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and
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W. Stute (Ann. Probab. 19, No. 2 (1991), 812�825) introduced a class of so-called
U-statistics, which may be viewed as a generalization of the Nadaraya�Watson
estimates of a regression function. In this paper, we extend the results from the
independent case to the dependent case. � 1996 Academic Press, Inc.

1. Introduction

Stute [10] introduced a class of so-called conditional U-statistics, which
may be viewed as a generalization of the Nadaraya�Watson estimates of a
regression function. This extension is similar to Hoeffding's [3] generaliza-
tion of sample means to what we now call U-statistics.

Assume that (Xi , Yi) are random vectors in the space R p_Rm, where
Xi=(Xi1 , ..., Xip) and Yi=(Yi1 , ..., Yim), i=1, ..., n. Let h be any function of
k-variates (the U-kernel), k�n such that h(Y1 , ..., Yk) is integrable. We are
interested in the estimation of

m(x1 , ..., xk)=E[h(Y1 , ..., Yk) | X1=x1 , ..., Xk=xk]. (1.1)

When p=m=k=1 and h=Id , then

m(x1)=E[Y1 | X1=x1]

is the regression of Y1 , given X1=x1 .
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For estimation of m(x1), Nadaraya [4] and Watson [11] independently
proposed:

mn(x1)=
�n

i=1 YiK[(x1&Xi)�an]
�n

i=1 K[(x1&Xi)�an)]
.

Here K is the so-called smoothing kernel satisfying � K(u) du=1 and (an)
is a sequence of bandwidths tending to zero at appropriate rates.

Schuster [7] under conditions requiring the existence of the density f of
Xi and finiteness of E( |Y1 | 3), proved the central limit theorem for mn(x).
See also Rosenblatt [6]. Then, Stute [8] proved the asymptotic normality
of mn(x) only under the condition of the finiteness of E(Y 2

1), while X1 need
not have a density at all. Later Yoshihara [13] proved the central limit
theorem for mn(x) when the r.v.'s are .-mixing under finiteness of
E( |Y1 | 2+$) ($>0). But the .-mixing condition has applications which are
too limited; for example, an ARMA process is never .-mixing but generally
geometrically absolutely regular.

For an arbitrary k, we now consider statistics of the form

un(x)=un(x1 , ..., xk)

=
�; h(Y;1

, ..., Y;1
) >k

j=1 K[(xj&X;j)�an]
�; >k

j=1 K[(xj&X;j)�an]

=
_�; h((Y;11 , ..., Y;1m), ..., (Y;k1 , ..., Y;km))

_>k
j=1 K[(xj1&X;j1)�an , ..., (xjp&X;jp)�an]&

�; >k
j=1 K[(xj1&X;j1)�an , ..., (xjp&X;jp)�an]

.

Here the summation extends over all permutations ;=(;1 , ..., ;k) of
length k. Stute [10] derived the limit distribution of un(x) when the r.v.'s
are independent under finiteness of E( |h(Y1 , ..., Yk)| 2+$) ($>0). In this
paper, we extend the result of Stute [10] for absolutely regular r.v.'s. When
p=m=k=1 and h=Ik our result extends the result of Yoshihara [13]
from the .-mixing condition to the absolutely regular condition which
permits a broad range of applications.

In what follows, we assume that the function h is symmetric and the
sequence of r.v.'s (X1 , Y1), ..., (Xn , Yn) is absolutely regular with rates

;(m)=O(\m) for some 0<\<1. (1.2)

Recall that a sequence of random vectors [Xni, 1�i�n, n�1] is absolutely
regular if

:
m�n

max
1�j�n&m

E[ sup
A # _(Xni, i�j+m)

|P(A | _(Xni , A�i�j))&P(A)|]=;(m) a 0.
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Here _(Xni , 1�i�j) and _(Xni , i�j+m) are the _-fields generated by
(Xn1 , ..., Xnj) and (Xn, j+m , Xn, j+m+1, ..., Xnn), respectively. Also recall that
[Xni] satisfies the strong mixing condition if supm�n sup1�j�n&m

[|P(A&B)&P(A)P(B)|; A#_(Xni , 1� i� j), B#_(Xni , i� j+m)]=:(m)a0.
Since :(m)�;(m), it follows that if [Xni] is absolutely regular, then it is
also strong mixing.

