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Abstract

We establish the critical Fujita exponents for the solution of the porous medium equationut =
∆um, x ∈ RN+ , t > 0, subject to the nonlinear boundary condition−∂um/∂x1 = up, x1 = 0, t > 0,
in multi-dimension.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we determine the critical Fujita exponent concerned with the follo
initial-boundary value problem:

ut = ∆um, x ∈ RN+ , t > 0, (1.1)

u(x,0) = u0(x), x ∈ RN+ , (1.2)

−∂um

∂x1
= up, x1 = 0, t > 0, (1.3)
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whereRN+ = {(x1, x
′) | x ′ ∈ RN−1, x1 > 0}, m > 1, p > 0, andu0(x) is a nonnegative

bounded function satisfying the compatibility condition

−∂um
0 (x)

∂x1
= u

p

0(x), x1 = 0, (1.4)

and is locally supported near some point, namely, for somex0 ∈ RN+ , suppu0 ⊂ BR(x0) ∩
RN+ andu0(x) �≡ 0. However, the last assumption is not a real requirement for derivin
results. What we want to show is that even for the initial datumu0(x) vanishing except fo
a small ball, the solutions may still blow up in a finite time.

The concept of critical Fujita exponents was proposed by Fujita before 1970
discussing the heat conduction equation with nonlinear source; see, for examp
Following the idea of Fujita, we may define similar concepts for problem (1.1)–(1.3
call p0 the critical global existence exponent if it has the following property: ifp > p0,
there always exist nonglobal solutions of problem (1.1)–(1.3) while if 0< p < p0, every
solution of problem (1.1)–(1.3) is global.pc is called the critical Fujita exponent if fo
p0 < p < pc any nontrivial solutions of problem (1.1)–(1.3) blows up in a finite time;
p > pc small data solutions exist globally in time while large data solutions are nongl

The problem of determining critical Fujita exponent is an interesting one in the ge
theory of blowing-up solutions to different nonlinear evolution equations of mathem
physics. Over the past few years there have been a number of extensions of Fujita r
various directions; see [2–6]. Recently, it was Galaktionov and Levine [2] who first stu
the one-dimensional case for the nonlinear boundary-value problem (1.1)–(1.3) withu0(x)

having compact support. They showed thatp0 = (m+1)/2,pc = m+1. As for the similar
questions with positive initial datau0(x), we refer to [7–9].

This paper can be thought of as a natural continuation of [2] to multi-dimensional
Because we are interested in the phenomena that local initial perturbation may caus
up of solutions, we need not to consider the domain rather than the half-spaceRN+ . In
fact, for a general domain, we may localize and flatten the boundary, and then make
modification for the arguments presented in this paper.

The main result of this paper is thatp0 = (m + 1)/2, pc = m + 1/N . The idea of the
proof is to construct super-solutions and sub-solutions inspired by [2]. However, the
solutions are quite different from those adopted in [2], since they should be chos
have compact support in any spatial direction. For the process of verifying such k
sub-solutions, we use the discriminant of cubic algebraic equations.

2. The main results and their proofs

We need the following simple lemma.

Lemma 2.1 (The discriminant of cubic algebraic equations).For the cubic equation

x3 +px + q = 0, (2.1)

there exist three roots

x1 = A+ B, x2,3 = −A+ B ± i
A −B √

3,

2 2
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A = 3

√
−q

2
+ √

Q, B = 3

√
−q

2
− √

Q,

andQ = (p/3)3 + (q/2)2.

• If Q = 0, (2.1)has three real roots andx2 = x3;
• If Q> 0, (2.1)has one real root and two conjugate complex roots;
• If Q< 0, (2.1)has three unequal real roots.

Theorem 2.2. If p > m + 1/N , then any nontrivial nonnegative solution of the probl
(1.1)–(1.3)blows up in finite time for “large”u0.

Proof. We begin with the construction of a nonglobal sub-solution of the self-similar f

u(x, t) = (T − t)
− 1

2p−(m+1) θ(η), (2.2)

whereT > 0 is a given constant,

η = |ζ |, ζ = x

(T − t)
p−m

2p−(m+1)

.

