Conditional U-Statistics for Dependent Random Variables

Michel Harel
Université de Limoges, U.R.A. C.N.R.S. 745, Toulouse, France
AND
Madan L. Puri*
Indiana University

View metadata, citation and similar papers at core.ac.uk
independent case to the dependent case. © 1996 Academic Press, Inc.

1. Introduction

Stute [10] introduced a class of so-called conditional U-statistics, which may be viewed as a generalization of the Nadaraya-Watson estimates of a regression function. This extension is similar to Hoeffding's [3] generalization of sample means to what we now call U-statistics.

Assume that $\left(X_{i}, Y_{i}\right)$ are random vectors in the space $\mathbb{R}^{p} \times \mathbb{R}^{m}$, where $X_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)$ and $Y_{i}=\left(Y_{i 1}, \ldots, Y_{i m}\right), i=1, \ldots, n$. Let h be any function of k-variates (the U-kernel), $k \leqslant n$ such that $h\left(Y_{1}, \ldots, Y_{k}\right)$ is integrable. We are interested in the estimation of

$$
\begin{equation*}
m\left(x_{1}, \ldots, x_{k}\right)=E\left[h\left(Y_{1}, \ldots, Y_{k}\right) \mid X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right] . \tag{1.1}
\end{equation*}
$$

When $p=m=k=1$ and $h=I_{d}$, then

$$
m\left(x_{1}\right)=E\left[Y_{1} \mid X_{1}=x_{1}\right]
$$

is the regression of Y_{1}, given $X_{1}=x_{1}$.
Received January 25, 1994; revised March 1995.
AMS subject classifications: $60 \mathrm{~F} 05,60 \mathrm{~F} 15,62 \mathrm{~J} 99$.
Key words and phrases: Conditional U-statistics, asymptotic normality, strong convergence, absolute regularity.

* Research supported by the Office of Naval Research Contract N00014-91-J-1020.

For estimation of $m\left(x_{1}\right)$, Nadaraya [4] and Watson [11] independently proposed:

$$
m_{n}\left(x_{1}\right)=\frac{\sum_{i=1}^{n} Y_{i} K\left[\left(x_{1}-X_{i}\right) / a_{n}\right]}{\left.\sum_{i=1}^{n} K\left[\left(x_{1}-X_{i}\right) / a_{n}\right)\right]} .
$$

Here K is the so-called smoothing kernel satisfying $\int K(u) d u=1$ and $\left(a_{n}\right)$ is a sequence of bandwidths tending to zero at appropriate rates.

Schuster [7] under conditions requiring the existence of the density f of X_{i} and finiteness of $E\left(\left|Y_{1}\right|^{3}\right)$, proved the central limit theorem for $m_{n}(x)$. See also Rosenblatt [6]. Then, Stute [8] proved the asymptotic normality of $m_{n}(x)$ only under the condition of the finiteness of $E\left(Y_{1}^{2}\right)$, while X_{1} need not have a density at all. Later Yoshihara [13] proved the central limit theorem for $m_{n}(x)$ when the r.v.'s are φ-mixing under finiteness of $E\left(\left|Y_{1}\right|^{2+\delta}\right)(\delta>0)$. But the φ-mixing condition has applications which are too limited; for example, an ARMA process is never φ-mixing but generally geometrically absolutely regular.

For an arbitrary k, we now consider statistics of the form

$$
\begin{aligned}
u_{n}(\mathbf{x}) & =u_{n}\left(x_{1}, \ldots, x_{k}\right) \\
& =\frac{\sum_{\beta} h\left(Y_{\beta_{1}}, \ldots, Y_{\beta_{1}}\right) \prod_{j=1}^{k} K\left[\left(x_{j}-X_{\beta_{j}}\right) / a_{n}\right]}{\sum_{\beta} \prod_{j=1}^{k} K\left[\left(x_{j}-X_{\beta_{j}}\right) / a_{n}\right]} \\
& =\frac{\left[\begin{array}{c}
\sum_{\beta} h\left(\left(Y_{\beta_{1} 1}, \ldots, Y_{\beta_{1} m}\right), \ldots,\left(Y_{\beta_{k} 1}, \ldots, Y_{\beta_{k} m}\right)\right) \\
\times \prod_{j=1}^{k} K\left[\left(x_{j 1}-X_{\beta_{j} 1}\right) / a_{n}, \ldots,\left(x_{j p}-X_{\beta_{j} p}\right) / a_{n}\right]
\end{array}\right]}{\sum_{\beta} \prod_{j=1}^{k} K\left[\left(x_{j 1}-X_{\beta_{j} 1}\right) / a_{n}, \ldots,\left(x_{j p}-X_{\left.\beta_{j p}\right)}\right) / a_{n}\right]} .
\end{aligned}
$$

Here the summation extends over all permutations $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ of length k. Stute [10] derived the limit distribution of $u_{n}(x)$ when the r.v.'s are independent under finiteness of $E\left(\left|h\left(Y_{1}, \ldots, Y_{k}\right)\right|^{2+\delta}\right)(\delta>0)$. In this paper, we extend the result of Stute [10] for absolutely regular r.v.'s. When $p=m=k=1$ and $h=I_{k}$ our result extends the result of Yoshihara [13] from the φ-mixing condition to the absolutely regular condition which permits a broad range of applications.

In what follows, we assume that the function h is symmetric and the sequence of r.v.'s $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ is absolutely regular with rates

$$
\begin{equation*}
\beta(m)=O\left(\rho^{m}\right) \quad \text { for some } \quad 0<\rho<1 \tag{1.2}
\end{equation*}
$$

Recall that a sequence of random vectors $\left\{X_{n i, 1 \leqslant i \leqslant n, n \geqslant 1}\right\}$ is absolutely regular if

$$
\sum_{m \leqslant n} \max _{1 \leqslant j \leqslant n-m} E\left\{\sup _{A \in \sigma\left(X_{n i} ; i \geqslant j+m\right)}\left|P\left(A \mid \sigma\left(X_{n i}, A \leqslant i \leqslant j\right)\right)-P(A)\right|\right\}=\beta(m) \downarrow 0 .
$$

Here $\sigma\left(X_{n i}, 1 \leqslant i \leqslant j\right)$ and $\sigma\left(X_{n i}, i \geqslant j+m\right)$ are the σ-fields generated by $\left(X_{n 1}, \ldots, X_{n j}\right)$ and $\left(X_{n, j+m}, X_{n, j+m+1}, \ldots, X_{n n}\right)$, respectively. Also recall that $\left\{X_{n i}\right\}$ satisfies the strong mixing condition if $\sup _{m \leqslant n} \sup _{1 \leqslant j \leqslant n-m}$ $\left\{|P(A \cap B)-P(A) P(B)| ; A \in \sigma\left(X_{n i}, 1 \leqslant i \leqslant j\right), B \in \sigma\left(X_{n i}, i \geqslant j+m\right)\right\}=\alpha(m) \downarrow 0$. Since $\alpha(m) \leqslant \beta(m)$, it follows that if $\left\{X_{n i}\right\}$ is absolutely regular, then it is also strong mixing.

