Then a C4[0, 1] solution of (2.19”) exists. 

In addition Theorem 2.4 implies there exists constants MO, M,, and M, 
independent of n such that l/n< lyl,<M,, h< ly’l(,<M,, I.Y”I~<M~ for 
each solution )? to (2.19”). The next argument is broken into two cases. 
when h=O and h>O. 

Case (i). h>O. 

The exact same argument as that in Case (1) part A, implies there exists 
a constant M, independent of n such that Iy”‘lO< M,. 

Case (ii). h = 0. 

Suppose (2.12) holds. Then we claim there is a constant M3 independent 
of n such that (j~“‘l~ < M,. To see this note .v” Q g( y) #(Ml) so 

(-f”)l’m y<(j(M,) g(y)(y’)‘!P (y’) 1 P o/‘)h (f’) ‘.‘Y ( -y*rr)‘,f~l, 

Now integration from I to 1 along with the Generalized Holders integral 
inequality proves the claim. 

Essentially the same reasoning as in Theorem 2.3 establishes 

THEOREM 2.6. (i) Let b>O and suppose (2.15) (2.16) (2.17), and 
(2.18) are satisfied. Then u C’[O, 1] n C’(0, I] n C4(0, 1) s&lion qf(2.14) 
exisfs. 

(ii) Let b=O and suppose (2.12) (2.15) (2.16). (2.17) und (2.18) are 
surisffied. In addition assume 

For any constants M > 0, K > 0 there exists q(t) continuous 
and posirioe on (0, 1) such that f( r, y, q) >, q(f) on (0, 1) x 
(0, Ml x IIO, Kl. (2.22) 

Then a C’[O, 1] n C’(0, I] n C4(0, 1) solution of (2.14) exists. 

We now discuss briefly the case where our nonlinear term may in 
addition be singular at t = 0 and/or I = 1. Consider 

.vIL' = $(O f(4 L', y"), 0<1<! 

Y(O) = 0, y’( 0) = h 2 0, y”( I ) = 0, y”‘( 1 ) = 0 
(2.23) 

with assumptions (2.15) and (2.16) being satisfied. In addition assume the 
following hold: 

l/JI: [0, 1] + [0, 0~) is continuous with $ > 0 on (0, 1) 
and 5; Ii/(s) d.y < 0~1 (2.24) 
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Suppose there exist constants A >O, B>O, O<r ~2 
such that for all ZE [O, co), with J(z) =j; (du/#(u)), 
I&l ‘(g(u))du<Az’+B (2.25) 

Suppose there is a constant p > 2 with j’: g”(u) du < co. (2.26) 

Once again to establish the existence of a solution to (2.23) we first 
consider for n E N’ the problems 

Y’” = et) f(h Y, y”), o<r<1 

Y(O) = $ 

(2.27”) 
y’(0) = h 2 0, y”(l)=O, y”‘( 1) = 0. 

THEOREM 2.7. Suppose (2.15), (2.16), (2.24), (2.25), and (2.26) ure 
satisfied. For 3. E [0, 1 ] consider the family of problems 

Yi"=44~)f(4 y, Y”), o<r<1 

Y(O) =$ 
(2.28;) 

y’(0) = h 2 0, y”(l)=O, y”‘( 1) = 0 

for fixed nE N’. Then there exist constants M,, M,, Mz, M,, and M, 
independent of 1 such that 

;GY(I)<M”. b < y’(t) < M,, O,<y”(t)<Mz, 

-M.1< y”‘(t)<O; IE co, 11 
and 

o<Yi”w<M . 

’ I(/(t) 4’ 
rE(o, 1) 

for each solution YE C3[0, 1] n C’(O, 1) to (2.28;). 

Proof: Let 0 < i < 1. As before, condition (2.15) implies y > l/n, y’ > 6, 
y” > 0, y”’ < 0, y” > 0 on (0, 1) with y” strictly decreasing on (0, 1) and y 
strictly increasing on (0, 1). In addition (2.16) and (2.24) yield 

-Y”~(z) gj-’ dyb)) &Y”(S)) Icl(s) dsGg(y(t)) $(y”(t)) f’ 44s) h 
I I 

Gg(v(t)) 4(y”(r))K*v 

where K* = 5: $(s) ds. Proceeding exactly as in the proof of Theorem 2.4 
(with assumption (2.25) replacing (2.17)) we deduce the existence of 
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constants M,, and M, independent of I. (and also of n) such that 
l/n 6 1 y(,, G M, and h G Jy’10 < M’. Now returning to the inequality 
-y”‘(t)<g(y(t))&y”(l))K* multiply by (.v”)““, where q=pI(p- l)<p 
to obtain 

_ (f’)‘.Y 

4W’) 
v~fr~g(y)(y’)‘~” (f) “P (~9”)“” K*. 

Integration from r to 1 using Holders integral inequality yields 

.l”,,, u’:Y 
J ,, mduGK* 0 {I 

““gp(u)du)“‘{J(:“u .;p,i”‘=fi 

using assumption (2.26). Define V(z) =!6 (u”“/d(u)) du so C’ is an 
increasing map from [0, x)) onto [0, a) and therefore has an increasing 
inverse V ‘. Thus y”(r) d V ‘(fi) = MI for t E [0, 11. 

Remark. Note M, is independent of n. 

Finally 0 d .V( t)/$( r) < g( l/n) 4( Mz) = M,. I E (0, I), and integration 
yields M,. m 

For our next theorem we need the following notation. Let K = C(0, 1) be 
the Banach space of function o continuous on (0, 1) and for which 
llsll x =sup,,,,, lo(r)] <co. Also let 

K4= {ud3[0, l]nC4(0, 1): Ilul14< 5 ), 

where 

IIuIi4 = max { lUIOI Iu’Io9 Iu”IOt lu”‘lO, Iiy .} 

with ]uIo = sup rO.ll lu(t)l which is a Banach space [ 1 l] and define 
Ki= {ueK4: u(O)= l/n, u’(O)=h, u”(l)=O, u”‘(l)=O} with KiO= 
{uEK4:U(0)=0, u’(O)=O, f/(1)=0, u”‘(l)=O). 

THEOREM 2.8. Suppose (2.15), (2.16) (2.24), (2.25), and (2.26) are 
satisfied. Then a C’[O, I ] n C4(0, 1) solution of‘ (2.27”) exists. 

Proof This follows immediately via the ideas of Theorem 2.2 (see 
also [ll]) with the only major changes being that F,: C’[O, I] + K, 
.j: Ki+ C’[O, l] and L: Ki + K are defined by Fj,~(t) = i$*(t, c(r), v”(t)). 
ju = u and Lv( t) = d”( r)/$( t). Also define 
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ldnlo<M3+ 1, 1;:’ 
1 

CM,+1 
* 1 

and it is easy to show that Hi : v-+ K”, defined by Hi = L- ‘F, ju is a com- 
pact homotopy of admissible maps joining the essential map H, with H,. 
Thus the Topological Transversality Theorem [ 111 implies H, is essential 
and as a consequence this implies a C3[0, l] n C4(0, 1) solution of (2.27”) 
exists. 1 

In addition Theorem 2.7 implies there exists constants M,, M,, and M, 
independent of n such that l/n < Jyl, < M,, b < Iy’l,, < M,, Iy”10 < Mz for 
each solution y to (2.27”). The next argument is broken into two cases, 
when h=O and b>O. 

Case (1). b >O. 