We can see thatu(x, t) is a sub-solution of (1.1)–(1.3) if the functionθ(η) satisfies

1

ηN−1

(
ηN−1(θm)′

)′ − p − m

2p − (m + 1)
ηθ ′ − 1

2p − (m+ 1)
θ � 0 (2.3)

for η ∈ {η > 0 | θ(η) > 0} and

−∂θm

∂ζ1
� θp, ζ1 = 0. (2.4)

We claim that (2.3) and (2.4) admits a solution of the form

θ(η) = A(a − η)
1

m−1+ (η − b)
1

m−1+ , 0< b < η < a,

for some positive constantsA,a, b specified later. First, suchθ(η) satisfies (2.4), sinc
x1 = 0 impliesζ1 = 0 and

−∂θm

∂ζ1
= −∂θm

∂η

∂η

∂ζ1
= −∂θm

∂η

ζ1

η

implies

−∂θm

∂ζ1

∣∣∣∣
ζ1=0

= 0 � θp.

To check (2.1), by a direct calculation we get

θ ′ = −A
1

(a − η)
1

m−1−1
+ (η − b)

1
m−1+ + A

1
(a − η)

1
m−1+ (η − b)

1
m−1−1
+ ,
m− 1 m− 1
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(θm)′′ = Am m

m − 1

[
1

m− 1
(a − η)

1
m−1−1
+ (η − b)

m
m−1+

− m

m − 1
(a − η)

1
m−1+ (η − b)

1
m−1+

− m

m − 1
(a − η)

1
m−1+ (η − b)

1
m−1+

+ 1

m − 1
(a − η)

m
m−1+ (η − b)

1
m−1−1
+

]
.

Substituting those into (2.3) and multiplying (2.3) by(a − η)
1−1/(m−1)
+ (η − b)1−1/(m−1),

we have

Amm

(m − 1)2 (η − b)2+ − 2Amm2

(m − 1)2 (a − η)+(η − b)+ + Amm

(m − 1)2 (a − η)2+

− N − 1

η

Amm

(m − 1)
(a − η)+(η − b)2+ + N − 1

η

Amm

(m− 1)
(a − η)2+(η − b)+

− p − m

2p − (m + 1)
η

[
− A

m− 1
(η − b)+ + A

m − 1
(a − η)+

]

− A

2p − (m + 1)
(a − η)+(η − b)+ � 0.

Set

e1 = 2Amm

(m − 1)2
+ 2Amm2

(m − 1)2
+ (N − 1)

2Amm

m − 1
+ A

m − 1
,

e2 = − 2Amm

(m − 1)2 (a + b)− 2Amm2

(m − 1)2 (a + b) − (N − 1)
Amm

m − 1
3(a + b)

− p − m

2p − (m + 1)

A

m − 1
(a + b)− A

2p − (m + 1)
(a + b),

e3 = Amm

(m − 1)2 (a
2 + b2) + 2Amm2

(m − 1)2ab + A

2p − (m + 1)
ab

+ (N − 1)
Amm

m− 1
(a2 + b2 + 4ab),

e4 = −(N − 1)
Amm

m− 1
ab(a + b).

We observe that (2.3) holds if

e1η
3 + e2η

2 + e3η + e4 � 0, 0< b < η < a. (2.5)

If we chooseA large enough, it reduces to show

ẽ1η
3 + ẽ2η

2 + ẽ3η + ẽ4 � 0, 0< b < η < a, (2.6)

where
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ẽ1 = 2+ 2m

m − 1
+ 2(N − 1),

ẽ2 = −2+ 2m

m − 1
(a + b)− 3(N − 1)(a + b),

ẽ3 = 1

m − 1
(a2 + b2) + 2m

m − 1
ab + (N − 1)(a2 + b2 + 4ab),

ẽ4 = −(N − 1)ab(a + b).

To do this, set

y(η) = ẽ1η
3 + ẽ2η

2 + ẽ3η + ẽ4.

Notice thatẽ1 > 0 implies limη→+∞ y(η) = +∞.
Letting a = cb, c > 1, we want to show that ifc → 1+, (2.6) holds. From Lemma 2.

we know that whenc → 1+, the equationy(η) = 0 has one real root and two conjuga
complex roots. We only need to show that ifc → 1+, y(b) � 0, namely,

y(b) =
[

2+ 2m

m − 1
+ 2(N − 1)

]
b3 +

[
− (2+ 2m)(1+ c)

m − 1
− 3(N − 1)(1+ c)

]
b3

+
[

1

m − 1
(1+ c2) + (N − 1)(c2 + 1+ 4c) + 2m

m − 1
c

]
b3

− [
(N − 1)c(c + 1)

]
b3 � 0.