In Section 4, we will show how our results can be applied to some
Markov processes and particularly to some ARMA processes.

2. Asymptotic Normality

Let x=(x1 , ..., xk) be fixed throughout. In this section, h will be assumed
to be square-integrable. Set

Un(h, x)#U(x)#Un=
(n&k)!

n!
:
;

h(Y;1
, ..., Y;k)

_ `
k

j=1

K \xj&X;j

an +� `
k

j=1

EK \xj&X1

an +. (2.1)

Then

un(x)=Un(h, x)�Un(1, x).

Note that Un(h, x) for each k�1 is a classical U-statistic with a kernel
depending on n.

Next, we denote the distribution function (d.f.) of (Xi , Yi) by H and the
marginals by F and G. Consider a sequence of functionals

%n(h, x)#%n

=| m(z1 , ..., zk) `
k

j=1

K \xj&zj

an +
_F(dz1). . .F(dzk)� `

k

j=1
| K \xj&x

an + F(dx)

=
E[h(Y� 1 , ..., Y� k) >k

j=1 K((xj&X� j)�an)]

E[>k
j=1 K((xj&X� j)�an)]

, (2.2)

where (X� i , Y� i), i=1, ..., k are i.i.d. random vectors with d.f. H.
We also suppose that the r.v.'s (Y1 , | X1), (X2 | Y2), ..., (Yn | Xn) are

independent and we denote by G� (x; } ) the conditional d.f. of (Y1 | X1=x).
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We also assume that

E |h(Y1 , ..., Yk)|2+$<+� for some $>0. (2.3)

For every c (0�c�k), put

gc, n((z1 , y1), ..., (zc , yc))

#gc((z1 , y1), ..., (zc , yc))

=| h( y1 , ..., yk) `
k

j=1

K \xj&zj

an +<`
k

j=1

EK \xj&X1

an +
_ `

k

j=c+1

G� (zj ; dyj) F(dzj). (2.4)

We have g0=%n and

gk((z1 , y1), ..., (zk , yk))

=h( y1 , ..., yk) `
k

j=1

K \xj&zj

an +<`
k

j=1

EK \xj&X1

an + (2.5)

Let n&[r]=[n(n&1) } } } (n&r+1)]&1. Set

U (c)
n =n&[c] :

;(c)
| gc((z1 , y1), ..., (zc , yc))

_ `
c

j=1

d(I[(X;j, Y;j)�(zj, yj)]&H(zj , yj)), (2.6)

where ;(c) is the summation over all the permutations ;(c)=(;1 , ..., ;c) of
length c. Then

Un=%n+ :
k

c=1
\k

c+ U (c)
n . (2.7)

Let

_2=_2(h, x)= lim
n � �

a p
n[E(g2

1(X1 , Y1))&%2
n] (2.8)

if the limit exists. We note also that limn � � a p
n %2

n=0.

Lemma 2.1. Assume that

(i) an � 0 and nan � �.

(ii) K is bounded and has compact support.
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(iii) F admits a density f which is continuous at each xj , 1�j�k, with
f (xj)>0.

Then, we have _2<� and (na p
n )1�2 U (1)

n � N(0, _2) in distribution, where
_2 is defined in (2.8).

Proof. First, we show that

lim
n � �

E((na p
n )1�2 (U (1)

n ))2=_2. (2.9)

From (2.6), we have

U (1)
n =n&1 :

n

i=1

g1(Xi , Yi) d(I[(Xi, Yi)�(xi, yi)]&H(xi , yi))

=n&1 :
n

i=1

g1(Xi , Yi)

&n&1 :
n

i=1
| h( y1 , ..., yk) `

k

j=1

K \xj&zj

an +<`
k

j=1

EK \xj&X1

an +
_ `

k

j=1

G� (zj ; dyj) F(dzj)

=n&1 :
n

i=1

g1(Xi , Yi)

&n&1 :
n

i=1
| m(z1 , ..., zk)<`

k

j=1

EK \xj&X1

an + `
k

j=1

F(dzj)

=n&1 :
n

i=1

(g1(Xi , Yi)&%n).