Suppose we have 

I 
I 

g(br) $(r) dr < co. 
0 

(2.29) 

Then we claim that there is a constant M, independent of n such that 
I ~“‘1, < M3 ; to see this note y’” <g(y) +( y”)$ < g(y) 4( M2)$, Integrating 
from I to 1 with the fact that y 2 br for z E [0, l] yields 

-v”‘(~)~~(M,)~‘g(~s)Il(s)dr~l(M,)j’g(br)~(z)dt=M,. 
I 0 

Case (2). b = 0. 

Suppose there are constants p> 3, r> 1 with l/r < 
(p - 3)/(2p) and with 5; g”(u) du < co, j: I/I’(~) dt < co. (2.30) 

Then we claim that there is a constant M3 independent of n such that 
Iy”‘lo< M,; to see this note yi”<g(y)&M,)$ so 

where l/q=(p- 1)/(2p)-c, l/m=(p- 1)/(2p)+p with ,u=E- l/r and 
l/r<&<(p-3)/(2p). Also note l/p+ l/q+ l/m+ l/r= 1 and p>q>m. 
Now integration from t to 1 along with the generalized Holders integral 
inequality proves the claim. 

Essentially the same reasoning as in Theorem 2.3 establishes. 
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THEOREM 2.9. (i) Let h>O and suppose (2.15) (2.16), (2.24) (2.25). 
(2.26), and (2.29) are satisfied. Then a C*[O, 1] nC3(0, I] n C4(0, 1) 

solution of (2.23) exists. 

(ii) Let h=O andsuppose (2.15), (2.16) (2.22), (2.24), (2.25) (2.26), 
and (2.30) are satisfied. Then a C*[O, I ] n C3(0, I ] n C4(0, 1) solution of 
(2.23) exists. 

c. v(0) = 0, y’(0) = 0, I”( 1) = 0, ,I”( 1) = 0 

In this case we examine the two point boundary value problem 

.v = f( 1, f’, I”’ 1, 0<1<1 
(2.31) 

y(O) = 0, y’(O) = 0, J”( 1 ) = 0, f”( 1 ) = 0 

with the following assumptions being satisfied: 

fa0 is continuous on [O,l]x(O,co)x(-co,crj) and 
lim J’+n- f(L Y9 4) = cx) uniformly on compact subsets of 
(0,1)x(-=, aG) (2.32) 

0</(4 y,q)Gg(y)4(lql) on (0, 1)x(0, ccjJx(k-3~~ x.1. 
where g > 0 is continuous and nonincreasing on (0, W) 
and 4 is continuous and nondecreasing on [0, x;). (2.33) 

As usual we begin by examining for n E N+ the problems 

!’ I” = f( 1, y, I”‘), O<f<I 

y(o)=:, 

(2.34” ) 
,a’( 0) = 0, ,,‘( 1) = 0, J”‘( 1 ) = 0. 

THEOREM 2.10. Suppose (2.4), (2.5), (2.18), (2.32), and (2.33) are 
satisfied. For i. E [0, 1 ] consider the fumily qf problems 

p = j.f(f, J, y”), O<f<l 

Y(o)=;, 
(2.35;) 

y’(O) = 0, y’( 1) = 0, y”‘( 1 ) = 0 

for fixed nE N’. Then there exist consrunts M,,, M, , M,, M,, and M4 
independent of i. such that for t E [0, I ] 

;<ywM”, 0 < Y’(f) Q M,, I.v”(f)l GM*, 

-M,<y”‘(I)<O, O<y”‘(r)<M, 

for each solution y E C4[0, 1 ] ro (2.35;). 
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Proof: Let 0 < 1. < I. Now condition (2.32) implies y > 0 on (0, 1) and 
as a result we have y’” > 0, y”’ c 0 on (0, I ), thus y” is strictly decreasing 
on (0, I), also y’> 0 on (0, 1) which in turn implies y > l/n is strictly 
increasing on (0, 1). Let yk,, be the maximum ofy’(r) on [0, 1 ] and suppose 
Yill,, occurs at t, E (0, 1). Then y”(rO) = 0 with y”(r) 2 0 for t ,< Z, and 
y”(r) 6 0 for t > 1,. Now for t 2 I,, we have y’” 6 ig( y) q5( -1)“) so 

Integration from f(r > to) to 1 using assumption (2.4) yields 

&y(y)) c - y’“(t)1 Gg(Y(~)) 1’ (-Y”(S)) ds =&A y(t)) y’(t) I 

since y” is strictly decreasing on (0, 1) and y is strictly increasing on (0, I). 
Now integrate from 1, to r to obtain (with I as defined in Theorem 2.1) 

-y”(r)<I-’ I”‘~g(u)du) ( for tar,. 
0 

Integrate from t to 1 to obtain y’(t) < I ‘(Ii”’ g(u) du) for t b t,, and since 
the maximum of y’(t) occurs at r,, we have 

y'(t) < y'(4)) G 1 tE [O, 11. (2.37) 

Finally integration from 0 to I yields y( 1) 6 I ‘(l$” g(u) du) + 1 and 
assumption (2.5) implies there is a constant M, > 0 such that y( 1) < M,. In 
addition (2.37) yields Ml. 

Remark. Note M0 and M, are independent of n. 

Also for t 2 z,,, (2.36) yields -y”(f) < I-‘(J,Mo g(u) du) = M,. To bound 
I y”( r)l = y”(r) for r d t, we first need to obtain a bound for - y’(r,) y”‘(t,). 
Considering t 2 to we have y’“(t) <g(y(r)) &-y”(t)) <g(y) SU~~~,,,,,~ d(q) = 
g(y) &M’ ). Multiply by y’ and integrate from f. to 1 to obtain 

-y’(fo) y”‘(to)-[y”y2<@4’) jMBg(u)du 
0 

so we have 

- yyto) yyto) < #(iv,) J” g(u) tiu + T = M*. (2.38) 
n 
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Now for the case I f I, we have J+’ <g(y) d(.r”); so multiply by y’ and 
integrate from 0 to I, to obtain 

y’(ro) L”“(fJ + yy* <qqy”(O)) j”” g(u) du 
0 

so we have with (2.38) 

CY”~O)12 
2 

<)(y”(0))yU g(u)du+ M*. 
0 

Thus (2.18) implies there exists a constant MT > 0 such that y”(O) < MT. 
In particular for t < 1, we have v”(r) < ~“(0) < M:. Hence 1 y”( r)j < M, = 
max{M,, MT}. 

Remark. Note Mz is independent of n. 

The existence of M, and M, follows easily. 1 

Essentially the same reasoning as in Theorem 2.2 establishes 

THEOREM 2.11. Suppose (2.4), (2.5), (2.18), (2.32). and (2.33) are 
satisfied. Then a C4[0, 1 ] solution of (2.34”) exists. 