Let

g(c) =
[

2+ 2m

m − 1
+ 2(N − 1)

]
+

[
− (2+ 2m)(1+ c)

m − 1
− 3(N − 1)(1+ c)

]

+
[

1

m − 1
(1+ c2) + (N − 1)(c2 + 1+ 4c)+ 2m

m − 1
c

]

− [
(N − 1)c(c + 1)

];
theny(b) = g(c)b3, whereg(c) = (1− c)2/(m − 1) � 0. Soy(b) � 0.

Thus we have verified thatu(x, t) is a weak sub-solution of (1.1)–(1.3) and thatu(x, t)

blows up in a finite time.
If for any givenT , A, a, b, andc satisfying (2.3) and (2.4), the initial functionu0 is

large enough such that

u0(x) � u(x,0), x ∈ RN+ ,

then from the comparison principle (see [10]),u(x, t) � u(x, t) in RN+ × (0, T ) and hence
u(x, t) blows up in a finite time which is not larger thanT . The proof is complete. ✷
Theorem 2.3. If (m + 1)/2< p < m + 1/N , then any nontrivial nonnegative solution
problem(1.1)–(1.3)blows up in finite time.

Proof. We now use the idea used for a different problem in [11]. We first notice that (
(1.3) admits the following well-known self-similar solution

uB(x, t) = (τ + t)
− N

N(m−1)+2θ(η), (2.7)
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where

η = |ζ |, ζ = x

(τ + t)
1

N(m−1)+2

,

with τ > 0 an arbitrary constant. We can see thatu(x, t) is a sub-solution of (1.1)–(1.3)
θ(η) satisfies

1

ηN−1

(
ηN−1(θm)′

)′ + 1

N(m − 1)+ 2
ηθ ′ + N

N(m − 1)+ 2
θ = 0 (2.8)

and

∂θm

∂ζ1

∣∣∣∣
ζ1=0

= 0. (2.9)

Hereη ∈ {η > 0 | θ(η) � 0}.
By a simple calculation, we see thatθ(η) = A(c2−η2)

1/(m−1)
+ , 0< η < c, satisfies (2.8

and (2.9), where

A =
{

m − 1

2m[N(m − 1) + 2]
} 1

m−1

.

ThusuB is a sub-solution to problem (1.1)–(1.3).
By using the properties of weak solutions of problem (1.1)–(1.3), we deduce that

exist t0 � 0 such that

u(0, t0) > 0.

Sinceu(x, t0) is a continuous function, there existτ > 0 large enough and smallc > 0 such
that

u(x, t0) � uB(x, t0), x ∈ RN+ .

Then by comparison principle we deduce that

u(x, t) � uB(x, t), t � t0, x ∈ RN+ . (2.10)

We now prove that there existt∗ � t0 andT large enough so that

uB(x, t∗) � u(x,0), x ∈ RN+ , (2.11)

whereu(x, t) is the sub-solution given by (2.2). By using the space–time structure of
functionsuB andu, we choose suitable constantsa, b such that 0< a − b < 1. If

(τ + t∗)−
N

N(m−1)+2 � T
− 1

2p−(m+1) (2.12)

and

(τ + t∗)
N

N(m−1)+2 � T
p−m

2p−(m+1) (2.13)

are satisfied, (2.11) is valid. We can see from (2.12) and (2.13) that sucht∗ andT exist if

T
1

2p−(m+1) � T
N(p−m)

2p−(m+1)
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m

)

for arbitrarily largeT . This implies that

1

2p − (m + 1)
>

N(p − m)

2p − (m + 1)
,

namely,

p <m + 1

N
.

Hence, from (2.10) and (2.11), using the comparison principle we have that ifp0 < p

< pc, u(x, t) blows up in a finite time. The proof is complete.✷
Theorem 2.4. If p > m + 1/N , then any nontrivial nonnegative solution of proble
(1.1)–(1.3)is global in time for “small” u0.