We can write

na p
n E(U (1)

n )2

=n&1a p
n E \ :

n

i=1

(g1(Xi , Yi)&%n)+
2

=n&1a p
n :

n

i=1

E(g1(Xi , Yi)&%n)2

+n&1a p
n :

1�i{j�n

E[(g1(Xj , Yj)&%n)]
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=n&1a p
n :

n

i=1

E(g1(Xi , Yi)&%n)2

+2n&1a p
n :

j&i�r
1�i<j�n

E[(g1(Xi , Yi)&%n)(g1(Xj , Yj)&%n)]

+2n&1a p
n :

j&i>r
1�i<j�n

E[(g1(Xi , Yi)&%n)(g1(Xj , Yj)&%n)].

First, note that

lim n&1a p
n :

n

i=1

E(g1(Xi , Yi)&%n)2= lim
n � �

a p
n E(g1(X1 , Y1)&%n)2=_2.

(2.10)

For the sake of brevity we set

M= `
k

j=1

E \K \xj&X1

an ++ .

From condition (ii), we easily deduce that

M=O(akp
n ).

Then, we have

E[(g1(Xi , Yi)&%n)(g1(Xj , Yj)&%n)]

=M&2 | (m(z1 , ..., zk)&%n)(m(zk+1, ..., z2k)&%n)

_ `
k

m=1

K \xm&zm

an + `
k

l=1

K \xk+l&zk+l

an +
_ `

k

m=2

F(dzm) `
k

l=k+2
l{j

F(dzk+l) Fi, j (dz1 , dzk+1)

=M&2a2kp
n | (m(x1&anu1 , ..., xk&an uk)&%n)

_(m(xk+1&anuk+1 , ..., x2k&anu2k)&%n)

_ `
k

m=1

K(um) `
2k

l=k+1

K(ul)

_
fi, j (F &1(x1&an u1), F &1(xk+1&anuk+1))
f b F &1(x1&an u1) f b F &1(xk+1&anuk+1)

du1 } } } d2k

�Ca2kp
n M &2 (from conditions (2.4) and (iii)),

�C, (2.11)
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where Fi, j and fi, j are respectively the distribution function and the
density function of (Xi , Xj) and, by convention, xi&anui=
(xi1&anui1 , ..., xip&an uip).

For any $>0

E | g1(Xi , Yi)&%n | 2+$

�M&(2+$) | |m(z1 , ..., zk)&%n | 2+$ } `
k

m=1

K \xm&zm

an +} 2+$ `
k

m=1

F(dzm)

�M&(2+$)akp
n | |m(x1&anu1 , ..., xk&anuk)&%n | 2+$

_} `
k

m=1

K(u)} 2+$ `
k

m=1

f (xm&anum) du1 } } } duk

�ca&k(1+$) p
n . (2.12)

From (2.11), (2.12), and Lemma 5.1 in the Appendix it follows that

n&1a p
n :

1�i{j�n

E[(g1(Xi , Yi)&%n)(g1(Xj , Yj)&%n)]

�2Cra p
n +2(Ca&k(1+$) p

n )2�(2+$) :
n

i=r+1

[;(i)]$�(2+$).

If we take r=[a&(1�2) p
n ], we get (2.9) from (1.2) and (2.10).

