Conditional U-Statistics for Dependent Random Variables

MICHEL HAREL

Université de Limoges, U.R.A. C.N.R.S. 745, Toulouse, France

AND

MADAN L. PURI*

Indiana University

View metadata, citation and similar papers at core.ac.uk

independent case to the dependent case. © 1996 Academic Press, Inc.

1. INTRODUCTION

Stute [10] introduced a class of so-called conditional *U*-statistics, which may be viewed as a generalization of the Nadaraya–Watson estimates of a regression function. This extension is similar to Hoeffding's [3] generalization of sample means to what we now call *U*-statistics.

Assume that (X_i, Y_i) are random vectors in the space $\mathbb{R}^p \times \mathbb{R}^m$, where $X_i = (X_{i1}, ..., X_{ip})$ and $Y_i = (Y_{i1}, ..., Y_{im})$, i = 1, ..., n. Let *h* be any function of *k*-variates (the *U*-kernel), $k \leq n$ such that $h(Y_1, ..., Y_k)$ is integrable. We are interested in the estimation of

$$m(x_1, ..., x_k) = E[h(Y_1, ..., Y_k) | X_1 = x_1, ..., X_k = x_k].$$
(1.1)

When p = m = k = 1 and $h = I_d$, then

$$m(x_1) = E[Y_1 \mid X_1 = x_1]$$

is the regression of Y_1 , given $X_1 = x_1$.

Received January 25, 1994; revised March 1995.

AMS subject classifications: 60F05, 60F15, 62J99.

Key words and phrases: Conditional U-statistics, asymptotic normality, strong convergence, absolute regularity.

* Research supported by the Office of Naval Research Contract N00014-91-J-1020.

84

For estimation of $m(x_1)$, Nadaraya [4] and Watson [11] independently proposed:

$$m_n(x_1) = \frac{\sum_{i=1}^n Y_i K[(x_1 - X_i)/a_n]}{\sum_{i=1}^n K[(x_1 - X_i)/a_n]}.$$

Here K is the so-called smoothing kernel satisfying $\int K(u) du = 1$ and (a_n) is a sequence of bandwidths tending to zero at appropriate rates.

Schuster [7] under conditions requiring the existence of the density f of X_i and finiteness of $E(|Y_1|^3)$, proved the central limit theorem for $m_n(x)$. See also Rosenblatt [6]. Then, Stute [8] proved the asymptotic normality of $m_n(x)$ only under the condition of the finiteness of $E(Y_1^2)$, while X_1 need not have a density at all. Later Yoshihara [13] proved the central limit theorem for $m_n(x)$ when the r.v.'s are φ -mixing under finiteness of $E(|Y_1|^{2+\delta})$ ($\delta > 0$). But the φ -mixing condition has applications which are too limited; for example, an ARMA process is never φ -mixing but generally geometrically absolutely regular.

For an arbitrary k, we now consider statistics of the form

$$\begin{split} u_{n}(\mathbf{x}) &= u_{n}(x_{1}, ..., x_{k}) \\ &= \frac{\sum_{\beta} h(Y_{\beta_{1}}, ..., Y_{\beta_{1}}) \prod_{j=1}^{k} K[(x_{j} - X_{\beta_{j}})/a_{n}]}{\sum_{\beta} \prod_{j=1}^{k} K[(x_{j} - X_{\beta_{j}})/a_{n}]} \\ &= \frac{\left[\sum_{\beta} h((Y_{\beta_{1}1}, ..., Y_{\beta_{1}m}), ..., (Y_{\beta_{k}1}, ..., Y_{\beta_{k}m})) \right]}{\sum_{\beta} \prod_{j=1}^{k} K[(x_{j1} - X_{\beta_{j}1})/a_{n}, ..., (x_{jp} - X_{\beta_{jp}})/a_{n}]} \\ \end{split}$$

Here the summation extends over all permutations $\beta = (\beta_1, ..., \beta_k)$ of length k. Stute [10] derived the limit distribution of $u_n(x)$ when the r.v.'s are independent under finiteness of $E(|h(Y_1, ..., Y_k)|^{2+\delta})$ ($\delta > 0$). In this paper, we extend the result of Stute [10] for absolutely regular r.v.'s. When p = m = k = 1 and $h = I_k$ our result extends the result of Yoshihara [13] from the φ -mixing condition to the absolutely regular condition which permits a broad range of applications.

In what follows, we assume that the function h is symmetric and the sequence of r.v.'s $(X_1, Y_1), ..., (X_n, Y_n)$ is absolutely regular with rates

$$\beta(m) = O(\rho^m) \quad \text{for some} \quad 0 < \rho < 1. \tag{1.2}$$

Recall that a sequence of random vectors $\{X_{ni, 1 \le i \le n, n \ge 1}\}$ is absolutely regular if

$$\sum_{m \leq n} \max_{1 \leq j \leq n-m} E\{ \sup_{A \in \sigma(X_{ni}, i \geq j+m)} |P(A \mid \sigma(X_{ni}, A \leq i \leq j)) - P(A)| \} = \beta(m) \downarrow 0.$$

Here $\sigma(X_{ni}, 1 \leq i \leq j)$ and $\sigma(X_{ni}, i \geq j+m)$ are the σ -fields generated by $(X_{n1}, ..., X_{nj})$ and $(X_{n,j+m}, X_{n,j+m+1}, ..., X_{nn})$, respectively. Also recall that $\{X_{ni}\}$ satisfies the strong mixing condition if $\sup_{m \leq n} \sup_{1 \leq j \leq n-m} \{|P(A \cap B) - P(A)P(B)|; A \in \sigma(X_{ni}, 1 \leq i \leq j), B \in \sigma(X_{ni}, i \geq j+m)\} = \alpha(m) \downarrow 0$. Since $\alpha(m) \leq \beta(m)$, it follows that if $\{X_{ni}\}$ is absolutely regular, then it is also strong mixing.