In Section 4, we will show how our results can be applied to some Markov processes and particularly to some ARMA processes.

2. Asymptotic Normality

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ be fixed throughout. In this section, h will be assumed to be square-integrable. Set

$$
\begin{align*}
U_{n}(h, \mathbf{x}) \equiv & U(\mathbf{x}) \equiv U_{n}=\frac{(n-k)!}{n!} \sum_{\beta} h\left(Y_{\beta_{1}}, \ldots, Y_{\beta_{k}}\right) \\
& \times \prod_{j=1}^{k} K\left(\frac{x_{j}-X_{\beta_{j}}}{a_{n}}\right) / \prod_{j=1}^{k} E K\left(\frac{x_{j}-X_{1}}{a_{n}}\right) . \tag{2.1}
\end{align*}
$$

Then

$$
u_{n}(\mathbf{x})=U_{n}(h, \mathbf{x}) / U_{n}(1, \mathbf{x})
$$

Note that $U_{n}(h, \mathbf{x})$ for each $k \geqslant 1$ is a classical U-statistic with a kernel depending on n.

Next, we denote the distribution function (d.f.) of $\left(X_{i}, Y_{i}\right)$ by H and the marginals by F and G. Consider a sequence of functionals

$$
\begin{align*}
\theta_{n}(h, \mathbf{x}) \equiv & \theta_{n} \\
= & \int m\left(z_{1}, \ldots, z_{k}\right) \prod_{j=1}^{k} K\left(\frac{x_{j}-z_{j}}{a_{n}}\right) \\
& \times F\left(d z_{1}\right) \ldots F\left(d z_{k}\right) / \prod_{j=1}^{k} \int K\left(\frac{x_{j}-x}{a_{n}}\right) F(d x) \\
= & \frac{E\left[h\left(\tilde{Y}_{1}, \ldots, \tilde{Y}_{k}\right) \prod_{j=1}^{k} K\left(\left(x_{j}-\tilde{X}_{j}\right) / a_{n}\right)\right]}{E\left[\prod_{j=1}^{k} K\left(\left(x_{j}-\tilde{X}_{j}\right) / a_{n}\right)\right]}, \tag{2.2}
\end{align*}
$$

where $\left(\tilde{X}_{i}, \widetilde{Y}_{i}\right), i=1, \ldots, k$ are i.i.d. random vectors with d.f. H.
We also suppose that the r.v.'s $\left(Y_{1}, \mid X_{1}\right),\left(X_{2} \mid Y_{2}\right), \ldots,\left(Y_{n} \mid X_{n}\right)$ are independent and we denote by $\widetilde{G}(x ; \cdot)$ the conditional d.f. of $\left(Y_{1} \mid X_{1}=x\right)$.

We also assume that

$$
\begin{equation*}
E\left|h\left(Y_{1}, \ldots, Y_{k}\right)\right|^{2+\delta}<+\infty \quad \text { for some } \quad \delta>0 \tag{2.3}
\end{equation*}
$$

For every $c(0 \leqslant c \leqslant k)$, put

$$
\begin{align*}
& g_{c, n}\left(\left(z_{1}, y_{1}\right), \ldots,\left(z_{c}, y_{c}\right)\right) \\
& \quad \equiv g_{c}\left(\left(z_{1}, y_{1}\right), \ldots,\left(z_{c}, y_{c}\right)\right) \\
& =\int h\left(y_{1}, \ldots, y_{k}\right) \prod_{j=1}^{k} K\left(\frac{x_{j}-z_{j}}{a_{n}}\right) / \prod_{j=1}^{k} E K\left(\frac{x_{j}-X_{1}}{a_{n}}\right) \\
& \quad \times \prod_{j=c+1}^{k} \widetilde{G}\left(z_{j} ; d y_{j}\right) F\left(d z_{j}\right) . \tag{2.4}
\end{align*}
$$

We have $g_{0}=\theta_{n}$ and

$$
\begin{align*}
& g_{k}\left(\left(z_{1}, y_{1}\right), \ldots,\left(z_{k}, y_{k}\right)\right) \\
& \quad=h\left(y_{1}, \ldots, y_{k}\right) \prod_{j=1}^{k} K\left(\frac{x_{j}-z_{j}}{a_{n}}\right) / \prod_{j=1}^{k} E K\left(\frac{x_{j}-X_{1}}{a_{n}}\right) \tag{2.5}
\end{align*}
$$

Let $n^{-[r]}=\{n(n-1) \cdots(n-r+1)\}^{-1}$. Set

$$
\begin{align*}
U_{n}^{(c)}= & n^{-[c]} \sum_{\beta^{(c)}} \int g_{c}\left(\left(z_{1}, y_{1}\right), \ldots,\left(z_{c}, y_{c}\right)\right) \\
& \times \prod_{j=1}^{c} d\left(I_{\left[\left(X_{\beta j}, Y_{\beta j}\right) \leqslant\left(z_{j}, y_{j}\right)\right]}-H\left(z_{j}, y_{j}\right)\right), \tag{2.6}
\end{align*}
$$

where $\beta^{(c)}$ is the summation over all the permutations $\beta^{(c)}=\left(\beta_{1}, \ldots, \beta_{c}\right)$ of length c. Then

$$
\begin{equation*}
U_{n}=\theta_{n}+\sum_{c=1}^{k}\binom{k}{c} U_{n}^{(c)} \tag{2.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\sigma^{2}=\sigma^{2}(h, \mathbf{x})=\lim _{n \rightarrow \infty} a_{n}^{p}\left\{E\left(g_{1}^{2}\left(X_{1}, Y_{1}\right)\right)-\theta_{n}^{2}\right\} \tag{2.8}
\end{equation*}
$$

if the limit exists. We note also that $\lim _{n \rightarrow \infty} a_{n}^{p} \theta_{n}^{2}=0$.
Lemma 2.1. Assume that
(i) $a_{n} \rightarrow 0$ and $n a_{n} \rightarrow \infty$.
(ii) K is bounded and has compact support.
(iii) F admits a density f which is continuous at each $x_{j}, 1 \leqslant j \leqslant k$, with $f\left(x_{j}\right)>0$.
Then, we have $\sigma^{2}<\infty$ and $\left(n a_{n}^{p}\right)^{1 / 2} U_{n}^{(1)} \rightarrow \mathcal{N}\left(0, \sigma^{2}\right)$ in distribution, where σ^{2} is defined in (2.8).

