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Abstract

We establish the critical Fujita exponents for the solution of the porous medium equation
Au™, x € Rﬁ, t > 0, subject to the nonlinear boundary conditiedu™ /dx1 = u”, x1 =0,7 > 0,
in multi-dimension.
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1. Introduction

In this paper we determine the critical Fujita exponent concerned with the following
initial-boundary value problem:

uy=Au", xeRY, 1>0, (1.1)

u(x,0)=uop(x), xeRY, (1.2)
8 m

— “ =uf, x1=0,1>0, (13)
0x1
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whereRY = {(x1,x") | x’ € RN71, x1> 0}, m > 1, p > 0, anduo(x) is a nonnegative
bounded function satisfying the compatibility condition

_dug () —ul(x), x1=0, (1.4)

dx1

and is locally supported near some point, namely, for sefne Rf, suppio C Br(x%) N

Ri’ anduo(x) # 0. However, the last assumption is not a real requirement for deriving our
results. What we want to show is that even for the initial dattgitx) vanishing except for

a small ball, the solutions may still blow up in a finite time.

The concept of critical Fujita exponents was proposed by Fujita before 1970’s in
discussing the heat conduction equation with nonlinear source; see, for example, [1].
Following the idea of Fujita, we may define similar concepts for problem (1.1)—(1.3). We
call po the critical global existence exponent if it has the following property: i po,
there always exist nonglobal solutions of problem (1.1)—(1.3) while<f § < pg, every
solution of problem (1.1)—(1.3) is globap. is called the critical Fujita exponent if for
po < p < pc any nontrivial solutions of problem (1.1)—(1.3) blows up in a finite time; for
p > p. small data solutions exist globally in time while large data solutions are nonglobal.

The problem of determining critical Fujita exponent is an interesting one in the general
theory of blowing-up solutions to different nonlinear evolution equations of mathematical
physics. Over the past few years there have been a number of extensions of Fujita result in
various directions; see [2—6]. Recently, it was Galaktionov and Levine [2] who first studied
the one-dimensional case for the nonlinear boundary-value problem (1.1)—(1.2p\widh
having compact support. They showed thgt= (m + 1)/2, p. = m + 1. As for the similar
guestions with positive initial datay(x), we refer to [7-9].

This paper can be thought of as a natural continuation of [2] to multi-dimensional case.
Because we are interested in the phenomena that local initial perturbation may cause blow
up of solutions, we need not to consider the domain rather than the half—ﬁﬁaehﬂ
fact, for a general domain, we may localize and flatten the boundary, and then make small
modification for the arguments presented in this paper.

The main result of this paper is thay = (m + 1)/2, p. = m + 1/N. The idea of the
proof is to construct super-solutions and sub-solutions inspired by [2]. However, the sub-
solutions are quite different from those adopted in [2], since they should be chosen to
have compact support in any spatial direction. For the process of verifying such kind of
sub-solutions, we use the discriminant of cubic algebraic equations.

2. Themain resultsand their proofs
We need the following simple lemma.

Lemma 2.1 (The discriminant of cubic algebraic equatior®)r the cubic equation
X3+ px +q =0, (2.1)

there exist three roots

A+B A-B
x1=A+ B, xX23=——F7—=i

31
2 2\/_
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where

A=J-T+vo. B=9-1-Vo

andQ = (p/3)% + (¢/2)%

e If 0 =0, (2.1)has three real roots angy = x3;
e If O >0, (2.1)has one real root and two conjugate complex rpots
e If O <0, (2.1)has three unequal real roots.

Theorem 2.2. If p > m + 1/N, then any nontrivial nonnegative solution of the problem
(1.1)—(1.3)lows up in finite time for “large”ug.

Proof. We begin with the construction of a nonglobal sub-solution of the self-similar form

u(x, 1) = (T — 1) 006y, (2.2)

whereT > 0 is a given constant,
X

n=l, {(=——mm—

(T — t)2—m+D

We can see that(x, t) is a sub-solution of (1.1)—(1.3) if the functionn) satisfies

_pmm 1

2p—(m+1) 2p—(m+1)

forne{n>0]6(n) > 0}and

1 ,
o (" temy) - 6>0 (2.3)

I or =0 (2.4)
We claim that (2.3) and (2.4) admits a solution of the form

1 1
oM =Ala—-mi"m-bi", 0<b<n<a,

for some positive constants, a, b specified later. First, suct(n) satisfies (2.4), since
x1 =0 implies¢1 =0 and

90" 96" on 80"