In Section 4, we will show how our results can be applied to some Markov processes and particularly to some ARMA processes.

2. Asymptotic Normality

Let $\mathbf{x} = (x_1, ..., x_k)$ be fixed throughout. In this section, *h* will be assumed to be square-integrable. Set

$$U_n(h, \mathbf{x}) \equiv U(\mathbf{x}) \equiv U_n = \frac{(n-k)!}{n!} \sum_{\beta} h(Y_{\beta_1}, ..., Y_{\beta_k})$$
$$\times \prod_{j=1}^k K\left(\frac{x_j - X_{\beta_j}}{a_n}\right) / \prod_{j=1}^k EK\left(\frac{x_j - X_1}{a_n}\right).$$
(2.1)

Then

$$u_n(\mathbf{x}) = U_n(h, \mathbf{x})/U_n(1, \mathbf{x}).$$

Note that $U_n(h, \mathbf{x})$ for each $k \ge 1$ is a classical U-statistic with a kernel depending on n.

Next, we denote the distribution function (d.f.) of (X_i, Y_i) by H and the marginals by F and G. Consider a sequence of functionals

$$\theta_n(h, \mathbf{x}) \equiv \theta_n$$

$$= \int m(z_1, ..., z_k) \prod_{j=1}^k K\left(\frac{x_j - z_j}{a_n}\right)$$

$$\times F(dz_1) ... F(dz_k) / \prod_{j=1}^k \int K\left(\frac{x_j - x}{a_n}\right) F(dx)$$

$$= \frac{E[h(\tilde{Y}_1, ..., \tilde{Y}_k) \prod_{j=1}^k K((x_j - \tilde{X}_j)/a_n)]}{E[\prod_{j=1}^k K((x_j - \tilde{X}_j)/a_n)]}, \quad (2.2)$$

where $(\tilde{X}_i, \tilde{Y}_i)$, i = 1, ..., k are i.i.d. random vectors with d.f. H.

We also suppose that the r.v.'s $(Y_1, |X_1), (X_2 | Y_2), ..., (Y_n | X_n)$ are independent and we denote by $\tilde{G}(x; \cdot)$ the conditional d.f. of $(Y_1 | X_1 = x)$.

We also assume that

$$E |h(Y_1, ..., Y_k)|^{2+\delta} < +\infty \quad \text{for some} \quad \delta > 0.$$
(2.3)

For every $c \ (0 \leq c \leq k)$, put

$$g_{c,n}((z_1, y_1), ..., (z_c, y_c))$$

$$\equiv g_c((z_1, y_1), ..., (z_c, y_c))$$

$$= \int h(y_1, ..., y_k) \prod_{j=1}^k K\left(\frac{x_j - z_j}{a_n}\right) / \prod_{j=1}^k EK\left(\frac{x_j - X_1}{a_n}\right)$$

$$\times \prod_{j=c+1}^k \tilde{G}(z_j; dy_j) F(dz_j).$$
(2.4)

We have $g_0 = \theta_n$ and

$$g_{k}((z_{1}, y_{1}), ..., (z_{k}, y_{k})) = h(y_{1}, ..., y_{k}) \prod_{j=1}^{k} K\left(\frac{x_{j} - z_{j}}{a_{n}}\right) / \prod_{j=1}^{k} EK\left(\frac{x_{j} - X_{1}}{a_{n}}\right)$$
(2.5)

Let $n^{-[r]} = \{n(n-1)\cdots(n-r+1)\}^{-1}$. Set

$$U_{n}^{(c)} = n^{-[c]} \sum_{\beta^{(c)}} \int g_{c}((z_{1}, y_{1}), ..., (z_{c}, y_{c}))$$

$$\times \prod_{j=1}^{c} d(I_{[(X_{\beta j}, Y_{\beta j}) \leq (z_{j}, y_{j})]} - H(z_{j}, y_{j})), \qquad (2.6)$$

where $\beta^{(c)}$ is the summation over all the permutations $\beta^{(c)} = (\beta_1, ..., \beta_c)$ of length *c*. Then

$$U_{n} = \theta_{n} + \sum_{c=1}^{k} {k \choose c} U_{n}^{(c)}.$$
 (2.7)

Let

$$\sigma^{2} = \sigma^{2}(h, \mathbf{x}) = \lim_{n \to \infty} a_{n}^{p} \{ E(g_{1}^{2}(X_{1}, Y_{1})) - \theta_{n}^{2} \}$$
(2.8)

if the limit exists. We note also that $\lim_{n\to\infty} a_n^p \theta_n^2 = 0$.

LEMMA 2.1. Assume that

- (i) $a_n \to 0 \text{ and } na_n \to \infty$.
- (ii) K is bounded and has compact support.

(iii) *F* admits a density *f* which is continuous at each x_j , $1 \le j \le k$, with $f(x_i) > 0$.

Then, we have $\sigma^2 < \infty$ and $(na_n^p)^{1/2} U_n^{(1)} \to \mathcal{N}(0, \sigma^2)$ in distribution, where σ^2 is defined in (2.8).