In addition Theorem 2.10 implies there exists constants M,, M,, and M, 
independent ofnsuch that l/ndlyJ,bM,, ly’l,bM,, 1~1”1,<M,foreach 
solution y to (2.34”). Now suppose (2.12) holds. Then we claim that there 
is a constant M, independent of n such that Iy”10 < M,. To see this 
consider first the case t >, I,, where we have y” <g(y) #(M,); so with 
l/y=(p-- 1)/(2p)-E, l/m=(p-1)/(2p)+c, and r<(p--3)/(2p) we have 

( _ f,) I m ).,I ~~(M*)g(?‘)(y’)l:P().‘)- ‘,P(-y”)“Y(-)!“) ‘4(-?,“‘)‘.m, 

Now integration from f(f >, to) to 1 along with the Generalized Holders 
integral inequality implies there exists a constant MT independent of n 
such that I$“(r)l < M: for I > 1,. On the other hand for t < r, we have 

(-y)l:m j,~l’<#(~2) 8(l’)(y’)l;~(y’)--‘,~ (y)l~ (y’*) 1,~ (-).“‘)I:m; 

so integration from t to 1, together with Iy”‘(r,,)l d MT yields the claim. 
Essentially the same reasoning as in Theorem 2.3 establishes 

THEOREM 2.12. Suppose (2.4), (2.5), (2.12), (2.18). (2.32), and (2.33) are 
satisfied. In addition assume 

For any constants M > 0, K > 0 there exists q(r) continuous 
on [0, 1 ] and positive on (0, 1) such thatf( I, y, q) 2 q(t) on 
CO, 11 x (0, Ml x [ -K, Kl. (2.39) 

Then a C’[O, l]nC’(O, l]nC4(0, 1) solution of(2.31) exists 
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D. y(0) = 0, y’( 1) = h 2 0, y”(0) = 0, y”( 1) = 0 

To show the existence of a solution to the two point boundary value 
problems 

yic =f(t, y, y”), O<Z<l 

Y(O) = 0, y’(l)=h>O, y”(0) = 0, y”(i)=0 
(2.40) 

we begin by examining for n E N’ the problems 

y”‘=s(L y, Y”), 0<1<1 

y(o)=;, 
(2.41”) 

Y’( 1) = b, y”(0) = 0, y”(l)=O. 

THEOREM 2.13. Suppose (2.2), (2.3), (2.4), and (2.5) are satisfied. For 
i E [0, 1 ] consider the family of problems 

y’” = ilf(r, y, y”), o<r<1 
(2.42;) 

y’(l)=h y”(0) = 0, y”(l)=0 

for fixed n E N’. Then there exist constants M,, M,, Mz, M,, and M4 
independent of 1 such that for t E [0, 1 ] 

Iv"'(r)l GM,, 0 ,< y'"(r) < A44 

for each solution y E C4[0, I ] to (2.422). 

Proof: Let 0 < i < 1. Now condition (2.2) implies y > 0 on (0, 1) and as 
a result we have y’” > 0, y” < 0, y’ > b on (0, l), which in turn implies 
y > l/n is strictly increasing on (0, 1). Let - yk,, be the maximum of 
-y”(r) on [0, l] and suppose - y& occurs at lo E (0, 1). Then y”‘( 1,) = 0 
with y”‘(r) 2 0 for t 2 r,, and y”‘(r) ,< 0 for t d lo. Now for t < 1, we have y” 
is strictly decreasing on (0, I~) and y” < Ag( y) q5( - y”). Now this together 
with assumption (2.4) yields for t ,< 1, 

-Y”(f) 
J’O [P(s)] a!Y < If0 g( y(s))C - y”(s)] a!s 

&-v”(r)) I I 
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and as a result we have 

,(-y;!;l,, c - ?,“‘(~)I GR(r)[ -HI,) + Y’(~)l Gdv(tJ) u’(r) 

since y’( to) > 0. Now integration from 0 to f(f d to) with I as defined in 
Theorem 2.1 yields for t < lo, -y”(f) Q I ‘(I$“’ g(u) du); t < f,, and since 
the maximum of - y”(f) occurs at f, we have 

-J”(f)< -y”(to)<l- ’ g(u)du 7 
> 

fE [O, I]. (2.43) 

Also integration from f to 1 yields 

y’(t)<! ’ 
( 

j.v”‘g(u)du +h, fE[O, I] 
> 

(2.44) 
‘0 

and finally integration from 0 to 1 will give y( 1) < I ‘(l;;“’ g(u) du) + h + 1. 

Assumption (2.5) implies there is a constant M, > 0 such that J( I ) < M,,. 
In addition (2.43) and (2.44) yields M, and M, respectively. 

Remark. Note M,, M,, and Mz are independent of n. 

The differential equation now yields M, and M,. [ 

Essentially reasoning the same as in Theorem 2.2 establishes 

THEOREM 2.14. Suppose (2.2), (2.3), (2.4), and (2.5) are satisfied. Then 
a C4[0, 1 ] solufion of (2.41”) exists. 

In addition Theorem 2.13 implies there exist constants MO, Ml, and M, 
independent of n such that l/n<ly1,6M,,, h<(y’lo<Ml, Iy”lo<Mz for 
each solution y to (2.41”). The next argument is broken into two cases, 
when h=O and h>O. 

C’aw (i ). h > 0. 

We claim there is a constant M, independent of n such that ) y”‘((, d M; 
to see this note y b ht on [O, 1 ] and yi’ <g(y) 4( - y”) < g(ht) s~pt~.~~, Q(y). 
Integrating from f to f. yields Iy”‘(t)l = Is:, y”‘(s) drl <~up~~.,~~, 4(q) 
1; g(h) dr = Al?. 

Case (ii). b = 0. 

Suppose (2.12) holds. Then we claim again that there is a constant M, 
independent of n such that Iy”‘10 < M,. To see this note for f >, f, 

(Y”‘)ltm Y”‘G {[$I) 4(4)1 g(y)(y’)“” (Y’) “P 
. 7 

x ( _ y)‘;q ( _ f’) ’ 4 ( + f”)‘,” 
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while for t < I, 

( - Y”‘)“m y’” G { sup 4(q)} g(y)(.Y’)“” (y’) ‘lp 
co. M21 

Now integrate from I to’ t, using the Generalized Holders integral 
inequality to deduce the claim. 

Essentially reasoning the same as in Theorem 2.3 establishes 

THEOREM 2.15. (i) Ler b>O and suppose (2.2), (2.3), (2.4), and (2.5) 
are satisfied. Then a C*[O, 1] n C4(0, 1) solution of (2.40) exists. 

(ii) Let b=O and suppose (2.2), (2.3), (2.4), (2.5), (2.12), and (2.13) 
are satisfied. Then a C2[0, 1] n C4(0, 1) solution of (2.40) exists. 

3. SINGULARITM AT y"=O BUT NOT AT y=O 

A. y(O)=u>O, v’(l)=baO, v”(O)=O, y”‘(l)=0 

In this case we examine the problem 

Y’” = bet) f(c Y. v”X 0<1<1 

y(O)=u>O, y’(l)=baO, y”(0) = 0, y”‘(l)=0 

with the following conditions being satisfied: 

f is continuous on [0, 1] x [a, 30) x (- 30,0) with 
lim q-n- f(c Y, q)= co uniformly on compact subsets of 
(0,1)x(-cc cc) 

O<f(c L’I 4) G&T(Y) &Id) on (0,1)x(4 a)~(-co,O), 
where 4 > 0 is continuous and nonincreasing on (0, cc) 
and g is continuous and nondecreasing on [a, cc) 

Suppose there exist constants A > 0, B 2 0, 0 < r < 1 such _ . - 

(3.1) 

(3.2) 

(3.3) 

that for all z E [0, co), g(z) < Jti + B (du/qS(u)). (2.25)* 

In addition suppose assumption (2.24) also holds. To establish the 
existence of a solution to (3.1) we first consider for n E N + the problems 

Y’” = 11/(1) f(h Y9 v”), o<t<1 
(3.4”) 

y(O)=u>O, y’(l)=baO, y”(0) = -;, y”‘( 1) = 0. 
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THEOREM 3.1. Suppose (2.24), (2.25)*, (3.2), and (3.3) are satisfied. For 
i. E [0, 1 ] consider the family of problems 

Y = w t) f( t, y, y”), O<t<l 
(3.5:) 

y(O) = a 2 0, y’(l)=h>,O, y”(0) ZT -t, y”‘( 1 ) = 0 

jar jixed n E N +. Then there exist constants M,,, M, , M,, M,, and M, 
independent of i. such that 

and 

- M3 d y”‘(r) 6 0; tE co, 11 

()<‘“(‘)<M . 
v4t) 4’ 

te(O, 1) 

for each solution ye C3[0, 1] n C4(0, 1) to (3.5:). 