Proof. First, we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left(\left(n a_{n}^{p}\right)^{1 / 2}\left(U_{n}^{(1)}\right)\right)^{2}=\sigma^{2} \tag{2.9}
\end{equation*}
$$

From (2.6), we have

$$
\begin{aligned}
U_{n}^{(1)}= & n^{-1} \sum_{i=1}^{n} g_{1}\left(X_{i}, Y_{i}\right) d\left(I_{\left[\left(X_{i}, Y_{i}\right) \leqslant\left(x_{i}, y_{i}\right)\right]}-H\left(x_{i}, y_{i}\right)\right) \\
= & n^{-1} \sum_{i=1}^{n} g_{1}\left(X_{i}, Y_{i}\right) \\
& -n^{-1} \sum_{i=1}^{n} \int h\left(y_{1}, \ldots, y_{k}\right) \prod_{j=1}^{k} K\left(\frac{x_{j}-z_{j}}{a_{n}}\right) / \prod_{j=1}^{k} E K\left(\frac{x_{j}-X_{1}}{a_{n}}\right) \\
& \times \prod_{j=1}^{k} \widetilde{G}\left(z_{j} ; d y_{j}\right) F\left(d z_{j}\right) \\
= & n^{-1} \sum_{i=1}^{n} g_{1}\left(X_{i}, Y_{i}\right) \\
& -n^{-1} \sum_{i=1}^{n} \int m\left(z_{1}, \ldots, z_{k}\right) / \prod_{j=1}^{k} E K\left(\frac{x_{j}-X_{1}}{a_{n}}\right) \prod_{j=1}^{k} F\left(d z_{j}\right) \\
= & n^{-1} \sum_{i=1}^{n}\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right) .
\end{aligned}
$$

We can write

$$
\begin{aligned}
& n a_{n}^{p} E\left(U_{n}^{(1)}\right)^{2} \\
&= n^{-1} a_{n}^{p} E\left(\sum_{i=1}^{n}\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)\right)^{2} \\
&= n^{-1} a_{n}^{p} \sum_{i=1}^{n} E\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)^{2} \\
&+n^{-1} a_{n}^{p} \sum_{1 \leqslant i \neq j \leqslant n} E\left\{\left(g_{1}\left(X_{j}, Y_{j}\right)-\theta_{n}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & n^{-1} a_{n}^{p} \sum_{i=1}^{n} E\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)^{2} \\
& +2 n^{-1} a_{n}^{p} \sum_{\substack{1 \leqslant i<j \leqslant n \\
j-i \leqslant r}} E\left\{\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)\left(g_{1}\left(X_{j}, Y_{j}\right)-\theta_{n}\right)\right\} \\
& +2 n^{-1} a_{n}^{p} \sum_{\substack{1 \leqslant i<j \leqslant n \\
j-i>r}} E\left\{\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)\left(g_{1}\left(X_{j}, Y_{j}\right)-\theta_{n}\right)\right\} .
\end{aligned}
$$

First, note that

$$
\begin{equation*}
\lim n^{-1} a_{n}^{p} \sum_{i=1}^{n} E\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)^{2}=\lim _{n \rightarrow \infty} a_{n}^{p} E\left(g_{1}\left(X_{1}, Y_{1}\right)-\theta_{n}\right)^{2}=\sigma^{2} . \tag{2.10}
\end{equation*}
$$

For the sake of brevity we set

$$
M=\prod_{j=1}^{k} E\left(K\left(\frac{x_{j}-X_{1}}{a_{n}}\right)\right) .
$$

From condition (ii), we easily deduce that

$$
M=O\left(a_{n}^{k p}\right)
$$

Then, we have

$$
\begin{align*}
E\left\{\left(g_{1}(\right.\right. & \left.\left.\left.X_{i}, Y_{i}\right)-\theta_{n}\right)\left(g_{1}\left(X_{j}, Y_{j}\right)-\theta_{n}\right)\right\} \\
= & M^{-2} \int\left(m\left(z_{1}, \ldots, z_{k}\right)-\theta_{n}\right)\left(m\left(z_{k+1}, \ldots, z_{2 k}\right)-\theta_{n}\right) \\
& \times \prod_{m=1}^{k} K\left(\frac{x_{m}-z_{m}}{a_{n}}\right) \prod_{l=1}^{k} K\left(\frac{x_{k+l}-z_{k+l}}{a_{n}}\right) \\
& \times \prod_{m=2}^{k} F\left(d z_{m}\right) \prod_{\substack{l=k+2 \\
l \neq j}}^{k} F\left(d z_{k+l}\right) F_{i, j}\left(d z_{1}, d z_{k+1}\right) \\
= & M^{-2} a_{n}^{2 k p} \int\left(m\left(x_{1}-a_{n} u_{1}, \ldots, x_{k}-a_{n} u_{k}\right)-\theta_{n}\right) \\
& \times\left(m\left(x_{k+1}-a_{n} u_{k+1}, \ldots, x_{2 k}-a_{n} u_{2 k}\right)-\theta_{n}\right) \\
& \times \prod_{m=1}^{k} K\left(u_{m}\right) \prod_{l=k+1}^{2 k} K\left(u_{l}\right) \\
& \times \frac{f_{i, j}\left(F^{-1}\left(x_{1}-a_{n} u_{1}\right), F^{-1}\left(x_{k+1}-a_{n} u_{k+1}\right)\right)}{f_{\circ} F^{-1}\left(x_{1}-a_{n} u_{1}\right) f_{\circ} F^{-1}\left(x_{k+1}-a_{n} u_{k+1}\right)} d u_{1} \cdots d_{2} k \\
\leqslant & C a_{n}^{2 k p} M^{-2} \quad(\text { from conditions }(2.4) \text { and (iii) }), \\
\leqslant & C, \tag{2.11}
\end{align*}
$$

where $F_{i, j}$ and $f_{i, j}$ are respectively the distribution function and the density function of $\left(X_{i}, X_{j}\right)$ and, by convention, $x_{i}-a_{n} u_{i}=$ $\left(x_{i 1}-a_{n} u_{i 1}, \ldots, x_{i p}-a_{n} u_{i p}\right)$.