Proof. First, we show that

$$\lim_{n \to \infty} E((na_n^p)^{1/2} (U_n^{(1)}))^2 = \sigma^2.$$
(2.9)

From (2.6), we have

$$\begin{split} U_n^{(1)} &= n^{-1} \sum_{i=1}^n g_1(X_i, Y_i) \, d(I_{[(X_i, Y_i) \leq (x_i, y_i)]} - H(x_i, y_i)) \\ &= n^{-1} \sum_{i=1}^n g_1(X_i, Y_i) \\ &- n^{-1} \sum_{i=1}^n \int h(y_1, ..., y_k) \prod_{j=1}^k K\left(\frac{x_j - z_j}{a_n}\right) \Big/ \prod_{j=1}^k EK\left(\frac{x_j - X_1}{a_n}\right) \\ &\times \prod_{j=1}^k \widetilde{G}(z_j; dy_j) \, F(dz_j) \\ &= n^{-1} \sum_{i=1}^n g_1(X_i, Y_i) \\ &- n^{-1} \sum_{i=1}^n \int m(z_1, ..., z_k) \Big/ \prod_{j=1}^k EK\left(\frac{x_j - X_1}{a_n}\right) \prod_{j=1}^k F(dz_j) \\ &= n^{-1} \sum_{i=1}^n (g_1(X_i, Y_i) - \theta_n). \end{split}$$

We can write

$$na_{n}^{p} E(U_{n}^{(1)})^{2}$$

$$= n^{-1}a_{n}^{p} E\left(\sum_{i=1}^{n} (g_{1}(X_{i}, Y_{i}) - \theta_{n})\right)^{2}$$

$$= n^{-1}a_{n}^{p} \sum_{i=1}^{n} E(g_{1}(X_{i}, Y_{i}) - \theta_{n})^{2}$$

$$+ n^{-1}a_{n}^{p} \sum_{1 \leq i \neq j \leq n} E\{(g_{1}(X_{j}, Y_{j}) - \theta_{n})\}$$

$$= n^{-1}a_n^p \sum_{i=1}^n E(g_1(X_i, Y_i) - \theta_n)^2 + 2n^{-1}a_n^p \sum_{\substack{1 \le i < j \le n \\ j-i \le r}} E\{(g_1(X_i, Y_i) - \theta_n)(g_1(X_j, Y_j) - \theta_n)\} + 2n^{-1}a_n^p \sum_{\substack{1 \le i < j \le n \\ j-i > r}} E\{(g_1(X_i, Y_i) - \theta_n)(g_1(X_j, Y_j) - \theta_n)\}.$$

First, note that

$$\lim n^{-1} a_n^p \sum_{i=1}^n E(g_1(X_i, Y_i) - \theta_n)^2 = \lim_{n \to \infty} a_n^p E(g_1(X_1, Y_1) - \theta_n)^2 = \sigma^2.$$
(2.10)

For the sake of brevity we set

$$M = \prod_{j=1}^{k} E\left(K\left(\frac{x_j - X_1}{a_n}\right)\right).$$

From condition (ii), we easily deduce that

$$M = O(a_n^{kp}).$$

Then, we have

$$\begin{split} & E\{(g_{1}(X_{i}, Y_{i}) - \theta_{n})(g_{1}(X_{j}, Y_{j}) - \theta_{n})\} \\ &= M^{-2} \int (m(z_{1}, ..., z_{k}) - \theta_{n})(m(z_{k+1}, ..., z_{2k}) - \theta_{n}) \\ & \times \prod_{m=1}^{k} K\left(\frac{x_{m} - z_{m}}{a_{n}}\right) \prod_{l=1}^{k} K\left(\frac{x_{k+l} - z_{k+l}}{a_{n}}\right) \\ & \times \prod_{m=2}^{k} F(dz_{m}) \prod_{\substack{l=k+2\\l \neq j}}^{k} F(dz_{k+l}) F_{i,j}(dz_{1}, dz_{k+1}) \\ &= M^{-2}a_{n}^{2kp} \int (m(x_{1} - a_{n}u_{1}, ..., x_{k} - a_{n}u_{k}) - \theta_{n}) \\ & \times (m(x_{k+1} - a_{n}u_{k+1}, ..., x_{2k} - a_{n}u_{2k}) - \theta_{n}) \\ & \times \prod_{m=1}^{k} K(u_{m}) \prod_{\substack{l=k+1\\l = k+1}}^{2k} K(u_{l}) \\ & \times \frac{f_{i,j}(F^{-1}(x_{1} - a_{n}u_{1}), F^{-1}(x_{k+1} - a_{n}u_{k+1}))}{f \circ F^{-1}(x_{1} - a_{n}u_{1})f \circ F^{-1}(x_{k+1} - a_{n}u_{k+1})} du_{1} \cdots d_{2}k \\ &\leqslant Ca_{n}^{2kp} M^{-2} \qquad \text{(from conditions (2.4) and (iii)),} \\ &\leqslant C, \end{aligned}$$

where $F_{i,j}$ and $f_{i,j}$ are respectively the distribution function and the density function of (X_i, X_j) and, by convention, $x_i - a_n u_i = (x_{i1} - a_n u_{i1}, ..., x_{ip} - a_n u_{ip})$. For any $\delta > 0$

$$E |g_{1}(X_{i}, Y_{i}) - \theta_{n}|^{2+\delta}$$

$$\leq M^{-(2+\delta)} \int |m(z_{1}, ..., z_{k}) - \theta_{n}|^{2+\delta} \left| \prod_{m=1}^{k} K\left(\frac{x_{m} - z_{m}}{a_{n}}\right) \right|^{2+\delta} \prod_{m=1}^{k} F(dz_{m})$$