From Lemma 5.2 in the Appendix, we obtain the following inequality:

E } :
m

i=1

g1(Xi , Yi)&%n }2+$

�Cm(2+$)�2 sup
1�i�m

E | g1(Xi , Yi)&%n | 2+$, m�n. (2.13)

Let now r=[n2�3], q=[n1�3], and l=[n�(r+1)]. Put

'j= :
( j&1)(r+q)+r

i=( j&1)(r+q)+1

(g1(Xi , Yi)&%n), j=1, ..., l,

%j= :
( j&1)(r+q)+r

i=( j&1)(r+q)+r+1

(g1(Xi , Yi)&%n), j=1, ..., l,

%k+1= :
n

i=l(r+q)+1

(g1(Xi , Yi)&%).
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Then, we have

n&1�2a p�2
n :

n

i=1

(g1(Xi , Yi)&%n)=n&1�2a p�2
n :

l

j=1

'j+n&1�2a p�2
n :

l+1

j=1

%j .

From (2.13), we deduce

n&1�2a p�2
n :

l+1

j=1

%j w�p 0.

To prove Lemma 2.1, it remains to show that n&1�2a p�2
n �l

j=1 'j converges
in law to N(0, _2) random variable.

From Lemma 5.1 in the Appendix, we obtain

}E {exp \itn&1�2a p�2
n :

l

j=1

'j+=& `
k

j=1

[E[exp(itn&1�2a p�2
n 'j)]]}�Cl;(q).

Hence it suffices to show that

`
k

j=1

[E[exp(itn&1�2a p�2
n 'j)]] converges to e&t2_2�2. (2.14)

Using (2.13), we obtain

E[exp (itn&1�2a p�2
n 'j)]

=1&
t2a p

n

2n
E('j)

2+O \ |t| 2+$a (2+$) p�2
n

n(2+$)�2 E('j)
2+$+

=1&
a p

n t2

2n
E('n)2+o( |t| 2+$n&(1�6)(2+$)a&(k&1) p+((1&2k)�2) $p

n ).

From condition (ii) and

lim
la p

n

n
E('j)

2=_2 (from (2.10))

we get (2.14). The proof follows.

Lemma 2.2. Under the conditions of Lemma 2.1

(na p
n )1�2 (Un&%n) � N(0, k_2) in distribution.

Proof. From the decomposition (2.7) and Lemma 2.1, it is sufficient to
prove that

E(U (c)
n )2=O(n&2), 2�c�k. (2.15)
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We shall only consider the case c=2. The proofs for the cases c=3, ..., k
are analogous and are therefore omitted.

We first note that

U (2)
n =n&[2] :

1�i1<i2� n

[g2((Xi1 , Yi1), (Xi2 , Yi2
))

& g1(Xi1
, Yi1)&g1(Xi2 , Yi2)+%n].

So we have

E(U (2)
n )2= :

1�i1<i2�n

:
1�j1<j2�n

J((i1 , i2), ( j1 , j2)), (2.16)

where

J((i1, i2), ( j1, j2))

=E[g2((Xi1, Yi1), (Xi2 , Yi2))&g1(Xi1 , Yi1)&g1(Xi2 , Yi2)+%n]

_[g2((Xj1
, Yj1

), (Xj2
, Yj2

))&g1(Xj1
, Yj1

)&g1(Xj2
, Yj2

)+%n].

Since

| [g2((z1 , y1), (z2 , y2))&g1(z1 , y2)&g1(z2 , y2)+%n] H(dz1 , dy1)=0,

therefore, from Lemma 5.1 we have the following inequalities: If
1�i1<i2�j1<j2�n and j2&j1�i2&i1 , then

J((i1 , i2), ( j1 , j2))�M;$�(2+$)( j2&j1) (2.17)

and, similarly, if 1�i1<i2�j1<j2�n and i2&i1�j2&j1 , then

J((i1 , i2), ( j1 , j2))�M;$�(2+$)(i2&i1). (2.18)

Thus, from (2.17), (2.18), and assumption (1.2)

} :
1�i1<i2� j1< j2�n

j((i1 , i2), ( j1 , j2))}
�{ :

i2&i1�j2&j1

1�i1<i2�j1<j2�n

+ :

i1&i1�j2&j1

1�i1<i2�j1<j2�n= |J((i1 , i2), ( j1 , j2))|

�Cn2 :
n

r=1

(r+1) ;$�(2+$)(r)=O(n2). (2.19)
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Similarly, we have

} :
1�i1<j1�i2<j2�n

J((i1 , i2), ( j1 , j2))}=O(n2), (2.20)

} :
1�i1<j1<j2<i2�n

J((i1 , i2), ( j1 , j2))}=O(n2), (2.21)

and

} :
1�i1, j1�n

:
n

i2=1

J((i1 , i2), ( j1 , j2))}�Cn2 \1+ :
n

r=1

;$�(2+$)(r)+=O(n2).