For any $\delta>0$

$$
\begin{align*}
& E\left|g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right|^{2+\delta} \\
& \quad \leqslant \\
& \quad M^{-(2+\delta)} \int\left|m\left(z_{1}, \ldots, z_{k}\right)-\theta_{n}\right|^{2+\delta}\left|\prod_{m=1}^{k} K\left(\frac{x_{m}-z_{m}}{a_{n}}\right)\right|^{2+\delta} \prod_{m=1}^{k} F\left(d z_{m}\right) \\
& \quad \leqslant \\
& \quad M^{-(2+\delta)} a_{n}^{k p} \int\left|m\left(x_{1}-a_{n} u_{1}, \ldots, x_{k}-a_{n} u_{k}\right)-\theta_{n}\right|^{2+\delta} \tag{2.12}\\
& \quad \times\left|\prod_{m=1}^{k} K(u)\right|^{2+\delta} \prod_{m=1}^{k} f\left(x_{m}-a_{n} u_{m}\right) d u_{1} \cdots d u_{k} \\
& \leqslant
\end{align*} \quad c a_{n}^{-k(1+\delta) p} .
$$

From (2.11), (2.12), and Lemma 5.1 in the Appendix it follows that

$$
\begin{aligned}
& n^{-1} a_{n}^{p} \sum_{1 \leqslant i \neq j \leqslant n} E\left\{\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)\left(g_{1}\left(X_{j}, Y_{j}\right)-\theta_{n}\right)\right\} \\
& \quad \leqslant 2 C r a_{n}^{p}+2\left(C a_{n}^{-k(1+\delta) p}\right)^{2 /(2+\delta)} \sum_{i=r+1}^{n}[\beta(i)]^{\delta /(2+\delta)} .
\end{aligned}
$$

If we take $r=\left[a_{n}^{-(1 / 2) p}\right]$, we get (2.9) from (1.2) and (2.10).
From Lemma 5.2 in the Appendix, we obtain the following inequality:

$$
\begin{align*}
& E\left|\sum_{i=1}^{m} g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right|^{2+\delta} \\
& \quad \leqslant C m^{(2+\delta) / 2} \sup _{1 \leqslant i \leqslant m} E\left|g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right|^{2+\delta}, \quad m \leqslant n . \tag{2.13}
\end{align*}
$$

Let now $r=\left[n^{2 / 3}\right], q=\left[n^{1 / 3}\right]$, and $l=[n /(r+1)]$. Put

$$
\begin{aligned}
\eta_{j} & =\sum_{i=(j-1)(r+q)+1}^{(j-1)(r+q)+r}\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right), \quad j=1, \ldots, l, \\
\theta_{j} & =\sum_{i=(j-1)(r+q)+r+1}^{(j-1)(r+q)+r}\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right), \quad j=1, \ldots, l, \\
\theta_{k+1} & =\sum_{i=l(r+q)+1}^{n}\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta\right) .
\end{aligned}
$$

Then, we have

$$
n^{-1 / 2} a_{n}^{p / 2} \sum_{i=1}^{n}\left(g_{1}\left(X_{i}, Y_{i}\right)-\theta_{n}\right)=n^{-1 / 2} a_{n}^{p / 2} \sum_{j=1}^{l} \eta_{j}+n^{-1 / 2} a_{n}^{p / 2} \sum_{j=1}^{l+1} \theta_{j} .
$$

From (2.13), we deduce

$$
n^{-1 / 2} a_{n}^{p / 2} \sum_{j=1}^{l+1} \theta_{j} \xrightarrow{p} 0
$$

To prove Lemma 2.1, it remains to show that $n^{-1 / 2} a_{n}^{p / 2} \sum_{j=1}^{l} \eta_{j}$ converges in law to $\mathcal{N}\left(0, \sigma^{2}\right)$ random variable.

From Lemma 5.1 in the Appendix, we obtain

$$
\left|E\left\{\exp \left(i t n^{-1 / 2} a_{n}^{p / 2} \sum_{j=1}^{l} \eta_{j}\right)\right\}-\prod_{j=1}^{k}\left[E\left\{\exp \left(i t n^{-1 / 2} a_{n}^{p / 2} \eta_{j}\right)\right\}\right]\right| \leqslant C l \beta(q)
$$

Hence it suffices to show that

$$
\begin{equation*}
\prod_{j=1}^{k}\left[E\left\{\exp \left(i t n^{-1 / 2} a_{n}^{p / 2} \eta_{j}\right)\right\}\right] \text { converges to } e^{-t^{2} \sigma^{2} / 2} \tag{2.14}
\end{equation*}
$$

Using (2.13), we obtain

$$
\begin{aligned}
& E\left\{\exp \left(i t n^{-1 / 2} a_{n}^{p / 2} \eta_{j}\right)\right\} \\
& \quad=1-\frac{t^{2} a_{n}^{p}}{2 n} E\left(\eta_{j}\right)^{2}+O\left(\frac{|t|^{2+\delta} a_{n}^{(2+\delta) p / 2}}{n^{(2+\delta) / 2}} E\left(\eta_{j}\right)^{2+\delta}\right) \\
& \quad=1-\frac{a_{n}^{p} t^{2}}{2 n} E\left(\eta_{n}\right)^{2}+o\left(|t|^{2+\delta_{n}-(1 / 6)(2+\delta)} a_{n}^{-(k-1) p+((1-2 k) / 2) \delta p}\right) .
\end{aligned}
$$

From condition (ii) and

$$
\lim \frac{l a_{n}^{p}}{n} E\left(\eta_{j}\right)^{2}=\sigma^{2} \quad(\text { from }(2.10))
$$

we get (2.14). The proof follows.
Lemma 2.2. Under the conditions of Lemma 2.1

$$
\left(n a_{n}^{p}\right)^{1 / 2}\left(U_{n}-\theta_{n}\right) \rightarrow \mathscr{N}\left(0, k \sigma^{2}\right) \quad \text { in distribution. }
$$

Proof. From the decomposition (2.7) and Lemma 2.1, it is sufficient to prove that

$$
\begin{equation*}
E\left(U_{n}^{(c)}\right)^{2}=O\left(n^{-2}\right), \quad 2 \leqslant c \leqslant k \tag{2.15}
\end{equation*}
$$

We shall only consider the case $c=2$. The proofs for the cases $c=3, \ldots, k$ are analogous and are therefore omitted.