$$\leq M^{-(2+\delta)} a_{n}^{kp} \int |m(x_{1} - a_{n}u_{1}, ..., x_{k} - a_{n}u_{k}) - \theta_{n}|^{2+\delta}$$

$$\times \left| \prod_{m=1}^{k} K(u) \right|^{2+\delta} \prod_{m=1}^{k} f(x_{m} - a_{n}u_{m}) du_{1} \cdots du_{k}$$

$$\leq ca_{n}^{-k(1+\delta)p}. \qquad (2.12)$$

From (2.11), (2.12), and Lemma 5.1 in the Appendix it follows that

$$n^{-1}a_n^p \sum_{1 \le i \ne j \le n} E\{(g_1(X_i, Y_i) - \theta_n)(g_1(X_j, Y_j) - \theta_n)\}$$

$$\leq 2Cra_n^p + 2(Ca_n^{-k(1+\delta)p})^{2/(2+\delta)} \sum_{i=r+1}^n [\beta(i)]^{\delta/(2+\delta)}.$$

If we take $r = [a_n^{-(1/2)p}]$, we get (2.9) from (1.2) and (2.10).

From Lemma 5.2 in the Appendix, we obtain the following inequality:

$$E \left| \sum_{i=1}^{m} g_1(X_i, Y_i) - \theta_n \right|^{2+\delta}$$

$$\leq Cm^{(2+\delta)/2} \sup_{1 \leq i \leq m} E |g_1(X_i, Y_i) - \theta_n|^{2+\delta}, \qquad m \leq n.$$
(2.13)

Let now $r = [n^{2/3}]$, $q = [n^{1/3}]$, and l = [n/(r+1)]. Put

$$\begin{split} \eta_{j} &= \sum_{i=(j-1)(r+q)+1}^{(j-1)(r+q)+r} \left(g_{1}(X_{i}, Y_{i}) - \theta_{n}\right), \qquad j = 1, \, ..., \, l, \\ \theta_{j} &= \sum_{i=(j-1)(r+q)+r+1}^{(j-1)(r+q)+r} \left(g_{1}(X_{i}, Y_{i}) - \theta_{n}\right), \qquad j = 1, \, ..., \, l, \\ \theta_{k+1} &= \sum_{i=l(r+q)+1}^{n} \left(g_{1}(X_{i}, Y_{i}) - \theta\right). \end{split}$$

Then, we have

$$n^{-1/2}a_n^{p/2}\sum_{i=1}^n \left(g_1(X_i, Y_i) - \theta_n\right) = n^{-1/2}a_n^{p/2}\sum_{j=1}^l \eta_j + n^{-1/2}a_n^{p/2}\sum_{j=1}^{l+1} \theta_j.$$

From (2.13), we deduce

$$n^{-1/2}a_n^{p/2}\sum_{j=1}^{l+1}\theta_j \xrightarrow{p} 0.$$

To prove Lemma 2.1, it remains to show that $n^{-1/2}a_n^{p/2}\sum_{j=1}^l \eta_j$ converges in law to $\mathcal{N}(0, \sigma^2)$ random variable.

From Lemma 5.1 in the Appendix, we obtain

$$\left| E \left\{ \exp \left(itn^{-1/2} a_n^{p/2} \sum_{j=1}^l \eta_j \right) \right\} - \prod_{j=1}^k \left[E \{ \exp(itn^{-1/2} a_n^{p/2} \eta_j) \} \right] \right| \le Cl\beta(q).$$

Hence it suffices to show that

$$\prod_{j=1}^{k} \left[E\{ \exp(itn^{-1/2}a_n^{p/2}\eta_j) \} \right] \text{ converges to } e^{-t^2\sigma^2/2}.$$
(2.14)

Using (2.13), we obtain

$$E\{\exp\left(itn^{-1/2}a_n^{p/2}\eta_j\right)\}$$

= $1 - \frac{t^2a_n^p}{2n}E(\eta_j)^2 + O\left(\frac{|t|^{2+\delta}a_n^{(2+\delta)p/2}}{n^{(2+\delta)/2}}E(\eta_j)^{2+\delta}\right)$
= $1 - \frac{a_n^pt^2}{2n}E(\eta_n)^2 + o(|t|^{2+\delta}n^{-(1/6)(2+\delta)}a_n^{-(k-1)p+((1-2k)/2)\delta p}).$

From condition (ii) and

$$\lim \frac{la_n^p}{n} E(\eta_j)^2 = \sigma^2 \qquad (\text{from } (2.10))$$

we get (2.14). The proof follows.

LEMMA 2.2. Under the conditions of Lemma 2.1

$$(na_n^p)^{1/2} (U_n - \theta_n) \to \mathcal{N}(0, k\sigma^2)$$
 in distribution.

Proof. From the decomposition (2.7) and Lemma 2.1, it is sufficient to prove that

$$E(U_n^{(c)})^2 = O(n^{-2}), \qquad 2 \le c \le k.$$
(2.15)

We shall only consider the case c = 2. The proofs for the cases c = 3, ..., k are analogous and are therefore omitted.