(2.22)

Hence from (2.19)�(2.22) and (2.16), we have (2.15) for c=2. K

In the following, we shall investigate the asymptotic behavior of the two-
dimensional random vector

(Un(h1 , x)&%n(h1), Un(h2 , x)&%n(h2)),

where h1 and h2 are two kernels satisfying the smoothness assumptions of
Lemma 2.2. We would like to apply the Crame� r�Wald device. So, let c1 , c2

denote any two real numbers. Clearly,

c1Un(h1 , x)+c2 Un(h2 , x)=Un(c1 h1+c2 h2 , x)#Un(h, x),

where h=c1 h1+c2 h2 and Lemma 2.2 applies. Specification of _2(h)
immediately leads to the following.

Lemma 2.3. Under the stated assumptions

(na p
n )1�2 [Un(h1 , x)&%n(h1), Un(h2 , x)&%n(h2)] � N(0, 7)

in distribution, with

7=__2(h1 , h1)
_2(h1 , h2)

_2(h1 , h2)
_2(h2 , h2)&

and where for two functions h1 and h2

_2(h1 , h2)

= lim
n � �

a p
n E[(g1((X1 , Y1); h1)&%n(h1))(g1((X1 , Y1); h2)&%n(h2))].

From this lemma, we will deduce the limit distribution of Un(x).
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Theorem 2.1. Under the assumptions of Lemma 2.1, we have

(na p
n )1�2 (un(x)&%n) � N(0, \2) in distribution,

where

\2=k[_2(h, h)&2m(x) _2(h, 1)+m2(x) _2(1, 1)].

Proof. We have

un(x)=Un(h, x)�U(1, x).

Define g(x1 , x2)=x1 �x2 for x2 {0. Then

D=\ �g
�x1

,
�g
�x2+=(x&1

2 , &x1x&2
2 ).

Since %n(h, x) � m(x) and %n(1, x)=1, we may infer from Lemma 2.3 that

(na p
n )1�2 (un(x)&%n(h, x)) � N(0, \2) in distribution,

where

\2=(1, &m(x)) 7 \ 1
&m(x)+

and

7=\_2(h, h)
_2(h, 1)

_2(h, 1)
_2(1, 1)+ . K

Under appropriate smoothness assumptions on the marginal density f,
Theorem 2.1 immediately yields asymptotic normality of un(x)&m(x).
Now assume that

f is twice differentiable in neighborhoods of xj , 1� j�k, (2.23)

and

K is symmetric at zero; (2.24)

m admits an expansion

m(y+2)=m(y)+[m$(y)t 2]+ 1
2 2t[m"(y) 2+o(2t2)] (2.25)

as 2 � 0, for all y in the neighborhood of x. Then we have the following.
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Corollary 2.1. If, in addition to conditions of Lemma 2.1, (2.23)�(2.25)
hold, then

(na p
n )1�2 (un(x)&m(x)) � N(0, \2) in distribution,

provided that na5p
n � 0.

Proof. See Corollary 2.4 of Stute [10].

3. Consistency

As for the regression estimators, we need to develop consistency results.
We provide them here for the dependent case similar to the results estab-
lished by Stute [10] for the independent case. Our conditions on the
U-kernel h are not so restrictive as the conditions of Stute [10] on his
Theorems 2 and 3.

Theorem 3.1. Under the conditions of Lemma 2.1, we have for
+1 � } } } �+k , for almost all x

un(x) � m(x) in probability,

where + is the probability measure defined by the d.f. F.