We first note that

$$
\begin{aligned}
U_{n}^{(2)}=n^{-[2]} \sum_{1 \leqslant i_{1}<i_{2} \leqslant n}\left\{g_{2}((\right. & \left.\left.X_{i_{1}}, Y_{i_{1}}\right),\left(X_{i_{2}}, Y_{i_{2}}\right)\right) \\
& \left.\quad-g_{1}\left(X_{i_{1}}, Y_{i_{1}}\right)-g_{1}\left(X_{i_{2}}, Y_{i_{2}}\right)+\theta_{n}\right\} .
\end{aligned}
$$

So we have

$$
\begin{equation*}
E\left(U_{n}^{(2)}\right)^{2}=\sum_{1 \leqslant i_{1}<i_{2} \leqslant n} \sum_{1 \leqslant j_{1}<j_{2} \leqslant n} J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right), \tag{2.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right) \\
& =E\left\{g_{2}\left(\left(X_{i_{1}}, Y_{i_{1}}\right),\left(X_{i_{2}}, Y_{i_{2}}\right)\right)-g_{1}\left(X_{i_{1}}, Y_{i_{1}}\right)-g_{1}\left(X_{i_{2}}, Y_{i_{2}}\right)+\theta_{n}\right\} \\
& \quad \times\left\{g_{2}\left(\left(X_{j_{1}}, Y_{j_{1}}\right),\left(X_{j_{2}}, Y_{j_{2}}\right)\right)-g_{1}\left(X_{j_{1}}, Y_{j_{1}}\right)-g_{1}\left(X_{j_{2}}, Y_{j_{2}}\right)+\theta_{n}\right\} .
\end{aligned}
$$

Since

$$
\int\left\{g_{2}\left(\left(z_{1}, y_{1}\right),\left(z_{2}, y_{2}\right)\right)-g_{1}\left(z_{1}, y_{2}\right)-g_{1}\left(z_{2}, y_{2}\right)+\theta_{n}\right\} H\left(d z_{1}, d y_{1}\right)=0
$$

therefore, from Lemma 5.1 we have the following inequalities: If $1 \leqslant i_{1}<i_{2} \leqslant j_{1}<j_{2} \leqslant n$ and $j_{2}-j_{1} \geqslant i_{2}-i_{1}$, then

$$
\begin{equation*}
J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right) \leqslant M \beta^{\delta /(2+\delta)}\left(j_{2}-j_{1}\right) \tag{2.17}
\end{equation*}
$$

and, similarly, if $1 \leqslant i_{1}<i_{2} \leqslant j_{1}<j_{2} \leqslant n$ and $i_{2}-i_{1} \geqslant j_{2}-j_{1}$, then

$$
\begin{equation*}
J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right) \leqslant M \beta^{\delta /(2+\delta)}\left(i_{2}-i_{1}\right) \tag{2.18}
\end{equation*}
$$

Thus, from (2.17), (2.18), and assumption (1.2)

$$
\begin{align*}
& \left|\sum_{1 \leqslant i_{1}<i_{2} \leqslant j_{1}<j_{2} \leqslant n} j\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right)\right| \\
& \quad \leqslant\left\{\sum_{\substack{1 \leqslant i_{1}<i_{2} \leqslant j_{1}<j_{2} \leqslant n \\
i_{2}-i_{1} \geqslant j_{2}-j_{1}}}+\sum_{\substack{1 \leqslant i_{1}<i_{2} \leqslant j_{1}<j_{2} \leqslant n \\
i_{1}-i_{1} \leqslant j_{2}-j_{1}}}\right\}\left|J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right)\right| \\
& \leqslant C n^{2} \sum_{r=1}^{n}(r+1) \beta^{\delta /(2+\delta)}(r)=O\left(n^{2}\right) . \tag{2.19}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \left|\sum_{1 \leqslant i_{1}<j_{1} \leqslant i_{2}<j_{2} \leqslant n} J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right)\right|=O\left(n^{2}\right), \tag{2.20}\\
& \left|\sum_{1 \leqslant i_{1}<j_{1}<j_{2}<i_{2} \leqslant n} J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right)\right|=O\left(n^{2}\right), \tag{2.21}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\sum_{1 \leqslant i_{1}, j_{1} \leqslant n} \sum_{i_{2}=1}^{n} J\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right)\right| \leqslant C n^{2}\left(1+\sum_{r=1}^{n} \beta^{\delta /(2+\delta)}(r)\right)=O\left(n^{2}\right) . \tag{2.22}
\end{equation*}
$$

Hence from (2.19)-(2.22) and (2.16), we have (2.15) for $c=2$.
In the following, we shall investigate the asymptotic behavior of the twodimensional random vector

$$
\left(U_{n}\left(h_{1}, \mathbf{x}\right)-\theta_{n}\left(h_{1}\right), U_{n}\left(h_{2}, \mathbf{x}\right)-\theta_{n}\left(h_{2}\right)\right),
$$

where h_{1} and h_{2} are two kernels satisfying the smoothness assumptions of Lemma 2.2. We would like to apply the Cramér-Wald device. So, let c_{1}, c_{2} denote any two real numbers. Clearly,

$$
c_{1} U_{n}\left(h_{1}, \mathbf{x}\right)+c_{2} U_{n}\left(h_{2}, \mathbf{x}\right)=U_{n}\left(c_{1} h_{1}+c_{2} h_{2}, \mathbf{x}\right) \equiv U_{n}(h, \mathbf{x}),
$$

where $h=c_{1} h_{1}+c_{2} h_{2}$ and Lemma 2.2 applies. Specification of $\sigma^{2}(h)$ immediately leads to the following.

Lemma 2.3. Under the stated assumptions

$$
\left(n a_{n}^{p}\right)^{1 / 2}\left[U_{n}\left(h_{1}, \mathbf{x}\right)-\theta_{n}\left(h_{1}\right), U_{n}\left(h_{2}, \mathbf{x}\right)-\theta_{n}\left(h_{2}\right)\right] \rightarrow \mathscr{N}(0, \Sigma)
$$

in distribution, with

$$
\Sigma=\left[\begin{array}{ll}
\sigma^{2}\left(h_{1}, h_{1}\right) & \sigma^{2}\left(h_{1}, h_{2}\right) \\
\sigma^{2}\left(h_{1}, h_{2}\right) & \sigma^{2}\left(h_{2}, h_{2}\right)
\end{array}\right]
$$

and where for two functions h_{1} and h_{2}

$$
\begin{aligned}
& \sigma^{2}\left(h_{1}, h_{2}\right) \\
& \quad=\lim _{n \rightarrow \infty} a_{n}^{p} E\left\{\left(g_{1}\left(\left(X_{1}, Y_{1}\right) ; h_{1}\right)-\theta_{n}\left(h_{1}\right)\right)\left(g_{1}\left(\left(X_{1}, Y_{1}\right) ; h_{2}\right)-\theta_{n}\left(h_{2}\right)\right)\right\} .
\end{aligned}
$$

From this lemma, we will deduce the limit distribution of $U_{n}(\mathbf{x})$.