We first note that

$$\begin{split} U_n^{(2)} = n^{-[2]} \sum_{1 \le i_1 < i_2 \le n} \left\{ g_2((X_{i_1}, Y_{i_1}), (X_{i_2}, Y_{i_2})) \\ &- g_1(X_{i_1}, Y_{i_1}) - g_1(X_{i_2}, Y_{i_2}) + \theta_n \right\}. \end{split}$$

So we have

$$E(U_n^{(2)})^2 = \sum_{1 \le i_1 < i_2 \le n} \sum_{1 \le j_1 < j_2 \le n} J((i_1, i_2), (j_1, j_2)),$$
(2.16)

where

$$\begin{split} J((i_1, i_2), (j_1, j_2)) \\ &= E\{g_2((X_{i_1}, Y_{i_1}), (X_{i_2}, Y_{i_2})) - g_1(X_{i_1}, Y_{i_1}) - g_1(X_{i_2}, Y_{i_2}) + \theta_n\} \\ &\quad \times \{g_2((X_{j_1}, Y_{j_1}), (X_{j_2}, Y_{j_2})) - g_1(X_{j_1}, Y_{j_1}) - g_1(X_{j_2}, Y_{j_2}) + \theta_n\}. \end{split}$$

Since

$$\int \left\{ g_2((z_1, y_1), (z_2, y_2)) - g_1(z_1, y_2) - g_1(z_2, y_2) + \theta_n \right\} H(dz_1, dy_1) = 0,$$

therefore, from Lemma 5.1 we have the following inequalities: If $1 \le i_1 < i_2 \le j_1 < j_2 \le n$ and $j_2 - j_1 \ge i_2 - i_1$, then

$$J((i_1, i_2), (j_1, j_2)) \leq M \beta^{\delta/(2+\delta)}(j_2 - j_1)$$
(2.17)

and, similarly, if $1 \leq i_1 < i_2 \leq j_1 < j_2 \leq n$ and $i_2 - i_1 \geq j_2 - j_1$, then

$$J((i_1, i_2), (j_1, j_2)) \leq M \beta^{\delta/(2+\delta)}(i_2 - i_1).$$
(2.18)

Thus, from (2.17), (2.18), and assumption (1.2)

$$\left| \sum_{\substack{1 \leq i_1 < i_2 \leq j_1 < j_2 \leq n}} j((i_1, i_2), (j_1, j_2)) \right|$$

$$\leq \left\{ \sum_{\substack{1 \leq i_1 < i_2 \leq j_1 < j_2 \leq n \\ i_2 - i_1 \geq j_2 - j_1}} + \sum_{\substack{1 \leq i_1 < i_2 \leq j_1 < j_2 \leq n \\ i_1 - i_1 \leq j_2 - j_1}} \right\} |J((i_1, i_2), (j_1, j_2))|$$

$$\leq Cn^2 \sum_{r=1}^n (r+1) \beta^{\delta/(2+\delta)}(r) = O(n^2).$$
(2.19)

Similarly, we have

$$\sum_{1 \le i_1 < j_1 \le i_2 < j_2 \le n} J((i_1, i_2), (j_1, j_2)) = O(n^2),$$
(2.20)

$$\sum_{1 \le i_1 < j_1 < j_2 < i_2 \le n} J((i_1, i_2), (j_1, j_2)) = O(n^2),$$
(2.21)

and

$$\left|\sum_{1 \leqslant i_1, j_1 \leqslant n} \sum_{i_2 = 1}^n J((i_1, i_2), (j_1, j_2))\right| \leqslant Cn^2 \left(1 + \sum_{r=1}^n \beta^{\delta/(2+\delta)}(r)\right) = O(n^2).$$
(2.22)

Hence from (2.19)–(2.22) and (2.16), we have (2.15) for c = 2.

In the following, we shall investigate the asymptotic behavior of the twodimensional random vector

$$(U_n(h_1, \mathbf{x}) - \theta_n(h_1), U_n(h_2, \mathbf{x}) - \theta_n(h_2)),$$

where h_1 and h_2 are two kernels satisfying the smoothness assumptions of Lemma 2.2. We would like to apply the Cramér–Wald device. So, let c_1 , c_2 denote any two real numbers. Clearly,

$$c_1 U_n(h_1, \mathbf{x}) + c_2 U_n(h_2, \mathbf{x}) = U_n(c_1 h_1 + c_2 h_2, \mathbf{x}) \equiv U_n(h, \mathbf{x}),$$

where $h = c_1 h_1 + c_2 h_2$ and Lemma 2.2 applies. Specification of $\sigma^2(h)$ immediately leads to the following.

LEMMA 2.3. Under the stated assumptions

$$(na_n^p)^{1/2} \left[U_n(h_1, \mathbf{x}) - \theta_n(h_1), U_n(h_2, \mathbf{x}) - \theta_n(h_2) \right] \to \mathcal{N}(0, \Sigma)$$

in distribution, with

$$\Sigma = \begin{bmatrix} \sigma^{2}(h_{1}, h_{1}) & \sigma^{2}(h_{1}, h_{2}) \\ \sigma^{2}(h_{1}, h_{2}) & \sigma^{2}(h_{2}, h_{2}) \end{bmatrix}$$

and where for two functions h_1 and h_2

$$\sigma^{2}(h_{1}, h_{2}) = \lim_{n \to \infty} a_{n}^{p} E\{(g_{1}((X_{1}, Y_{1}); h_{1}) - \theta_{n}(h_{1}))(g_{1}((X_{1}, Y_{1}); h_{2}) - \theta_{n}(h_{2}))\}.$$

From this lemma, we will deduce the limit distribution of $U_n(\mathbf{x})$.