C9a Anat an
implies
_ﬂ Zoggp_
91 ¢1=0

To check (2.1), by a direct calculation we get

0 =-A

Al Al Ayl
m_l(a—n)+ (n—>b)% +Am_1(a—n)+ m—=b)y"
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n m 1 mi—*l mi—
C 1)”=Amm—_1[m {@—mi RV
_ (a_n)m 1(77_b)m 1
1 11
_ m— b)"
—q@—-my =b)y
1 L1
+ (a—n) tm=b)it T
m —

Substituting those into (2.3) and multiplying (2.3) by — n)3 ™"V (5 — p)1-1/n-1),
we have

A"m m,,2 m

m A"m
- 1)2( —b)i — w(a—rlﬂ(’?—bﬂ‘i‘m

N 1 A"m ( w b) +N—l Am
a—m+m— —
* T m-1

1(a - n)+]

(a— n)i

(@—mim—Db

n (m—-1
p—m A b A
_2p—(m+1)n|:_m—1(n_ )++m—

A
- m(d -+ —5b)+ =20

Set
2A™m N 2A™m? FN—D 2A™m N A
m—-12 (m-—172 m—1 m-1
A"m 2AMm?2 A"m
e2=- )2(a+b) o@D = (N =D E3a b
p—m

(m—-—1
A
B —(m+1m-— 1( a+b)- p—(m+1)(a+b)7

€1 =

A’"m @+ 52+ 2AMm? N A )
3= ——=I(a a a
T m—1)2 m—12" " 2p—(m+1)

A
+(N-1
m

m

_ml(a2+b2+4ab),

m

_mlab(a + b).

A
es=—(N—-1)
m
We observe that (2.3) holds if
e +em’+en+es >0, O<b<n<a. (2.5)
If we chooseA large enough, it reduces to show
elr) —l—ezr) +en+es>0, O<b<n<a, (2.6)

where
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2+2m

+2(N = 1),

1 (a+b)—3(N— D(a+b),

- 1 2m
G3=——(@*+b*)+
m—1 m —
éa=—(N — Dab(a+b).
To do this, set

1ab+ (N — 1)(a®+ b% + 4ab),

y(n) =é1n> + &2n® + é3n + éa.
Notice thate; > 0 implies lim,_, 1o y(17) = +o0.
Lettinga = ¢b, ¢ > 1, we want to show that i# — 17, (2.6) holds. From Lemma 2.1
we know that where — 17, the equationy() = 0 has one real root and two conjugate
complex roots. We only need to show that if> 1%, y(b) > 0, namely,

y(b>=[2+2 42N — 1)}193 [W—S(N—l)(l—i—c)}b?’
m-—1 m-—1
1 m 13
+|:m— _1c:|b
—[(N = Dec+ D=0
Let
2+ 2m)(L+ )

7t 2(N — 1)} + [— —3(N-D(A+ c)}

2m
T
—[(N = De(c+D];

theny(b) = g(c)b3, whereg(c) = (1 —¢)2/(m — 1) > 0. Soy(b) >

Thus we have verified that(x, r) is a weak sub-solution of (1. 1) (1.3) and that, 1)
blows up in a finite time.

If for any givenT, A, a, b, andc satisfying (2.3) and (2.4), the initial functiarny is
large enough such that

uo(x) >u(x,0), xeRY,

glc) = [ 1

+ [i(1+c2)+(N 1)(c?

then from the comparison principle (see [104)x, 7) > u(x, t) in RN x (0, T) and hence
u(x, t) blows up in a finite time which is not larger thdh The proof is complete. O

Theorem 2.3. If (m +1)/2 < p <m + 1/N, then any nontrivial nonnegative solution of
problem(1.1)—(1.3)olows up in finite time.

Proof. We now use the idea used for a different problem in [11]. We first notice that (1.1)—
(1.3) admits the following well-known self-similar solution

up(x. 1) = (z +1) " Vo520, 2.7)
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where
X
n=Il, {=——m——5,
(t + 1) Nm=1+2
with T > 0 an arbitrary constant. We can see thét, ¢) is a sub-solution of (1.1)—(1.3) if
0 (n) satisfies

1 N-1 , 1 N
—_— o™y 0’ 6=0 2.8
anl(n ( ))+N(m—1)+2n +N(m—1)+2 (2.8)
and
89/‘"
=0. (2.9)
91 1=0

Heren e {n>0]6(n) > 0}.
By a simple calculation, we see thit)) = A(c?—n?)
and (2.9), where

i/(m_l)’ 0 < 7 < c, satisfies (2.8)

1

A_ m_l }m—l
B {2m[N(m—1)+2] '

Thusu g is a sub-solution to problem (1.1)—(1.3).
By using the properties of weak solutions of problem (1.1)—(1.3), we deduce that there
existrg > 0 such that

u(0, r9) > 0.