Theorem 2.1. Under the assumptions of Lemma 2.1, we have

$$
\left(n a_{n}^{p}\right)^{1 / 2}\left(u_{n}(\mathbf{x})-\theta_{n}\right) \rightarrow \mathcal{N}\left(0, \rho^{2}\right) \quad \text { in distribution, }
$$

where

$$
\rho^{2}=k\left\{\sigma^{2}(h, h)-2 m(\mathbf{x}) \sigma^{2}(h, 1)+m^{2}(\mathbf{x}) \sigma^{2}(1,1)\right\} .
$$

Proof. We have

$$
u_{n}(\mathbf{x})=U_{n}(h, \mathbf{x}) / U(1, \mathbf{x}) .
$$

Define $g\left(x_{1}, x_{2}\right)=x_{1} / x_{2}$ for $x_{2} \neq 0$. Then

$$
D=\left(\frac{\partial g}{\partial x_{1}}, \frac{\partial g}{\partial x_{2}}\right)=\left(x_{2}^{-1},-x_{1} x_{2}^{-2}\right) .
$$

Since $\theta_{n}(h, \mathbf{x}) \rightarrow m(\mathbf{x})$ and $\theta_{n}(1, \mathbf{x})=1$, we may infer from Lemma 2.3 that

$$
\left(n a_{n}^{p}\right)^{1 / 2}\left(u_{n}(\mathbf{x})-\theta_{n}(h, \mathbf{x})\right) \rightarrow \mathscr{N}\left(0, \rho^{2}\right) \quad \text { in distribution, }
$$

where

$$
\rho^{2}=(1,-m(\mathbf{x})) \Sigma\binom{1}{-m(\mathbf{x})}
$$

and

$$
\Sigma=\left(\begin{array}{ll}
\sigma^{2}(h, h) & \sigma^{2}(h, 1) \\
\sigma^{2}(h, 1) & \sigma^{2}(1,1)
\end{array}\right)
$$

Under appropriate smoothness assumptions on the marginal density f, Theorem 2.1 immediately yields asymptotic normality of $u_{n}(\mathbf{x})-m(\mathbf{x})$. Now assume that

$$
\begin{equation*}
f \text { is twice differentiable in neighborhoods of } x_{j}, \quad 1 \leqslant j \leqslant k \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
K \text { is symmetric at zero; } \tag{2.24}
\end{equation*}
$$

m admits an expansion

$$
\begin{equation*}
m(\mathbf{y}+\boldsymbol{\Delta})=m(\mathbf{y})+\left\{m^{\prime}(\mathbf{y})^{t} \boldsymbol{\Delta}\right\}+\frac{1}{2} \boldsymbol{\Delta}^{t}\left\{m^{\prime \prime}(\mathbf{y}) \boldsymbol{\Delta}+o\left(\boldsymbol{\Delta}^{t} \boldsymbol{\Delta}\right)\right\} \tag{2.25}
\end{equation*}
$$

as $\Delta \rightarrow 0$, for all \mathbf{y} in the neighborhood of \mathbf{x}. Then we have the following.

Corollary 2.1. If, in addition to conditions of Lemma 2.1, (2.23)-(2.25) hold, then

$$
\left(n a_{n}^{p}\right)^{1 / 2}\left(u_{n}(\mathbf{x})-m(\mathbf{x})\right) \rightarrow \mathcal{N}\left(0, \rho^{2}\right) \quad \text { in distribution }
$$

provided that $n a_{n}^{5 p} \rightarrow 0$.
Proof. See Corollary 2.4 of Stute [10].

3. Consistency

As for the regression estimators, we need to develop consistency results. We provide them here for the dependent case similar to the results established by Stute [10] for the independent case. Our conditions on the U-kernel h are not so restrictive as the conditions of Stute [10] on his Theorems 2 and 3.

Theorem 3.1. Under the conditions of Lemma 2.1, we have for $\mu_{1} \otimes \cdots \otimes \mu_{k}$, for almost all \mathbf{x}

$$
u_{n}(\mathbf{x}) \rightarrow m(\mathbf{x}) \quad \text { in probability }
$$

where μ is the probability measure defined by the d.f. F.
Proof. We know that almost surely

$$
\begin{equation*}
\theta_{n}(\mathbf{x}) \rightarrow m(\mathbf{x}) . \tag{3.1}
\end{equation*}
$$

We also know that

$$
u_{n}(\mathbf{x})=U_{n}(h, \mathbf{x}) / U_{n}(1, \mathbf{x})
$$

So, we have to show that

$$
U_{n}(h, \mathbf{x}) \rightarrow m(\mathbf{x}), \quad U_{n}(1, \mathbf{x}) \rightarrow 1 \quad \text { in probability. }
$$

Since $U_{n}(1, \mathbf{x})$ is a special case of $U_{n}(h, \mathbf{x})$, we have only to deal with $U_{n}(h, \mathbf{x})$.

From the decomposition (2.7) and (3.1), we have only to prove that

$$
\sum_{c=1}^{k}\binom{k}{c} U_{n}^{(c)} \rightarrow 0 \quad \text { in probability }
$$

But this is a consequence of (2.15). Theorem 3.1 follows.

Theorem 3.2. In addition to the conditions of Theorem 3.1, assume that

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{1-\gamma} \exp \left(-n a_{n}^{p}\right)<\infty \quad \text { for some } \quad 0<\gamma<1 \tag{3.2}
\end{equation*}
$$

and suppose that h is bounded. Then, for almost all \mathbf{x}

$$
u_{n}(\mathbf{x}) \rightarrow u(\mathbf{x}) \quad \text { with probability } 1 .
$$

Proof. From (2.15), we have

$$
E\left(U_{n}-k U_{n}^{(1)}\right)^{2}=O\left(n^{-2}\right) .
$$

Then, from the Borel-Cantelli lemma, it suffices to show that

$$
\begin{equation*}
U_{n}^{(1)} \rightarrow 0 \quad \text { with probability } 1 . \tag{3.3}
\end{equation*}
$$

Clearly,

$$
U_{n}^{(1)}=n^{-1} \sum_{i=1}^{n}\left\{T_{i, n}-E\left(T_{i, n}\right)\right\},
$$

where

$$
\begin{aligned}
T_{i, n}= & \int h\left(Y_{i}, y_{2}, \ldots, y_{k}\right) \prod_{j=2}^{k} K\left(\frac{x_{j}-z_{j}}{a_{n}}\right) \\
& \times K\left(\frac{x_{1}-X_{i}}{a_{n}}\right) / \prod_{j=1}^{k} E K\left(\frac{x_{j}-X_{1}}{a_{n}}\right) \prod_{j=2}^{k} \widetilde{G}\left(z_{j} ; d y_{j}\right) F\left(d z_{j}\right) .
\end{aligned}
$$

We note that there exist two positive constants b and c such that

$$
\begin{aligned}
\left|T_{i, n}\right| & \leqslant b / a_{n}^{p} \\
E\left(T_{i, n}^{2}\right) & \leqslant c / a_{n}^{p} .
\end{aligned}
$$