THEOREM 2.1. Under the assumptions of Lemma 2.1, we have

$$(na_n^p)^{1/2}(u_n(\mathbf{x})-\theta_n) \to \mathcal{N}(0,\rho^2)$$
 in distribution,

where

$$\rho^{2} = k \{ \sigma^{2}(h, h) - 2m(\mathbf{x}) \sigma^{2}(h, 1) + m^{2}(\mathbf{x}) \sigma^{2}(1, 1) \}.$$

Proof. We have

$$u_n(\mathbf{x}) = U_n(h, \mathbf{x})/U(1, \mathbf{x})$$

Define $g(x_1, x_2) = x_1/x_2$ for $x_2 \neq 0$. Then

$$D = \left(\frac{\partial g}{\partial x_1}, \frac{\partial g}{\partial x_2}\right) = (x_2^{-1}, -x_1 x_2^{-2}).$$

Since $\theta_n(h, \mathbf{x}) \rightarrow m(\mathbf{x})$ and $\theta_n(1, \mathbf{x}) = 1$, we may infer from Lemma 2.3 that

$$(na_n^p)^{1/2}(u_n(\mathbf{x}) - \theta_n(h, \mathbf{x})) \to \mathcal{N}(0, \rho^2)$$
 in distribution,

where

$$\rho^2 = (1, -m(\mathbf{x})) \Sigma \begin{pmatrix} 1 \\ -m(\mathbf{x}) \end{pmatrix}$$

and

$$\Sigma = \begin{pmatrix} \sigma^2(h, h) & \sigma^2(h, 1) \\ \sigma^2(h, 1) & \sigma^2(1, 1) \end{pmatrix}. \quad \blacksquare$$

Under appropriate smoothness assumptions on the marginal density f, Theorem 2.1 immediately yields asymptotic normality of $u_n(\mathbf{x}) - m(\mathbf{x})$. Now assume that

f is twice differentiable in neighborhoods of x_j , $1 \le j \le k$, (2.23)

and

$$K$$
 is symmetric at zero; (2.24)

m admits an expansion

$$m(\mathbf{y} + \boldsymbol{\Delta}) = m(\mathbf{y}) + \{m'(\mathbf{y})^{t} \boldsymbol{\Delta}\} + \frac{1}{2} \boldsymbol{\Delta}^{t} \{m''(\mathbf{y}) \boldsymbol{\Delta} + o(\boldsymbol{\Delta}^{t} \boldsymbol{\Delta})\}$$
(2.25)

as $\Delta \rightarrow 0$, for all y in the neighborhood of x. Then we have the following.

COROLLARY 2.1. If, in addition to conditions of Lemma 2.1, (2.23)–(2.25) hold, then

$$(na_n^p)^{1/2}(u_n(\mathbf{x}) - m(\mathbf{x})) \to \mathcal{N}(0, \rho^2)$$
 in distribution,

provided that $na_n^{5p} \to 0$.

Proof. See Corollary 2.4 of Stute [10].

3. CONSISTENCY

As for the regression estimators, we need to develop consistency results. We provide them here for the dependent case similar to the results established by Stute [10] for the independent case. Our conditions on the *U*-kernel h are not so restrictive as the conditions of Stute [10] on his Theorems 2 and 3.

THEOREM 3.1. Under the conditions of Lemma 2.1, we have for $\mu_1 \otimes \cdots \otimes \mu_k$, for almost all **x**

$$u_n(\mathbf{x}) \to m(\mathbf{x})$$
 in probability,

where μ is the probability measure defined by the d.f. F.

Proof. We know that almost surely

$$\theta_n(\mathbf{x}) \to m(\mathbf{x}). \tag{3.1}$$

We also know that

$$u_n(\mathbf{x}) = U_n(h, \mathbf{x})/U_n(1, \mathbf{x}).$$

So, we have to show that

 $U_n(h, \mathbf{x}) \to m(\mathbf{x}), \qquad U_n(1, \mathbf{x}) \to 1$ in probability.

Since $U_n(1, \mathbf{x})$ is a special case of $U_n(h, \mathbf{x})$, we have only to deal with $U_n(h, \mathbf{x})$.

From the decomposition (2.7) and (3.1), we have only to prove that

$$\sum_{c=1}^{k} \binom{k}{c} U_n^{(c)} \to 0 \quad \text{in probability.}$$

But this is a consequence of (2.15). Theorem 3.1 follows.

THEOREM 3.2. In addition to the conditions of Theorem 3.1, assume that

$$\sum_{n=1}^{\infty} n^{1-\gamma} \exp\left(-na_n^p\right) < \infty \qquad for \ some \quad 0 < \gamma < 1 \tag{3.2}$$

and suppose that h is bounded. Then, for almost all x

$$u_n(\mathbf{x}) \rightarrow u(\mathbf{x})$$
 with probability 1.

Proof. From (2.15), we have

$$E(U_n - kU_n^{(1)})^2 = O(n^{-2}).$$

Then, from the Borel-Cantelli lemma, it suffices to show that

$$U_n^{(1)} \to 0$$
 with probability 1. (3.3)

Clearly,

$$U_n^{(1)} = n^{-1} \sum_{i=1}^n \{T_{i,n} - E(T_{i,n})\},\$$

where

$$T_{i,n} = \int h(Y_i, y_2, ..., y_k) \prod_{j=2}^k K\left(\frac{x_j - z_j}{a_n}\right)$$
$$\times K\left(\frac{x_1 - X_i}{a_n}\right) / \prod_{j=1}^k EK\left(\frac{x_j - X_1}{a_n}\right) \prod_{j=2}^k \tilde{G}(z_j; dy_j) F(dz_j).$$