Proof. Let 0 < i. < 1. Now condition (3.2) implies y” < 0 on (0, 1) which 
implies J” > b on (0, 1) and as a result )! > a is strictly increasing on 
(0, 1). Also condition (3.3) implies y’” > 0, y”’ ~0 on (0, 1) which in 
turn implies y” is strictly decreasing on (0, 1). In addition we have 
.Y < $(t) g(y) 4( - y”) so integrating from t to 1 yields 

-t”(t)< 1’ g(As))$(-y”(s)) S(s)ds~g(.~(I))~(- yll(t)) j’ $(s)ds 
-, I 

6K*g(Y(l))$(-y”(t))<K*g(y(l))# - ,“(,)-! 
( ’ n)’ 

where K* = l; $(s) dx, since 4 is nonincreasing on (0, co). Thus integration 
from 0 to t with J as defined in Theorem 2.4 yields 

-f’(t)<J- ‘(K*g(y(l)))+ 1, fE [O, I]. (3.5) 

Now integrate from t to 1 to obtain 

y’(t)GJ ‘(K*g(y(l)))+ 1 +h (3.6) 

and finally integration from 0 to 1 yields y( 1) G J- ‘(K*g(y( 1))) + 1 + 
b + (1. Assumption (2.25)* implies there exists a constant M, > 0 such that 
~(l)<M,.Inaddition(3.5)and(3.6)yield -y”(t)<J- l(K*g(MO))+l=Mz 
and y’(t) <J-‘(K*g(M,)) + 1 + h = M, since g is nondecreasing on [a, s). 
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Remark. Note MO, M,, and M, are independent of n. 

The differential equation yields M4 and M,. m 

Essentially reasoning the same as in Theorem 2.8 establishes 

THEOREM 3.2. Suppose (2.24), (2.25)*, (3.2), and (3.3) are satisfied. 
Then a C ‘[O, 1 ] n C4(0, 1) solution of (3.4”) exists. 

In addition Theorem 3.1 implies there exist constants MO, M,, and M, 
independent of n such that a<(yJ,dM,, h,<(y’l,<M,, Iy”l,,<M2 for 
each solution y to (3.4”). 

Suppose 4 satisfies 

q&q) is nondecreasing on (0, co). (3.7) 

Then we claim that there is a constant M3 independent of n such that 
(1 ~“‘(1 L2 < M3 for each solution y to (3.4”). To see this note 

- Y”Y~” d cll(t) g(y)( - Y”) 4 -Y”) G tit11 g(M,) M,4WJ 

and integration from 0 to 1 yields 

-t Y”‘(o) + I’ [y”‘(s)]’ ds< K*g(M,) M,&M,), 
0 

where K* = 1; $(s) d.v. Now since y”‘(O) < 0 our claim is established. 

THEOREM 3.3. Suppose (2.24), (2.25)*, (3.2), (3.3), and (3.7) are 
satisfied. In addition assume 

For any constants M > a, K > 0 there exists q(t) continuous 
on [0, 1 ] and posiriue on (0, 1) such that f( t, y, q) > q(t) on 
P,1lxCa,MlxC-KO), (3.8) 

and a C’[O, 1) n C3(0, l] n C4(0, 1) solution of (3.1) exists. 

Proof: Theorem 3.2 implies (3.4”) has a solution y, for each n and 
moreover there exist constants MO, M,, M1, and MJ independent of n 
such that 

a< lylo6Mo, h< ly’lo<MI, ly”lodM2, lIy”‘llL2<M3. 

It follows that {y,}, {y;}, { yi) are uniformly bounded and equicon- 
tinuous (Holders integral inequality with p = q = 2) on [O, 11. Essentially 
reasoning the same as in Theorem 2.3 concludes the proof, observing that 
y > 0 on (0, 1 ] implies y” < 0 on (0, 11. 1 
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EXAMPLE. Consider the two point boundary value problem 

! .‘I’ = [ ;‘( 1 - [) 0 ( - y”) 1 (j’” + 1 ), o<r<1 

y(O)=a>O, y’(!)=h>,O, y”(0) = 0, 
(3.9) 

f”( I ) = 0 

with O<p, p, z-c 1, j?>,O, and /kr+ I 

To show (3.9) has a solution using the results of this section we consider 
first 

J Jr=1 ;‘(I-t) “1-y”) ‘(IyI”+!), O<,<! 
(3.10) 

y( 0) = a 2 0, f( 1 ) = h 2 0, y”( 0) = 0, y”‘( 1 ) = 0. 

Heref(t,.r,q)=JqJ “(lv)“+!),+(t)=t ‘(l-r)!“soclearly(2.24),(3.2), 
and (3.3) are satisfied with g(u)= lula+ 1 and d(u)= JuI ‘. In addition 
with q(t) = (a” + I )K ’ we see that (3.8) is also satisfied. It is also easy to 
check that (2.25)* holds since fl< z + I. Thus a C’[O, I] n C’(0, I] n 
C4(0, 1) solution J* of (3.10) exists by Theorem 3.3. In addition since y > 0 
and 11” < 0 on (0, 1) we see that y is also a solution to (3.9). 

B. ~(0)=0>,0. y’(O)=b>,O, $‘(!)=O, ~“‘(!)=0 

Consider the two point boundary value problem 

P’= $(t) .I-(‘(, y, f’), O<f<! 

y(0) = a 2 0, J’(0) = h z 0, y”(!)=O, y”‘( 1 ) = 0 
(3.11 ) 

withf having bounded dependence on its y variable for any fixed values of 
the other arguments. Assume (2.24) holds and in addition 

j’ is continuous on [0, l] x [a, x) x (0, 0~) with 
lim y-0. .f(c )‘, q)= zo uniformly on compact subsets of 
(0, l)x(-Xc, 3G) (3.12) 

O<f(f,.r,q)<#(q)on(O,l)x[a,x:)x(O,s),where~is 
continuous and nonincreasing on (0, 3~). (3.13) 

Our examination of (3.11) begins by considering for n E N + the problems 

f = $(I) f(h L’, y”), o<r<1 
(3.14”) 

y(O) = a 2 0, v’(O) = h .f(!)+ y”‘( 1 ) = 0. 

THEOREM 3.4. Suppose (2.24), (3.!2), and (3.13) are satisfied. For 
i E [0, I ] consider the family of problems 

f = I.$( 1) f( 1, )‘, y”), o<r<1 
(3.15:) 

y(O)=a>,O, v’(0) = h, J”(l)+ f”( I ) = 0 
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for fixed nE N’. Then there exist constants MO, M,, M,, M,, and M, 
independent of i such that 

adY(t)dM,,, h ,< y’(t) < M,, 

L<y”(t)<M,. 
n 

- Mj < y”‘(t) < 0; tECo,ll 
and 

for each solution y~C~[0, l] n C4(0, 1) to (3.15;). 

ProoJ Let 0 <i. < 1. Now condition (3.12) implies y” > 0 on (0, 1) 
which implies y’> 6, y > a on (0, 1). Also condition (3.13) implies yic’ > 0, 
y”’ < 0 on (0, 1) and as a result y” is strictly decreasing on (0, 1). In addition 
we have 

Yi”W 
-<@(y”) <d ; = M, 
*(t) 0 

and integration yields MX, M,, M,, and MO. a 

Essentially reasoning the same as that in Theorem 2.8 establishes 

THEOREM 3.5. Suppose (2.24), (3.12), und (3.13) are satisfied. Then a 
C3[0, l] n C4(0, 1) solution of (3.14”) exists. 