If $U_{1}, U_{2}, \ldots, U_{n}$ are independent random variables with $\left|U_{i}\right| \leqslant m$, $E\left(U_{i}\right)=0$, and $E\left(U_{i}^{2}\right) \leqslant \sigma_{i}^{2}$, then an inequality due to Bennett [1, p. 39] states that

$$
P\left[\left|n^{-1} \sum_{i=1}^{n} U_{i}\right| \geqslant \varepsilon\right] \leqslant 2 \exp \left\{-n \varepsilon^{2} / 2\left(\sigma^{2}+m \varepsilon\right)\right\}
$$

where $\sigma^{2}=n^{-1} \sum_{i=1}^{n} \sigma_{i}^{2}$. Put $q=q_{n}=\left[n^{1-\gamma}\right]+1$ and write

$$
U_{n}^{(1)}=\sum_{j=1}^{q} V_{n, j},
$$

where

$$
V_{n, j}=\sum_{p=0}^{l_{j}}\left\{T_{j+p q, n}-E\left(T_{j+p q, n}\right)\right\}
$$

and l_{j} is the largest integer such that $j+l_{j} q \leqslant n$. Then

$$
\begin{equation*}
P\left[\left|U_{n}^{(1)}\right| \geqslant \varepsilon\right] \leqslant P\left[n^{-1} \sum_{j=1}^{q}\left|V_{n, j}\right| \geqslant \varepsilon\right] \leqslant \sum_{j=1}^{q} P\left[\left|V_{n, j}\right| \geqslant \varepsilon n\right] . \tag{3.4}
\end{equation*}
$$

For any $j, 1 \leqslant j \leqslant q$, define

$$
B_{j}=\left\{\left(y_{1}, \ldots, y_{l_{j}}\right)\left|\sum_{p=1}^{l_{j}} y_{p}\right| \geqslant \varepsilon n q^{-1}\right\}
$$

and put

$$
g\left(y_{1}, \ldots, y_{l_{j}}\right)= \begin{cases}1 & \text { if }\left(y_{1}, \ldots, y_{l_{j}}\right) \in B_{j} \\ 0 & \text { otherwise. }\end{cases}
$$

By Lemma 5.1,

$$
\begin{align*}
P\left[\left|V_{n, j}\right|\right. & \geqslant \varepsilon n]=E g\left(T_{j, n}-E\left(T_{j, n}\right), \ldots, T_{j+l_{j q, n}}-E\left(T_{j+l_{j}, n}\right)\right) \\
& \leqslant P\left[\left|\sum_{p=0}^{l_{j}} \widetilde{T}_{j+p q, n}-E\left(\widetilde{T}_{j+p q, n}\right)\right| \geqslant n \varepsilon q^{-1}\right]+2 l_{j} \beta(q) \\
& \leqslant 2 \exp \left\{\frac{-n \varepsilon^{2} a_{n}^{p}}{2 c+4 b \varepsilon}\right\}+2 l_{j} \beta(q) \\
& \leqslant 2 \exp \left\{-\alpha n a_{n}^{p}\right\}+2 l_{j} \beta(q) \quad\left(\alpha=\frac{\varepsilon^{2}}{(2 c+4 b \varepsilon)}\right), \tag{3.5}
\end{align*}
$$

where $\widetilde{T}_{1, n}, \ldots, \widetilde{T}_{n, n}$ are independent and $\widetilde{T}_{i, n}$ is distributed as $T_{i, n}$.
From (3.4) and (3.5), we deduce

$$
P\left[\left|U_{n}^{(1)}\right| \geqslant \varepsilon\right] \leqslant 2 n^{1-\gamma}\left\{\exp \left\{-\alpha n a_{n}^{p}\right\}+n^{\nu} \beta\left(\left[n^{1-\gamma}\right]+1\right)\right\} .
$$

From the Borel-Cantelli lemma and conditions (1.2) and (3.2), we deduce (3.3) and Theorem 3.2 is proved.

4. Applications

Consider the model

$$
\begin{equation*}
Y_{n}=\psi\left(X_{n}\right)+\epsilon_{n}, \quad n \geqslant 1, \tag{4.1}
\end{equation*}
$$

where X_{n} denotes a \mathbb{R}^{p}-vector of observed values, ψ is measurable known function, ϵ_{n} is a multivariate white noise corresponding to the measurement errors (that is, $\left\{\epsilon_{n}, n \in \mathbb{N}\right\}$ is a sequence of i.i.d. random \mathbb{R}^{m}-vectors with strictly positive density) and Y_{n} is an \mathbb{R}^{m} predictor vector. If the sequence $\left(X_{n}\right)_{n \geqslant 1}$ of random vectors is absolutely regular with a geometrically rate, $E\left(\left|\psi\left(X_{n}\right)\right|^{2+\delta}\right)<+\infty$ and condition (ii) of Lemma 2.1 is satisfied. Thus we can apply Theorems 2.1, 3.1, and 3.2 for appropriate functions h and K and appropriate sequence a_{n}.

It is well known that any Markov process which is Harris recurrent, aperiodic, and geometrically aperiodic is absolutely regular with a geometrical rate.

For example, consider the model

$$
\begin{equation*}
X_{n}+\sum_{j=1}^{p_{1}} A_{j} X_{n-j}=e_{n}+\sum_{j=1}^{p_{2}} B_{l} e_{n-l}, \quad n \in \mathbb{Z} \tag{4.2}
\end{equation*}
$$

where $A_{1}, \ldots, A_{p_{1}}$ and $B_{1}, \ldots, B_{p_{2}}$ are $p \times p$ real matrices, $A_{p_{1}}$ and $B_{p_{2}}$ are invertible and $e_{n}=\left(e_{n 1}, \ldots, e_{n p}\right)$ is a multivariate white noise, where each $e_{n j}$, $n \geqslant 1,1 \leqslant j \leqslant p$, admits the same density g such that $\int|x|^{\delta} g(x) d x<\infty$ and $\int|g(x)-g(x-\theta)| d x=O\left(|\theta|^{\gamma}\right)$ for some $\delta>0$ and $\gamma>0$.

From Pham and Tran [5], X_{n} admits a Markovian representation

$$
X_{n}=H Z_{n}, \quad Z_{n}=F Z_{n-1}+G e_{n},
$$

where Z_{n} is a sequence of random vectors and H, F, G are appropriate matrices. If the eigenvalues of the matrices H have a modulus less than 1 , then X_{n} is absolutely regular with a geometrical rate.