Proof. We shall seek a global super-solution of the self-similar form

ū(x, t) = (T + t)
− 1

2p−(m+1) Bg(η), (2.14)

where

η = |ζ |, ζ1 = x1 + b

(T + t)
p−m

2p−(m+1)

, ζi = xi

(T + t)
p−m

2p−(m+1)

(i = 2, . . . ,N),

T > 0 is a given positive constant. We can see thatū(x, t) is a super-solution of (1.1)–(1.3
if g(η) � 0 satisfies

1

ηN−1

(
ηN−1(gm)′

)′ + p − m

2p − (m + 1)
ηg′ + 1

2p − (m + 1)
g � 0 (2.15)

and

−Bm ∂gm

∂ζ1

∣∣∣∣
ζ1=b

� Bpgp. (2.16)

Hereζ ∈ {η > 0 | g(η) � 0}, B > 0.
Now we show thatg(η) = A(c2 − η2)

1/(m−1)
+ , where

A =
{

m − 1

2m[N(m − 1) + 2]
} 1

m−1

,

satisfies (2.15) and (2.16), whereb ∈ (0, c). Using

1

ηN−1

(
ηN−1(gm)′

)′ = − 1

N(m − 1) + 2
ηg′ − N

N(m − 1)+ 2
g,

we see thatg satisfies

Bm−1
{
− 1

N(m − 1) + 2
ηg′ − N

N(m − 1)+ 2
g

}

+ p − m
ηg′ + 1

g � 0,

2p − (m + 1) 2p − (m + 1)
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namely,{
2

m − 1

[
Bm−1

N(m − 1)+ 2
− p − m

2p − (m + 1)

]

−
[

1

2p − (m + 1)
− NBm−1

N(m − 1) + 2

]}
η2

+
[

1

2p − (m + 1)
− NBm−1

N(m − 1) + 2

]
c2 � 0.

Sincep >m + 1/N , we can choose a suitable constantB such that

Bm−1

N(m − 1)+ 2
<

p − m

2p − (m + 1)
,

1

2p − (m + 1)
<

NBm−1

N(m − 1)+ 2
.

Thus (2.15) is valid. Finally, we notice that, forg, inequality (2.16) is equivalent to

(BA)p−m(c2 − η2)
p−1
m−1 � 2mb

m − 1
, b < η < c. (2.17)

If the inequality

(BA)p−m(c2 − b2)
p−1
m−1 � 2mb

m − 1
, b < η < c,

holds, (2.17) is true. Settingc = ab, α � 1, by choosingB small enough, we have

(BA)p−m(α2 − 1)
p−1
m−1b

2p−(m+1)
m−1 � 2m

m − 1
,

which implies that (2.17) is valid.
Thus, forp > pc , there exists a nontrivial global super-solution, and hence a cla

small global solutions. We have thus completed the proof.✷
Theorem 2.5. If 0 < p < p0, then any nontrivial nonnegative solution of problem(1.1)–
(1.3) is global in time.

Proof. If p = p0 = (m+ 1)/2, we can construct a global super-solution of the self-sim
form

u∗(x1, x
′, t) = u∗(x1,0, t) = eα(T+t )h(ζ ),

whereζ = x1/e
α(T+t )/2, T > 0 is a given positive constant, andα > 0. We can see tha

u∗(x, t) is a solution of (1.1)–(1.3) ifh(ζ ) satisfies

(hm)′′(ζ ) + α(m − 1)

2
ζh′(ζ ) − αh(ζ ) = 0 (2.18)

and

−(hm)′(0) = hp0(0). (2.19)

From [12] we see that there exists a unique solutionh �≡ 0 which has compact suppo
onx1 such that (2.18) and (2.19) hold. Thus, we can chooseT large enough such that

u0(x) � u∗(x,0), x ∈ RN+ .
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Using comparison principle, we have

u(x, t) � u∗(x, t).

From the global existence ofu∗(x, t), we see thatu(x, t) is also global in time.
If p < p0, u∗(x, t) is a global super-solution of (1.1)–(1.3) wheneveru∗(0, t) � 1.

Hence, using comparison principle again, we can get the global existence ofu(x, t). The
proof is complete. ✷
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