Now suppose the following conditions are satisfied 

II/ is nonincreasing on (0, 1) (3.16) 

For any CE (0, cc), fi d(u) du < 00 (3.17) 

There exists a constant m> 1 with 
I ’ [t)(s)]“‘* ds < 00. (3.18) 

0 

Then we claim that there are constants MO, M,, M,, and M, independent 
of n such that u d jyJO < MO, h < IY’(~ < M,, l/n < (y”J, < M2, 
IJy”‘IILm< M, for each solution y to (3.14”). To see this multiply 
y” < tj( t) &y”) by - y”’ and integrate from t to 1 to obtain 

Cr”‘(t)12 
2 d j,’ 44s) ~(Y”(s))( -Y”(S)) h < ICl(t) ~;*‘oi 4(u) du 

using assumption (3.16). Thus 

2i(r)~;“‘“‘q5(u)du}“2 (3.19) 
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and integration from 0 to 1 yields y”(0) < K{ 2 l;O’o’ 4(u) du 1 Ii2 + 1, where 
R=l:, [I)(.s)]“~ ds. A ssumption (3.17) implies there exists a constant Mz 
(independent of n) such that y”(r) < y”(0) 6 M,. Now integration yields 
M, and MO. Returning to (3.19) we have for TV [0, 11, -y”‘(r)< 
{2$(l) lf2 #(u)~u}‘~~= L[tj(t)]““, where L= {2~,“0~(24) du}“*. Then 

and our claim is established. 

THEOREM 3.6. Suppose (2.24), (3.12), (3.13), (3.16), (3.17), and (3.18) 
are satisjed. In addition assume 

For any constants M > a, K > 0 there exists v(r) continuous 
on [0, 1 ] and posifitie on (0, 1) such fhar f( f, y, q) >, q(f) on 
CO, 1 I x [a, Ml x (0, Kl, (3.20) 

AI 

1 ,(l 

I 
(s - f) t,!/(s) q(s) ds 

‘0 I 1 
I(l(r) dt < x. (3.20)* 

Then a C’[O, l]nC4(0, 1) solution sf(3.11) exists. 

Proof: Essentially the same reasoning as in Theorem 3.3 guarantees 
the existence of a subsequence { y,,,} converging uniformly on [0, l] to 
some JJE C2[0, 11. In addition y(0) = a, y’(0) = h, y”( 1) = 0 with 
yeC4(0, l)nC3[0, 1) and y”‘(r)=f(r, y(r), y”(r))+(f) on (0, 1). It 
remains to show y”‘( 1) = 0. Now y;(r) > J/(t) q(r) so integration yields 
~$(r)# (s-f) t+b(s)~(s)d.~=~(r). Thus 

0= lim ye!= lim 
n’- * n’ ..f x 

y:!(O)+j’ $(r)f(r, y,,.(l). y;.(r))df 
0 I 

= J”‘(O) + j; $(f) f( I, y( f ), I”‘( f )) df = y”‘( I ) 

by the Lebesgue dominated convergence theorem since $I( r) f( 1, y,,,( 1 ), 
?,~,(f))~lL(f)~(O(f))~L’ by (3.20)*. This also proves that yEC3[0, 11. 1 

c. y(0) = u > 0, y’( 1) = b 2 0, y”(0) = 0, y”( 1) = 0. 

TO show the existence of a solution to the two point boundary value 
problem 

! ,‘I: = I(/(f) f(L y, Y”), O<f<l 
(3.21) 

.v(O) = a 3 0, .v’( 1) = h b 0, y”(0) = 0, ,“‘( I ) = 0 
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we begin by examining for n E N+ the problems 

Y’” = k4f) f(L Y, Y”h 0<1<1 
(3.22”) 

y(O)=a>O, y’(l)=b20, y”(0) = -;, y”(l)= -i 
n’ 

THEOREM 3.7. Suppose (2.24), (2.25)*, (3.2), and (3.3) are satisfied. For 
A E [0, 1 ] consider the family of problems 

y”‘= Q(1) f(L y, y”), 0<1<1 

y(O) = 4 y’(l)=6 y”(0) = - ;, y”(l)= -f 
(3.23;) 

for fixed nE N+. Then there exist constants MO, M,, M,, M,, and M, 
independent of i such that 

aGy(t)bM,, b < y’(r) Q M,, 

-M,<y”(t)Q -;, ly”‘(t)l GM,; tE co, 11 

and 
o <Y’“W 

\--GM.4; te(O, 1) 
vQ(t) 

for each solution YE C3[0, 1 ] n C4(0, 1) to (3.23;). 

Proof Let 0 < i. < 1. Now condition (3.2) implies y” < 0 on (0, 1) which 
implies y’ > h on (0, 1) and as a result y > a is strictly increasing on (0, I ). 
Also condition (3.3) implies y”> 0 on (0, 1). Let -yk,, occurs at 
1, E (0, 1). Then y”‘( to) = 0 with y”‘(l) 2 0 for I > I, and y”‘( 1) < 0 for r ,< 1,. 
Now for I 2 lo we have y” is strictly increasing on (to, 1) and 
y” < E;+(r) g(y) q5( - y”). Integrate from r, to t(t 2 to) and we obtain 

~g(y(l))~(-y”(r))K*Qg(y(l))~ (--J’.(I)--f) K*, 

where K* = IA 9(s) U!Y, since 4 is nonincreasing on (0, co) and g is non- 
decreasing on [a, co). Thus integration from t(t 2 lo) to 1 with J as defined 
in Theorem 2.4 yields - y”(f) < J - ‘(K*g( y( 1))) + 1; t < 1, and since the 
maximum of -y”(r) occurs at r,, we have 

-y”(t)< -y”(to)~J-l(K*R(y(l)))+ 1, te[O, 11. (3.24) 
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Now integration from r to 1 yields 

?“(O<J ‘(K*g(y(l)))+ 1 +h. fE[O, l] (3.25) 

and finally integration from 0 to 1 will give y( 1) <J ‘(K*~(Y( 1))) + I + 
h +a. Assumption (2.25)* implies there is a constant M,>O such that 
.r( 1) 6 M,. In addition (3.24) and (3.25) yield Mz and M, respectively since 
g is nondecreasing on [a, x). 

Remark. Note M,, M,, and Mz are independent of n. 

The existence of M, and Mj follows as before. 1 

Essentially the same reasoning as in Theorem 2.8 establishes 

THEOREM 3.8. Suppose (2.24), (2.25)*, (3.2), und (3.3) are sutisfied. 
Then CI C3[0, l] n C4(0, 1) solution qf (3.22”) exisrs. 

In addition Theorem 3.7 implies there exist constants M,, M,, and Mz 
independent of n such that a<]v]o<M,, h61$10<M,, Iy”joQMz for 
each solution J to (3.22”). Now suppose (3.7) is satisfied. Multiply 
r”’ < $(.s) g(J) #( -I”‘) by - ~9” to obtain - .v”J.~’ d I++(S) g(M,) M,& M,). 
integration from 0 to 1 gives 

L I*“‘( 1 ) - ; J,“‘(O) + I’ [$“(s)]* ds < K*g( M,,) M2#(M2), 
n ’ 0 

where K* = j:, I,+(S) ak N ow since y”‘( I ) 2 0 and ~“‘(0) < 0 we have 

Il~“‘:l,.z< {K*g(M,) M&(Mz))“*= M,, 

where M, is independent of n. 