We note that there exist two positive constants b and c such that

$$|T_{i,n}| \leq b/a_n^p$$
$$E(T_{i,n}^2) \leq c/a_n^p.$$

If $U_1, U_2, ..., U_n$ are independent random variables with $|U_i| \le m$, $E(U_i) = 0$, and $E(U_i^2) \le \sigma_i^2$, then an inequality due to Bennett [1, p. 39] states that

$$P\left[\left|n^{-1}\sum_{i=1}^{n}U_{i}\right| \geq \varepsilon\right] \leq 2\exp\{-n\varepsilon^{2}/2(\sigma^{2}+m\varepsilon)\},\$$

where $\sigma^2 = n^{-1} \sum_{i=1}^n \sigma_i^2$. Put $q = q_n = \lfloor n^{1-\gamma} \rfloor + 1$ and write

$$U_n^{(1)} = \sum_{j=1}^q V_{n,j},$$

where

$$V_{n,j} = \sum_{p=0}^{l_j} \left\{ T_{j+pq,n} - E(T_{j+pq,n}) \right\}$$

and l_j is the largest integer such that $j + l_j q \leq n$. Then

$$P[|U_n^{(1)}| \ge \varepsilon] \le P\left[n^{-1}\sum_{j=1}^q |V_{n,j}| \ge \varepsilon\right] \le \sum_{j=1}^q P[|V_{n,j}| \ge \varepsilon n].$$
(3.4)

For any j, $1 \leq j \leq q$, define

$$B_{j} = \left\{ (y_{1}, ..., y_{l_{j}}) \left| \sum_{p=1}^{l_{j}} y_{p} \right| \ge \varepsilon nq^{-1} \right\}$$

and put

$$g(y_1, ..., y_{l_j}) = \begin{cases} 1 & \text{if } (y_1, ..., y_{l_j}) \in B_j \\ 0 & \text{otherwise.} \end{cases}$$

By Lemma 5.1,

$$P[|V_{n,j}| \ge \varepsilon n] = Eg(T_{j,n} - E(T_{j,n}), ..., T_{j+l_jq,n} - E(T_{j+l_jq,n}))$$

$$\leq P\left[\left|\sum_{p=0}^{l_j} \tilde{T}_{j+pq,n} - E(\tilde{T}_{j+pq,n})\right| \ge n\varepsilon q^{-1}\right] + 2l_j\beta(q)$$

$$\leq 2\exp\left\{\frac{-n\varepsilon^2 a_n^p}{2c + 4b\varepsilon}\right\} + 2l_j\beta(q)$$

$$\leq 2\exp\{-\alpha na_n^p\} + 2l_j\beta(q) \qquad \left(\alpha = \frac{\varepsilon^2}{(2c + 4b\varepsilon)}\right), \qquad (3.5)$$

where $\tilde{T}_{1,n}, ..., \tilde{T}_{n,n}$ are independent and $\tilde{T}_{i,n}$ is distributed as $T_{i,n}$. From (3.4) and (3.5), we deduce

$$P[|U_n^{(1)}| \ge \varepsilon] \le 2n^{1-\gamma} \{ \exp\{-\alpha na_n^p\} + n^{\gamma}\beta([n^{1-\gamma}]+1) \}$$

From the Borel–Cantelli lemma and conditions (1.2) and (3.2), we deduce (3.3) and Theorem 3.2 is proved.

4. Applications

Consider the model

$$Y_n = \psi(X_n) + \boldsymbol{\epsilon}_n, \qquad n \ge 1, \tag{4.1}$$

where X_n denotes a \mathbb{R}^p -vector of observed values, ψ is measurable known function, ϵ_n is a multivariate white noise corresponding to the measurement errors (that is, $\{\epsilon_n, n \in \mathbb{N}\}$ is a sequence of i.i.d. random \mathbb{R}^m -vectors with strictly positive density) and Y_n is an \mathbb{R}^m predictor vector. If the sequence $(X_n)_{n \ge 1}$ of random vectors is absolutely regular with a geometrically rate, $E(|\psi(X_n)|^{2+\delta}) < +\infty$ and condition (ii) of Lemma 2.1 is satisfied. Thus we can apply Theorems 2.1, 3.1, and 3.2 for appropriate functions h and K and appropriate sequence a_n .

It is well known that any Markov process which is Harris recurrent, aperiodic, and geometrically aperiodic is absolutely regular with a geometrical rate.

For example, consider the model

$$X_n + \sum_{j=1}^{p_1} A_j X_{n-j} = e_n + \sum_{j=1}^{p_2} B_j e_{n-j}, \qquad n \in \mathbb{Z},$$
(4.2)

where $A_1, ..., A_{p_1}$ and $B_1, ..., B_{p_2}$ are $p \times p$ real matrices, A_{p_1} and B_{p_2} are invertible and $e_n = (e_{n1}, ..., e_{np})$ is a multivariate white noise, where each e_{nj} , $n \ge 1, 1 \le j \le p$, admits the same density g such that $\int |x|^{\delta} g(x) dx < \infty$ and $\int |g(x) - g(x - \theta)| dx = O(|\theta|^{\gamma})$ for some $\delta > 0$ and $\gamma > 0$.

From Pham and Tran [5], X_n admits a Markovian representation

$$X_n = HZ_n, \qquad Z_n = FZ_{n-1} + Ge_n,$$

where Z_n is a sequence of random vectors and H, F, G are appropriate matrices. If the eigenvalues of the matrices H have a modulus less than 1, then X_n is absolutely regular with a geometrical rate.