If $p=1, m=1$, and $k=2$, the example of Stute [10] can be applied to the particular model

$$
\begin{equation*}
Y_{n}=a X_{n}+\epsilon_{n}, \quad a \in \mathbb{R}, \tag{4.3}
\end{equation*}
$$

where X_{n} is an ARMA process defined by

$$
\begin{equation*}
X_{n}=b X_{n-1}+e_{n}, \quad \text { where } \quad|b|<1 . \tag{4.4}
\end{equation*}
$$

Example 4.1. Put $h\left(y_{1}, y_{2}\right)=y_{1} y_{2}$. Then

$$
\begin{gathered}
m\left(x_{1}, x_{2}\right)=E\left(Y_{1} \mid X_{1}=x_{1}\right) E\left(Y_{2} \mid X_{2}=x_{2}\right) \\
=a^{2} x_{1} x_{2} .
\end{gathered}
$$

When $x_{1}=x_{2}$, the variance ρ^{2} defined in Theorem 2.1 yields

$$
\begin{aligned}
\rho^{2} & =4 \operatorname{Var}\left(Y_{1} \mid X_{1}=x_{1}\right) a^{2} x_{1}^{2} \int K^{2}(u) d u / f\left(x_{1}\right) \\
& =4 \sigma^{2} a^{2} x_{1}^{2} \int K^{2}(u) d u / f\left(x_{1}\right)
\end{aligned}
$$

while for $x_{1} \neq x_{2}$, we get

$$
\begin{aligned}
\rho^{2}= & {\left[\operatorname{Var}\left(Y_{1} \mid X_{1}=x_{1}\right) a^{2} x_{1}^{2} / f\left(x_{1}\right)+\operatorname{Var}\left(Y_{1} \mid X_{1}=x_{2}\right) a^{2} x_{2}^{2} / f\left(x_{2}\right)\right] } \\
& \times \int K^{2}(u) d u \\
= & \sigma^{2} \int K^{2}(u) d u\left[a^{2} x_{1}^{2} / f\left(x_{1}\right)+a^{2} x_{2}^{2} / f\left(x_{2}\right)\right] .
\end{aligned}
$$

Example 4.2. Suppose $E\left(\varepsilon_{1}^{4}\right)<+\infty$. For $h\left(y_{1}, y_{2}\right)=\frac{1}{2}\left(y_{1}-y_{2}\right)^{2}$, we obtain $m\left(x_{1}, x_{1}\right)=\operatorname{Var}\left(Y_{1} \mid X_{1}=x_{1}\right)=\sigma^{2}$. In this case

$$
\begin{aligned}
\rho^{2} & =\left\{E\left[\left(Y-a x_{1}\right)^{4} \mid X=x_{1}\right]-\operatorname{Var}\left(Y \mid X=x_{1}\right)\right\} \int K^{2}(u) d u / f\left(x_{1}\right) \\
& =\left(\tau_{4}-\sigma^{4}\right) \int K^{2}(u) d u / f\left(x_{1}\right),
\end{aligned}
$$

where $\tau_{4}=E\left(\varepsilon_{1}^{4}\right)$.
We have seen how the examples of Stute [10] can be applied now to more general models, but it is obvious from (4.1) and (4.2) that we have the possibility of using our results for a much larger set of models and applications when $p>1$ and $m>1$.

Appendix

Lemma 5.1 (Davydov [2]). Let $\left\{X_{n i}, 1 \leqslant i \leqslant n, n \geqslant 1\right\}$ be a nonstationary sequence of r.v.'s which is strong mixing. Let Z be $\sigma\left(X_{n i}, 1 \leqslant\right.$ $i \leqslant j)$-measurable $(1 \leqslant j \leqslant n)$ and let V be $\sigma\left(X_{n i}, i \geqslant j+m\right)$-measurable. If $E\left(|Z|^{p}\right)<\infty, E\left(|V|^{q}\right)<\infty$, and $r^{-1}+p^{-1}+q^{-1}=1(r, p, q>0)$ then

$$
|E(Z V)-E(Z) E(V)| \leqslant(\alpha(m))^{1 / r}\left\{E|Z|^{p}\right\}^{1 / p}\left\{E|V|^{q}\right\}^{1 / q},
$$

where C is some constant >0, and of course if the sequence is absolutely regular, the inequality (5.1) holds if we replace $(\alpha(m))^{1 / r}$ by $(\beta(m))^{1 / r}$.

Lemma 5.2 (Theorem 1 of Yokoyama [12]). Let $\left\{X_{n i}, 1 \leqslant i \leqslant n, n \geqslant 1\right\}$ be a nonstationary sequence of r.v.'s which is strong mixing with $E\left(X_{n i}\right)=0$, $1 \leqslant i \leqslant n, n \geqslant 1$, and $\sup _{1 \leqslant i \leqslant n} E\left|X_{n i}\right|^{r+\delta}<C_{n}$ for some $r>2$ and $\delta>0$. If

$$
\sum_{i=0}^{\infty}(i+1)^{r / 2}[\alpha(i)]^{\alpha /(r+\delta)}<\infty
$$

then

$$
E\left|\sum_{i=1}^{n} X_{n i}\right|^{r} \leqslant C_{n} n^{r / 2}, \quad n \geqslant 1 .
$$

References

[1] Bennett, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 19 33-45.
[2] Davydov, Yu. A. (1970). Invariance principle for empirical stationary processes. Theory Probab. Appl. 14 487-498.
[3] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 293-325.
[4] Nadaraya, E. A. (1964). On estimating regression. Theory Probab. Appl. 9 141-142.
[5] Pham, T. D., and Tran, L. T. (1985). Some mixing properties of time series models. Stochastic Process Appl. 19 297-303.
[6] Rosenblatt, M. (1969). Conditional probability density and regression estimates. In Multivariate Analysis II (Krishnaiah, Ed.), pp. 25-31. Academic Press, New York.
[7] Schuster, E. F. (1972). Joint asymptotic distribution of the estimate regression function at a finite number of distinct points. Ann. Math. Statist. 43 84-88.
[8] Stute W. (1984). Asymptotic normality on nearest neighbor regression function estimates. Ann. Statist. 12 917-918.
[9] Stute W. (1986). On almost sure convergence of conditional empirical distribution functions, An. Probab. 14 891-901.
[10] Stute W. (1991). Conditional U-statistics. Ann. Probab. 19, No. 2, 812-825.
[11] Watson, G. S. (1964). Smooth regression analysis. Snakhyā Ser. A 26 359-372.
[12] Yoкочамa, R. (1980). Moment bounds for stationary mixing sequences. Z. Wahrsch. Verw. Geb. 52 45-57.
[13] Yoshihara, K. (1988). Asymptotic normality of nearest neighbor regression function estimates based on some dependent observations. Yokohama Math. J. 36 55-68.