THEOREM 3.9. Suppose (2.24), (2.25)*, (3.2), (3.3), (3.7), cmd (3.8) are 
satisfied. Then a C*[O, l] n C4(0, 1) solution qf(3.21) exists. 

Proof The proof more or less follows the argument in Theorem 3.3 
with the following modification. Now J > 0 on (0, I] implies J” ~0 on 
(0, 1) and so J$ -. J” uniformly on [s, 1 -cl for each CE (0, 1). Thus 
JEC~(O, 1) and ~‘“=f(r, .v, J>“)+(I) on (0, 1). 1 

4. SINGULARITIFS AT BOG y = 0 AND yv = 0 

Again we discuss the individual boundary conditions separately. 

A. ~$0) = 0, .JJ’( 1) = h > 0, y”(O) = 0, y”‘( 1) = 0 
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In this case we examine the two point boundary value problem 

Y’” =f(r, y, y”), O<f<l 

Y(O) = 0, y’(l)=h20, y”(0) = 0, y”‘(l)=0 

f is continuous on [0, 1] x (0, co) x (- co, 0) with 
lim .v*o+ 1’(& Y9 4) = a uniformly on compact subsets 
of (0, 1) x (-co, co)\(O) and lim,,,- f(r, y, q) = 3~ 
uniformly on compact subsets of (0, 1) x (0, co) 

O<f(‘(l,~),~)~g(~)~(Iql) on (09 1)x(0, ~)x(--~O) 
where 4 > 0 and g are continuous and nonincreasing on 
(0, co). 

(4.1) 

(4.2) 

(4.3) 

To establish the existence of a solution to (4.1) we first consider for n E N + 
the problems 

Y’” =f(h Y, Y”), 0<1<1 

Y(0) =;, y”(0) = - ;, 
(4.4”) 

y’( 1) = h > 0, y”‘( 1) = 0. 

THEOREM 4.1. Suppose (4.2) and (4.3) are sutisfied. For AE [0, 1] 
consider the family of problems 

y = 2.. (1, y, y”), O<ttl 

Y(O) = ;, 
(4.5;) 

y’( 1 ) = b 2 0, y”(0) = - t, y”‘(l)=0 

for fixed nE N+. Then there exist constants M,, M,, M,, M3, and M4 
independent of i. such that for t E [0, 1 ] 

‘C y(t)<MM,, b < y’(r) GM,, 
n 

-M,<y”(t)< -$ 

- M, < y”‘(r) < 0, 0 < y’“( t ) < M, 

for each solution YE C4[0, 1] to (4.5;). 

Proof: Let 0 < i < 1. Now condition (4.2) implies y > 0, y” < 0 on (0, 1) 
and as a result we have yiL. >O, y”’ < 0 on (0, 1); thus y” < I/n is strictly 
decreasing on (0, 1) which in turn implies y’> h on (0, 1) and so y > l/n is 
strictly increasing on (0, 1). In addition we have y’“< J.g( y) qS( - y”) < 
g(l/n) ti( l/n)= M, and integration yields M3, M1, MI, and M,. m 

Essentially reasoning the same as that in Theorem 2.2 establishes 
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THEOREM 4.2. Suppose (4.2) and (4.3) are satisfied. Then a C4[0, l] 
solurion of (4.4”) exists. 

Now suppose (2.4) and (2.5) are satisfied. Then we claim that there are 
constants M,, M,, and Mz independent of n such that l/n < Jy10 < M,, 
h < ]y’JO< M,, Iy”lO< M, for each solution y to (4.4”). The proof of the 
claim follows more or less the proof of Theorem 2.1 -we provide a few 
details. Assumption (2.4) implies 

( - y” - ]ln) ),tc _ y”y~~ 

4(-f’- l/n) 
G ___ d ig(y)( - f’) 6 g( y)( - y”) qq -y”) 

so integration from I to 1 yields 

( - y”(r) - lln)C - y”‘(r)1 
#(-y”(t)- I/n) 

GdY(l)) Y’(f). 

Now with I as defined in Theorem 2.1, integrate from 0 to t to obtain 

-J”‘(l)<1 ’ 
-.v( I ) 

0 
g(u)du + 1. 

0 > 

Next integration from I to 1 yields 

f(f)<1 -’ (,:“‘p,(u)du)+ 1 +h 

(4.6) 

(4.7) 

and finally integration from 0 to I yields y( 1) 6 I- ‘(5;“’ g(u) du) + 2 + h. 
Assumption (2.5) implies there exists a constant M,> 0 such that 
y( 1) Q M,. Also (4.6) and (4.7) yields Mz and M,, respectively. Thus our 
claim is established. The next argument is broken into two cases, when 
h=O and h>O. 

Case (1 ). h>O. 

The exact same argument as that in Case (1 ), part A, of Section 2 implies 
there exists a constant M3 independent of n such that 1 ~“‘1, < M,. 

Case (2). h=O. 

Suppose (2.12). Then the exact same argument as that in Case 3, part A 
of Section 2 implies there exists a constant M, independent of n such that 
Iy”‘lo < M,. 

Essentially the same argument as in Theorem 2.3 establishes. 

THEOREM 4.3. (i) Let b > 0 and suppose (2.4), (2.5), (4.2), and (4.3) ure 
.sati$ed. Then u C’[O, l]nC3(0, l]nC4(0, 1) solution qf(4.1) exists. 
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(ii) Let b=O and suppose (2.4), (2.5), (2.12) (4.2), and (4.3) are 
satisfied. In addition assume 

For any constants M > 0, K > 0 there exists q(t) continuous 
on [0, 1 ] and posititie on (0, 1) such thatf( t, y, q) 2 q(t) on 
(0, 1) x (0, Ml x C-K 0). (4.8) 

Then a C2[0, 1] n C3(0, 1] nC4(0, 1) solution of (4.1) exists. 

EXAMPLE. Consider the boundary value problem 
y’“= y a Jy”I-P, o<t<1; y(0) = y’( 1) = y”(0) = y”‘( 1) = 0 

with fl>O and O<u<i 

To see the above has a solution take g(y) = y-” and qS( 141) = 141 -O. 
Clearly (4.2) (4.3), (2.4), and (2.5) are satisfied. In addition (2.12) is 
true since a < i and also (4.8) holds with q(t)= M-‘K-“. Thus a 
C’[O, I] n C3(0, l] n C4(0, 1) solution exists by Theorem 4.3(ii). 

B. y(0) = 0, y’( 1) = b 2 0, y”(0) = 0, y”( 1) = 0 

Finally in this section we discuss the two point boundary value problem 

.Y=f(t, y, y”), o<t<1 
(4.9) 

y(O) = 0, y’( 1) = b 2 0, y”(0) = 0, y”( 1 ) = 0 

with assumptions (4.2) and (4.3) being satislied. Then by reasoning more 
or less the same as that in Theorems 4.1 and 2.2 we have that 

Y’” =f(t, Y, Y”), o<t<1 

Y(o)=;, y”(0) = - ;, y”(l)= -; 
(4.10”) 

y’(l)=b>O, 

has a solution y,, for each n E N+. Now suppose (2.4) and (2.5) are 
satisfied. Then we claim that there are constants M,, M,, and M, inde- 
pendent of n such that l/n<lyloGMMo, b,<Iy’lo<M,, l/n<ly”l,<M, 
for each solution y to (4.10”). The proof of the claim follows more or less 
the proof of Theorem 2.13-we provide here a few details. Now condition 
(4.2) implies y > 0, y” <O on (0, 1 ), and as a result we have yiU > 0, 
y” < - l/n on (0, 1) which in turn implies y’> b on (0, 1) and this y > l/n 
is strictly increasing on (0, 1). Let - yk,, be the maximum of - y”(t) on 
[0, 1] and suppose - yLaX occurs at t,E (0, 1). Now for t 6 to we have 
y”‘(t) < 0 so y” is strictly decreasing on (0, to). Also assumption (2.4) yields 

(-y”- l/n) u jr 

4(-v”- l/n) 
Y’c9wy;,,) -GdY)(-Y”), 
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so just as in Theorem 2.13 integration from !(I Q f,,) to f0 yields 

(-~“(f)--I/n)c--).“‘(f)l~g(!,(f))~,(f), 
4 -Y”(f) - l/n) 

Now integration from 0 to f(t < fO) gives -y”(f)< I ‘(IA”’ g(u) du)+ 1: 
t Q t,, and since the maximum of - y”(t) occurs at f,, we have 

-.vfl(t)<l-’ jy8(U)du+ 1). 
( 

f E [O, I]. 