If p = 1, m = 1, and k = 2, the example of Stute [10] can be applied to the particular model

$$Y_n = aX_n + \boldsymbol{\epsilon}_n, \qquad a \in \mathbb{R},\tag{4.3}$$

where X_n is an ARMA process defined by

$$X_n = bX_{n-1} + e_n$$
, where $|b| < 1$. (4.4)

EXAMPLE 4.1. Put $h(y_1, y_2) = y_1 y_2$. Then

$$m(x_1, x_2) = E(Y_1 \mid X_1 = x_1) E(Y_2 \mid X_2 = x_2)$$

 $=a^2x_1x_2.$

When $x_1 = x_2$, the variance ρ^2 defined in Theorem 2.1 yields

$$\rho^{2} = 4 \operatorname{Var}(Y_{1} \mid X_{1} = x_{1}) a^{2} x_{1}^{2} \int K^{2}(u) du / f(x_{1})$$
$$= 4\sigma^{2} a^{2} x_{1}^{2} \int K^{2}(u) du / f(x_{1})$$

while for $x_1 \neq x_2$, we get

$$\rho^{2} = \left[\operatorname{Var}(Y_{1} \mid X_{1} = x_{1}) a^{2} x_{1}^{2} / f(x_{1}) + \operatorname{Var}(Y_{1} \mid X_{1} = x_{2}) a^{2} x_{2}^{2} / f(x_{2}) \right]$$
$$\times \int K^{2}(u) \, du$$
$$= \sigma^{2} \int K^{2}(u) \, du \left[a^{2} x_{1}^{2} / f(x_{1}) + a^{2} x_{2}^{2} / f(x_{2}) \right].$$

EXAMPLE 4.2. Suppose $E(\varepsilon_1^4) < +\infty$. For $h(y_1, y_2) = \frac{1}{2}(y_1 - y_2)^2$, we obtain $m(x_1, x_1) = Var(Y_1 | X_1 = x_1) = \sigma^2$. In this case

$$\rho^{2} = \{ E[(Y - ax_{1})^{4} | X = x_{1}] - \operatorname{Var}(Y | X = x_{1}) \} \int K^{2}(u) \, du / f(x_{1})$$
$$= (\tau_{4} - \sigma^{4}) \int K^{2}(u) \, du / f(x_{1}),$$

where $\tau_4 = E(\varepsilon_1^4)$.

We have seen how the examples of Stute [10] can be applied now to more general models, but it is obvious from (4.1) and (4.2) that we have the possibility of using our results for a much larger set of models and applications when p > 1 and m > 1.

Appendix

LEMMA 5.1 (Davydov [2]). Let $\{X_{ni}, 1 \leq i \leq n, n \geq 1\}$ be a nonstationary sequence of r.v.'s which is strong mixing. Let Z be $\sigma(X_{ni}, 1 \leq i \leq j)$ -measurable $(1 \leq j \leq n)$ and let V be $\sigma(X_{ni}, i \geq j + m)$ -measurable. If $E(|Z|^p) < \infty$, $E(|V|^q) < \infty$, and $r^{-1} + p^{-1} + q^{-1} = 1$ (r, p, q > 0) then

$$|E(ZV) - E(Z) E(V)| \leq (\alpha(m))^{1/r} \{E |Z|^{p}\}^{1/p} \{E |V|^{q}\}^{1/q}$$

where C is some constant >0, and of course if the sequence is absolutely regular, the inequality (5.1) holds if we replace $(\alpha(m))^{1/r}$ by $(\beta(m))^{1/r}$.

LEMMA 5.2 (Theorem 1 of Yokoyama [12]). Let $\{X_{ni}, 1 \leq i \leq n, n \geq 1\}$ be a nonstationary sequence of r.v.'s which is strong mixing with $E(X_{ni}) = 0$, $1 \leq i \leq n, n \geq 1$, and $\sup_{1 \leq i \leq n} E |X_{ni}|^{r+\delta} < C_n$ for some r > 2 and $\delta > 0$. If

$$\sum_{i=0}^{\infty} (i+1)^{r/2} \left[\alpha(i) \right]^{\alpha/(r+\delta)} < \infty$$

then

$$E\left|\sum_{i=1}^{n} X_{ni}\right|^{r} \leq C_{n} n^{r/2}, \qquad n \geq 1.$$

References

- BENNETT, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 19 33–45.
- [2] DAVYDOV, YU. A. (1970). Invariance principle for empirical stationary processes. *Theory Probab. Appl.* 14 487–498.
- [3] HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 293-325.
- [4] NADARAYA, E. A. (1964). On estimating regression. Theory Probab. Appl. 9 141-142.
- [5] PHAM, T. D., AND TRAN, L. T. (1985). Some mixing properties of time series models. Stochastic Process Appl. 19 297–303.
- [6] ROSENBLATT, M. (1969). Conditional probability density and regression estimates. In Multivariate Analysis II (Krishnaiah, Ed.), pp. 25–31. Academic Press, New York.
- [7] SCHUSTER, E. F. (1972). Joint asymptotic distribution of the estimate regression function at a finite number of distinct points. *Ann. Math. Statist.* **43** 84–88.
- [8] STUTE W. (1984). Asymptotic normality on nearest neighbor regression function estimates. *Ann. Statist.* **12** 917–918.
- [9] STUTE W. (1986). On almost sure convergence of conditional empirical distribution functions, *An. Probab.* **14** 891–901.
- [10] STUTE W. (1991). Conditional U-statistics. Ann. Probab. 19, No. 2, 812-825.
- [11] WATSON, G. S. (1964). Smooth regression analysis. Snakhyā Ser. A 26 359-372.
- [12] YOKOYAMA, R. (1980). Moment bounds for stationary mixing sequences. Z. Wahrsch. Verw. Geb. 52 45–57.
- [13] YOSHIHARA, K. (1988). Asymptotic normality of nearest neighbor regression function estimates based on some dependent observations. *Yokohama Math. J.* 36 55–68.