Sinceu(x, tp) is a continuous function, there exist- 0 large enough and smalt- 0 such
that

u(x,to) >up(x,tg), x¢€ Rf.
Then by comparison principle we deduce that
u(x,t) > up(x,t), t=rto, xeR_]:_/. (2.10)
We now prove that there exist > 1o andT large enough so that
ug(x,t) >u(x,0), xeRY, (2.11)

whereu(x, t) is the sub-solution given by (2.2). By using the space—time structure of both
functionsu g andu, we choose suitable constaat$ suchthat O0<a — b < 1. If

N

1
(T +t,) Vou=D+2 > T~ 2p=-0FD (2.12)

and

(t +1,) VD72 3 TT-00D (2.13)
are satisfied, (2.11) is valid. We can see from (2.12) and (2.13) thatsacki 7 exist if

1 N(p—m)
T 2p—(m+1) >> T 2p—(m+1)
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for arbitrarily largeT . This implies that

1 N(p—m)
2 —m+1)  2p—(m+1)
namely,
1
p<m+ﬁ.

Hence, from (2.10) and (2.11), using the comparison principle we have that<fp
< pe, u(x, t) blows up in a finite time. The proof is complete

Theorem 24. If p > m 4+ 1/N, then any nontrivial nonnegative solution of problem
(1.1)—(2.3)is global in time for “small” ug.

Proof. We shall seek a global super-solution of the self-similar form

1
u(x,t) = (T +1t) 2»=+D Bg(n), (2.14)
where
x1+b Xi .
n=|§|’ {1271)7;«”7 é’l: : p—m (1225"'5N)a
(T +1)2=n3D (T +1)2-04D

T > 0 is a given positive constant. We can see ilat ¢) is a super-solution of (1.1)—(1.3)
if g(n) > 0 satisfies

1 N—=1, my/\/ p—m / 1
y o P e T e<O 2.15
) T 2 D (@15)
and
8 m
_pmZ | > prgpr. (2.16)
91 f1=b
Here¢ e{n>0|g(n) >0}, B> 0.
Now we show thag (1) = A(c? — n2)Y "™ where
g ¥

1

A m—1 m=1
T 2m[Nm —1) +2] ’
satisfies (2.15) and (2.16), where (0, ¢). Using

1 N-=1, my\/\ __ 1 / N
anl(” @) = Nm—D32"% " Nm—D12%

we see thayp satisfies

Bmfl _;ng/_Lg
Nim—-1)+2 N@m—1)+2
p—m

+ "+ 0,
2p—m+1"®

g <
2p—(m+1)
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namely,

e e
m—1|Nm-1)+2 2p—(m+1)

1 NBmfl }2
_|:2p—(m+1) _N(m—1)+2j| 1

1 NBm—l 2
+ — c“<0.
2p—(m+1) N@m-1)+2

Sincep > m + 1/N, we can choose a suitable const&nguch that

B"1 p—m 1 NB™ 1
Nm—D+2 2p—m+1)  2p—m+1) Nm-D+2
Thus (2.15) is valid. Finally, we notice that, for inequality (2.16) is equivalent to
(BAYP™™ (2 —p )m 1 < —— 2mb b<n<ec. (2.17)
m—1
If the inequality
2mb

(BA)P—m(CZ 2),,1 1 < <— b<n<ec,
m

holds, (2.17) is true. Settlng_ ab, o > 1, by choosingB small enough, we have

2p (m+1> 2m

(BA)P ™" (@? — 1)n-t <

m—1
which implies that (2.17) is valid.

Thus, forp > p., there exists a nontrivial global super-solution, and hence a class of
small global solutions. We have thus completed the proof.

Theorem 2.5. If 0 < p < po, then any nontrivial nonnegative solution of probléhil)—
(1.3)is global in time.

Proof. If p = po=(m +1)/2, we can construct a global super-solution of the self-similar
form
whxn, x' ) =u*(x1,0,0) = e* TR,

where¢ = x1/¢*T+9/2 T > 0 is a given positive constant, and> 0. We can see that
u*(x, 1) is a solution of (1.1)—(1.3) ik (¢) satisfies

s P )gh@) ah(¢) =0 (2.18)

and
—(h™)'(0) = h*°(0). (2.19)

From [12] we see that there exists a unique solufiga0 which has compact support
onx such that (2.18) and (2.19) hold. Thus, we can chdbo&ge enough such that

uo(x) <u*(x,0), =xe Rﬁ.
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Using comparison principle, we have
ulx,t) <u*(x,1).

From the global existence af(x, ), we see thak(x, ¢) is also global in time.

If p < po, u*(x,t) is a global super-solution of (1.1)—(1.3) whenew&r0, ) > 1.
Hence, using comparison principle again, we can get the global existence,e§. The
proofis complete. O
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