The proof of the claim now follows just as in Theorem 2.13. The next 
argument is broken into two cases, when h = 0 and h > 0. 

Cuse (i ). h > 0. 

The exact same argument as that in Case (i) part D of Section 2 implies 
there exists a constant M, independent of n such that [~“‘l~ d M,. 

Case (2). h = 0. 

Suppose (2.12) holds. Then the exact same argument as that in Case (ii) 
part D of Section 2 implies there exists a constant M, independent of n 
such that I.r”‘10 < M,. 

Essentially the same proof as in Theorem 2.3 establishes 

THEOREM 4.4. (i) Let b > 0 and suppose (2.4), (2.5), (4.2), and (4.3) ure 
sutkfied. Then a C*[O, l] n C4(0, I) solution of (4.9) exists. 

(ii) Lef h = 0 and suppose (2.4), (2.5), (2.12), (4.2), (4.3), and (4.8) urc 
satisfied. Then u C*[O, 1] n C4(0, 1) solution of (4.9) exisfs. 

5. HIGHER ORDER EQUATIONS 

In this section we give a brief treatment of two point boundary value 
problems for higher order equations. There are many possible permuta- 
tions of boundary conditions that the ideas of this paper can handle; 
however we restrict our discussion to two sets of such conditions. Again for 
problems discussed here our nonlinear term may be singular at t = 0, t = I, 
1’ = 0, and/or J” = 0. 

Our first problem is to consider for n > 4 even the two point boundary 
value problem 

y’“‘+$(f)f(f, y, y”)=O, O<f<l 

y(O)=u20, y’(0) = h 2 0, (5.1 1 

y”(0) = 0, y”‘( 1 ) = 0. 9 j = 3, . . . . n - 1 
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with S satisfying the following conditions: 

f is continuous on [0, l]x [a, 30)x(0, co) with f >O 
on (0, 1) x (0, so) x (0, cc) and lim,,,,, f(r, y, q) = co 
uniformly on compact subsets of (0, 1) x (0, co) (5.2) 

f(t, y,q)Gg(y)&q) on CO, 11 x [a, ~)x(O, 301, where 
4 > 0 is continuous and nonincreasing on (0, zo) and g is 
continuous and nondecreasing on [a, co). (5.3) 

To establish the existence of a solution to (5.1) we first consider for m E N+ 
the problems 

Y’n) + bet) f(t, y* y”) = 0, O<t<l 

y(O)=a>O, y’(0) = b 2 0, (5.47 

y”(0) = ;, y”‘( 1 ) = 0, j = 3, . . . . n - 1 

THEOREM 5.1. Suppose (2.24), (2.25)*, (5.2), and (5.3) are satisfied. For 
i. E [0, 1 ] consider the family of problems 

Yen) + W(t) f(t, y, Y”) = 0, o<t<1 

Y(O) = 4 y’(O) = 6, y”(0) = ;, (5.57) 

y”‘( 1) = 0, j = 3, . . . . n - 1 

for fixed mEN+. Then there exist constants M,, i = 0, . . . . n, independent of 
i. such that 

a< y(t)<M,; b < y’(t) < M, ; 
1 

-&<y”(t)<M,; 

0 < y(i)(t) d M,, i=3,5,...,n-1; 

- M, ,< y”‘( 1) < 0 ., i = 4, 6, . . . . n - 2; 

for tE [0, 1] and 

-,.,y~,o: te(O, 1) 
t 

for each solution y E C”- ‘[O, I] n C”(0, 1) to (5.57). 

Proof Let 0 < I. < 1. Now condition (5.2) implies y > 0 on (0, 1) and so 
we have y’ > b on (0, 1) which in turn implies y > a is strictly increasing 
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on (0, 1). Also we have y”” < 0 on (0, 1) so y”’ < 0; i = n - 2, . . . . 6,4 and 
y”) > 0. j = n - 1 , ..., 5, 3 on (0, 1). In particular y” > l/m is strictly increasing 
on (0, 1). In addition we have - y”‘) d 11/(f) g(y) f$(y”); so integrate from I 
to I to obtain 

? .“I “(1) < [’ g(y(s)) &y”(s)) ‘j+(s) ds -, 

<n(y(l))b(?;“(r))J’ ~(.~)ds~K*R(L’(l))~(?.“(f)), 
I 

where K* = JA Ii/(s) d S, since R is nondecreasing on [a, X) and 4 is non- 
increasing on (0, x). Proceeding with this we obtain in general 

( _ 1 )/+ I ).Ol /) 
(1) 6 K*g(y(l)) 4(v”(t))* j= 1, . . . . n - 3. (5.6) 

In particular WC have 

y”‘( 1) 
9(~.,,(,)-t)~K*g(~v(‘)) 

and integration from 0 to I with J as defined in Theorem 2.4 yields 

.v”(t)<J ‘(K*~(y(l)))+ I for tE [0, 11. (5.7) 

Now integrate from 0 to I to obtain 

.v’(t)<J ‘(K*g(y(l)))+ 1 +h. lE[O, 11 (5.8) 

and finally integration from 0 to 1 gives y( 1) <J - ‘( K*g( y( 1))) + 1 + h + U. 
Assumption (2.25)* implies there exists a constant M,>O such that 
J( 1) < M,. In addition (5.7) and (5.8) yield M, and Ml, respectively. 

Remark. Note M,, Ml, and M2 are independent of m. 

The differential equation now yields M,,, M, , 2 . . . . Ms. I 

THEOREM 5.2. Suppose (2.24), (2.25)*, (5.2), and (5.3) are satisfied. 
Then a c” ‘[0, 1 ] n C”(0, 1) solution of (5.4’“) e.rists. 

Proof This follows immediately via the ideas of Theorem 2.8, where in 
this case F,: C’[O, l] 4 K, j: K>+ C’[O, I], L: K”,-+ K are defined by 
F;c(f)= -i.F*(t, r;(t)), ju=u and Lu(r)=c’“‘(f)/ll/(t). 1 

In addition there exist constants M,, M,, and M, independent of m such 
that a~ly(,~M,,h~I~‘l,~M,, l/m<]y”],<M,foreachsolutionyto 
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(5.4m). Now suppose (3.7) holds. Then we claim that there is a constant M, 
independent of m such that 11 y”‘[I L2 < M,. To see this note that (5.6) implies 
-Y’“(l) G K*g(Y(l)) &Y”(l)) so 

-Y”(f) Y’“(l) d K*g(Y(l)) Y”(f) 4(v”(t)) G K*g(M,) M,4(M2). 