Proof. We know that almost surely

%n(x) � m(x). (3.1)

We also know that

un(x)=Un(h, x)�Un(1, x).

So, we have to show that

Un(h, x) � m(x), Un(1, x) � 1 in probability.

Since Un(1, x) is a special case of Un(h, x), we have only to deal with
Un(h, x).

From the decomposition (2.7) and (3.1), we have only to prove that

:
k

c=1
\k

c+ U (c)
n � 0 in probability.

But this is a consequence of (2.15). Theorem 3.1 follows.
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Theorem 3.2. In addition to the conditions of Theorem 3.1, assume that

:
�

n=1

n1&# exp (&na p
n )<� for some 0<#<1 (3.2)

and suppose that h is bounded. Then, for almost all x

un(x) � u(x) with probability 1.

Proof. From (2.15), we have

E(Un&kU (1)
n )2=O(n&2).

Then, from the Borel�Cantelli lemma, it suffices to show that

U (1)
n � 0 with probability 1. (3.3)

Clearly,

U (1)
n =n&1 :

n

i=1

[Ti, n&E(Ti, n)],

where

Ti, n=| h(Yi , y2 , ..., yk) `
k

j=2

K \xj&zj

an +
_K \x1&Xi

an +<`
k

j=1

EK \xj&X1

an + `
k

j=2

G� (zj ; dyj) F(dzj).

We note that there exist two positive constants b and c such that

|Ti, n |�b�a p
n

E(T2
i, n)�c�a p

n .

If U1 , U2 , ..., Un are independent random variables with |Ui |�m,
E(Ui)=0, and E(U 2

i )�_2
i , then an inequality due to Bennett [1, p. 39]

states that

P _}n&1 :
n

i=1

Ui }�=&�2 exp[&n=2�2(_2+m=)],

where _2=n&1 �n
i=1 _2

i . Put q=qn=[n1&#]+1 and write

U (1)
n = :

q

j=1

Vn, j ,
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where

Vn, j= :
lj

p=0

[Tj+pq, n&E(Tj+pq, n)]

and lj is the largest integer such that j+ljq�n. Then

P[ |U (1)
n |�=]�P _n&1 :

q

j=1

|Vn, j |�=&� :
q

j=1

P[|Vn, j |�=n]. (3.4)

For any j, 1�j�q, define

Bj={( y1 , ..., ylj) } :
lj

p=1

yp }�=nq&1=
and put

g(y1 , ..., ylj)={1 if (y1 , ..., ylj) # Bj

0 otherwise.

By Lemma 5.1,

P[|Vn, j |�=n]=Eg(Tj, n&E(Tj, n), ..., Tj+lj q, n&E(Tj+lj q, n))

�P _} :
lj

p=0

T� j+pq, n&E(T� j+pq, n) }�n=q&1&+2lj;(q)

�2exp {&n=2a p
n

2c+4b==+2lj ;(q)

�2 exp[&:na p
n ]+2lj ;(q) \:=

=2

(2c+4b=)+ , (3.5)

where T� 1, n , ..., T� n, n are independent and T� i, n is distributed as Ti, n .
From (3.4) and (3.5), we deduce

P[|U (1)
n |�=]�2n1&#[exp[&:na p

n ]+n#;([n1&#]+1)].

From the Borel�Cantelli lemma and conditions (1.2) and (3.2), we deduce
(3.3) and Theorem 3.2 is proved.

4. Applications

Consider the model

Yn=�(Xn)+=n , n�1, (4.1)

97CONDITIONAL U-STATISTICS



File: 683J 160115 . By:BV . Date:07:07:07 . Time:12:15 LOP8M. V8.0. Page 01:01
Codes: 2523 Signs: 1570 . Length: 45 pic 0 pts, 190 mm

where Xn denotes a R p-vector of observed values, � is measurable known
function, =n is a multivariate white noise corresponding to the measurement
errors (that is, [=n , n # N] is a sequence of i.i.d. random Rm-vectors with
strictly positive density) and Yn is an Rm predictor vector. If the sequence
(Xn)n�1 of random vectors is absolutely regular with a geometrically rate,
E( |�(Xn)| 2+$)< +� and condition (ii) of Lemma 2.1 is satisfied. Thus we
can apply Theorems 2.1, 3.1, and 3.2 for appropriate functions h and K and
appropriate sequence an .