Integrate from 0 to 1 to obtain 

L y'"(0) + j' [y"'(s)]' dr < K*g(M()) M,qqM,). 
m 0 

Now since y”‘(0) 20 our claim is established. Essentially reasoning the 
same as in that Theorem 3.3 established 

THEOREM 5.3. Suppose (2.24), (2.25)*, (3.7), (3.20), (5.2), and (5.3) are 
satisfied. Then a C’[O, l] n C'-'(0, l] n C"(0, I) solution of (5.1) exists. 

Remark. It should be noted here that the exact analogue of 
Theorem 5.3 holds with n = 4. 

Remark. With the above ideas we can obtain an analogue of 
Theorem 5.3 for the two part boundary value problem 

Y (n)= e(1) “04 y9 Y”), O<l<l 

y(0) = a 2 0, y’(0) = h 2 0, y”(0) = 0, 

y”‘( 1) = 0, j = 3, . . . . n - 1 

with n > 3 odd. 

Finally in this paper we examine for n > 4 even the two point boundary 
value problem 

Y (n’= Ii/(f) f(h y, Y”), o<r<1 

Y(O) = 0, y’(l)=b20, y”(0) = c d 0, (5.9) 

y”‘( 1) = 0; j = 3, . . . . n - 1 

with assumptions (2.2), (2.3), (2.4), and (2.24) being satisfied. In addition 
assume 

1(1 is nondecreasing on (0, cc) (5.10) 

Suppose there exist constants A 2 0, B 2 0, 0 G r c 1 such 
that for all z E [O, cc ), 5; g(u) du G St”+ B (U/~(U)) du. (5.11) 
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To establish the existence of a solution to (5.9) we first consider for M E N + 
the problems 

? ‘?I’ = $(f) f(L L’, y”), O<f<l 

J-(0)=$ y’( 1) = h, y”(0) = c, 

y”‘( 1 ) = 0; ,j= 3, . . . . n - 1. 

(5.12”‘) 

THEOREM 5.4. Suppose (2.2), (2.3), (2.4), (2.24) (5.10), and (5.11) are 
satkfied. For i E [0, 1 ] consider 

pl = Mt) f(4 y, Y”), O<f<l 

y(O)=i 
m’ 

y’( I ) = h, I”‘( 0) = c, (5.137) 

y(“( I ) = 0, j = 3, . . . . n - 1 

$or Jxed m E N + . Then there exist constants M,, i = 0, . . . . n, independent qf 
1. such that 

&v(r)<M,; 
m h < y’(r) Q M, ; -M,dy”(f)dC; 

0 d y”‘(f) < Mi, i = 4, 6, . . . . n - 2; 

-Mi<y”‘(f)<O, i=3,5,...,n-1; 

for TV [0, I] and 

op~)<M 
$(I) n’ 

f E (0, 1) 

for each solution J’E c” ‘[0, l] n C”(0, 1) fo (5.137). 

Proof. Let 0 < ). d 1. Now condition (2.2) implies y > 0 on (0, 1) and as 
a result we have y”’ > 0, i = n, n - 2, . . . . 4 and y’” < 0, i = n - 1, n - 3, . . . . 3 
on (0, 1); thus y” < c is strictly decreasing on (0, 1) which in turn implies 
y’> b on (0, 1) so y > l/m is strictly increasing on (0, 1). In addition we 
have 

( - f’) p’ 

& - Y”) 
G ti(t) g(v)( -J”) 
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so integration from r to 1 using assumptions (2.4) and (5.10) yields 

c-Y”~~~lc-Y’“-“~~~1 
4( -Y”(O) 

d 
-v”(t) 

5’ y’“‘(.~) ds G $41) g(y(r)) I’ C- Y”(s)~ ds 
#(-y”(t)) f I 

G N1) gMr))C -b + v’(t)1 G tit11 dy(r)) y’(t) 

since g is nonincreasing on (0, x). Thus integration from t to 1 yields 

[ - Y”(t)1 [y’“- *‘WI ~ q/(1) I;(‘) g(u) du. 
4(-Y”(O) 

Continuing this process we obtain in general 

[-y”(r)][(-l)‘y’“-“(t)] 

4(-y”(t)) 
< K* f”” g(u) du; j = 3, . . . . n - 3, 

do 

where K* = 5; +(s) d.y. In particular we have 

C-y”(~)lC-Y”‘(~)l <K* 
I 

y”) g(u)du 
&-v”(t)) ’ 0 ’ 

so this together with (2.4) yields 

C-y”(r)+c] 
)(-y,,(r)+C)C-~“‘(~)l$K*jd”‘g(~)d~. 

Integration from 0 to r with I as defined in Theorem 2.1 yields 

-y”(r)<Z-’ (K*/f”g(u)du)-c, t~[0, I]. (5.14) 

Now integrate from t to 1 to obtain 

y’(t) < I-’ (K’ j;“g(u)du)+b-c, ?E[O, 1] (5.15) 

and finally integration from 0 to 1 gives y( 1) < I- ‘(K* I$‘) g(u) du) + b + 
1 - c. Assumption (5.11) implies there exists a constant MO > 0 such that 
y( 1) G MO. In addition (5.14) and (5.15) yield Mz and M,, respectively. 

Remark. Note MO, M,, and M, are independent of n. 

The differential equation now yields M,, M, _ , , . . . . M,. i 

Essentially reasoning the same as that in Theorem 5.2 establishes 
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THEOREM 5.5. Suppose (2.2), (2.3), (2.4), (2.24), (5.10) and (5.11) ure 
sarisfed. Then u C” ’ [0, I] n C”‘(0, 1) so/ution of (5.12"') exists. 

Moreover there exist constants M,,, M,, and M, independent of m such 
that llmdlyl,6M,, h<ly’I,,<M,, - c < 1 r” 1 o 6 Mz for each solution ~3 
to (5.12m). In fact we claim that there is a constant M, independent of m 
suchthat IIL’~‘IIL~~M3.Toseethisnotel”“‘(r)~g()’(r))~(t)sup, ,..Ml,&q) 
= Eg( y( 1)) I)( I). where E = sup, <,,,,>., +4(q). Integrate from I to 1 to obtain 

d Eg(y(f)) [’ Ii/(s) ds< EK*g(y(t)) -, 

and continuing this process we obtain in general 

(-I)‘)* “I ‘j(f) 6 EK*g( y(r)), j= 1 , . . . . n - 5. 

In particular we have -,r I”( 1) < EK*g( y( r)), I E [0, I]; so multiply by 
- y” and integrate from r to 1 to obtain 

- f’(r) ,I.“’ ‘( 1) + 
[y”‘(.s)]2 

2 

< EK*g(y(f)) [’ [ - f’(s)] ds. 
‘I 

= EK*g(y(r))[ -h+ f(f)] d EK*g(y(f)) j*‘(r) 

and so -y”(t) J”‘(I) Q EK*g(y(r)) y’(r). Now integrate from 0 to I to 
obtain 

f’(0) y”‘(O) + j’ [y”‘(.~)]~ ds d EK* [ “” K(U) du 
0 ‘0 

and since y”(0) y”‘(0) 2 0 our claim is established. Essentially reasoning the 
same as that in Theorem 3.3 establishes 

THEOREM 5.6. Suppose (2.2), (2.3), (2.4), (2.13), (2.24), (5.10), and 
(5.11) are .sari.sfied. Then a C’[O, l]nC”-‘(O, !]nC”(O, 1) sofufion of 
(5.9) exists. 

Remark. It should be noted here that the results of the above 
case could be extended to include equations of the form J.(~’ = 
11/(l) f(f, y, y’, J,“), wheref has a bounded dependence on its ~1’ variable for 
any fixed values of the other arguments. 
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