It is well known that any Markov process which is Harris recurrent,
aperiodic, and geometrically aperiodic is absolutely regular with a
geometrical rate.

For example, consider the model

Xn+ :

p1

j=1

AjXn&j=en+ :

p2

j=1

Blen&l , n # Z, (4.2)

where A1 , ..., Ap1
and B1 , ..., Bp2

are p_p real matrices, Ap1
and Bp2

are
invertible and en=(en1 , ..., enp) is a multivariate white noise, where each enj ,
n�1, 1�j�p, admits the same density g such that � |x|$ g(x) dx<� and
� | g(x)&g(x&%)| dx=O( |%| #) for some $>0 and #>0.

From Pham and Tran [5], Xn admits a Markovian representation

Xn=HZn , Zn=FZn&1+Gen ,

where Zn is a sequence of random vectors and H, F, G are appropriate
matrices. If the eigenvalues of the matrices H have a modulus less than 1,
then Xn is absolutely regular with a geometrical rate.

If p=1, m=1, and k=2, the example of Stute [10] can be applied to
the particular model

Yn=aXn+=n , a # R, (4.3)

where Xn is an ARMA process defined by

Xn=bXn&1+en , where |b|<1. (4.4)

Example 4.1. Put h( y1 , y2)=y1 y2 . Then

m(x1 , x2)=E(Y1 | X1=x1) E(Y2 | X2=x2)

=a2x1x2 .
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When x1=x2 , the variance \2 defined in Theorem 2.1 yields

\2=4 Var(Y1 | X1=x1) a2x2
1 | K2(u) du�f (x1)

=4_2a2x2
1 | K2(u) du�f (x1)

while for x1 {x2 , we get

\2=[Var(Y1 | X1=x1) a2x2
1 �f (x1)+Var(Y1 | X1=x2) a2x2

2 �f (x2)]

_| K2(u) du

=_2 | K2(u) du[a2x2
1 �f (x1)+a2x2

2�f (x2)].

Example 4.2. Suppose E(=4
1)<+�. For h( y1 , y2)= 1

2 ( y1&y2)2, we
obtain m(x1 , x1)=Var(Y1 | X1=x1)=_2. In this case

\2=[E[(Y&ax1)4 | X=x1]&Var(Y | X=x1)] | K2(u) du�f (x1)

=({4&_4) | K 2(u) du�f (x1),

where {4=E(=4
1).

We have seen how the examples of Stute [10] can be applied now to
more general models, but it is obvious from (4.1) and (4.2) that we have
the possibility of using our results for a much larger set of models and
applications when p>1 and m>1.

Appendix

Lemma 5.1 (Davydov [2]). Let [Xni , 1�i�n, n�1] be a nonstation-
ary sequence of r.v.'s which is strong mixing. Let Z be _(Xni , 1�
i�j)-measurable (1�j�n) and let V be _(Xni , i�j+m)-measurable.
If E( |Z| p)<�, E( |V|q)<�, and r&1+p&1+q&1=1 (r, p, q>0) then

|E(ZV)&E(Z) E(V)|�(:(m))1�r [E |Z| p]1�p [E |V| q]1�q,

where C is some constant >0, and of course if the sequence is absolutely
regular, the inequality (5.1) holds if we replace (:(m))1�r by (;(m))1�r.
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Lemma 5.2 (Theorem 1 of Yokoyama [12]). Let [Xni , 1�i�n, n�1]
be a nonstationary sequence of r.v.'s which is strong mixing with E(Xni)=0,
1�i�n, n�1, and sup1�i�n E |Xni |

r+$<Cn for some r>2 and $>0. If

:
�

i=0

(i+1)r�2 [:(i)]:�(r+$)<�

then

E } :
n

i=1

Xni } r�Cnnr�2, n�1.
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