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Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in plant environmental responses.
Arabidopsis thaliana NADPH oxidase AtRbohF-mediated ROS-production is involved in abiotic stress responses. Be-
cause overproduction of ROS is highly toxic to cells, the activity of AtRbohF needs to be tightly regulated in response
to diverse stimuli. The ROS-producing activity of AtRbohF is activated by Ca?* and protein phosphorylation, but
other regulatory factors for AtRbohF are mostly unknown. In this study, we screened for proteins that interact
with the N-terminal cytosolic region of AtRbohF by a yeast two-hybrid screen, and isolated AtSRC2, an A. thaliana
homolog of SRC2 (soybean gene regulated by cold-2). A co-immunoprecipitation assay revealed that AtSRC2 inter-
acts with the N-terminal region of AtRbohF in plant cells. Intracellular localization of GFP-tagged AtSRC2 was par-
tially overlapped with that of GFP-tagged AtRbohF at the cell periphery. Co-expression of AtSRC2 enhanced the
Ca®*-dependent ROS-producing activity of AtRbohF in HEK293T cells, but did not affect its phosphorylation-
dependent activation. Low-temperature treatment induced expression of the AtSRC2 gene in Arabidopsis roots in
proportion to levels of ROS production that was partially dependent on AtRbohF. Our findings suggest that AtSRC2
is a novel activator of Ca? "-dependent AtRbohF-mediated ROS production and may play a role in cold responses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Increasing evidence indicates that reactive oxygen species (ROS) pro-
duced by NADPH oxidases (NOXs) function as signaling molecules in
most eukaryotes. In plants, NOX-mediated ROS production has been
shown to be involved in the regulation of developmental programs,
pathogen defense responses, abiotic stress signaling and other processes
[1,2]. The plant NOXs, also known as respiratory burst oxidase
homologues (Rbohs), have six transmembrane (TM) helices as well as
C-terminal intracellular FAD/NADPH-binding domains, and particularly
an extended N-terminal region that contains two Ca?*-binding EF-
hand motifs [3,4]. The Arabidopsis thaliana genome contains ten Rboh
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homologue; co-IP, co-immunoprecipitation; NOX, NADPH oxidase; ROS, reactive oxygen
species; RT-PCR, reverse transcription-polymerase chain reaction; SRC2, soybean gene
regulated by cold-2; TM, transmembrane
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genes (AtRbohA-J]). AtRbohF has been shown to be involved in environ-
mental stress responses [5-8].

Heterologous expression in human embryonic kidney 293 T
(HEK293T) cells is a powerful tool to characterize plant Rbohs [9-12].
Jonomycin, a Ca®* ionophore, induces Ca?* influx into the cells and in
turn induces AtRbohF-mediated rapid and transient ROS production in
HEK293T cells [11]. This activation results from the binding of Ca>* to
the EF-hand motif(s) of AtRbohF. Concomitantly, calyculin A (CA), a
Ser/Thr protein phosphatase inhibitor, induces phosphorylation of
AtRbohD and activation of its ROS-producing activity [9]. The ROS-
producing activity of AtRbohF is also activated by CA, suggesting its
phosphorylation-dependent activation [11].

Because overproduction of ROS is highly toxic to cells, the activity of
AtRbohF needs to be tightly regulated in response to diverse stimuli.
Whereas the ROS-producing activities of many animal and fungal NOX
proteins are regulated by several regulatory proteins, most of these reg-
ulators have not been found in plants and only a few proteins that inter-
act with Rbohs have been identified [13]. Recently a calcineurin B-like
protein (CBL)-interacting protein kinase 26 (CIPK26) has been shown
to bind directly to AtRbohF and negatively modulate its activity [14].
However, the regulatory mechanism for controlling the ROS-producing
activity of Rbohs including AtRbohF still remains largely unknown.

ROS have been implicated to be involved in the expression of numer-
ous genes, including cold stress responsive transcription factor genes
such as ZAT12 and DREB2A [15,16]. ZAT12 (At5g59820), a zinc finger
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protein, contributes to cold acclimation [17]. DREB2A (At5g05410) is
a transcription factor that specifically interacts with a cis-acting
dehydration-responsive element (DRE) that is involved in the cold-
and dehydration-responsive gene expression. DREB2A participates in
cold acclimation [18]. The MAP kinase cascade functions in ROS signaling
and cold responses. Activity of mitogen-activated protein kinase 6 can be
activated not only in response to low temperature treatment [19] but
also by ROS [20].

In this study, we isolated AtSRC2, an A. thaliana homolog of soybean
gene regulated by cold-2 (SRC2) as a novel protein interacting with
AtRbohF. The expression of soybean SRC2 is induced by low tempera-
ture treatment [21]. However, the functions of SRC2 and its homologs
under cold stress had remained unknown. Here, we show that AtSRC2
binds to AtRbohF in plant cells and enhances its ROS-producing activity
in HEK293T cells. Possible physiological implications of this novel mech-
anism for regulating Rboh-mediated ROS production are discussed.

2. Materials and methods
2.1. Plasmid construction

The coding DNA sequences (CDSs) of AtRbohF (At1g64060), AtRbohFY
(amino acid residues 1-387) and AtSRC2 (At1g09070) were PCR-
amplified from a cDNA library of A. thaliana. For the yeast two-hybrid
screen, the CDSs of AtRbohF" and AtSRC2 were cloned into pGBKT7 and
PGADT7 (Clonetech), respectively. For the co-immunoprecipitation (co-
IP) analysis, the CDSs of either AtRbohF" or AtSRC2 were PCR-amplified
with primer containing the 3xFLAG or 3xMyc sequences, respectively.
Then the PCR fragments of 3xFIAG-tagged AtRbohF" and 3xMyc-tagged
AtSRC2 were independently cloned into the multiple cloning site 1 of
PRI201-AN (TaKaRa). For expression of GFP fusion proteins, the PCR-
amplified CaMV35S promoter fragments, the NOS terminator fragments
and the CDS of AcGFP (TaKaRa) were cloned into the pBluescript II SK
(+) vector. Then the CDSs of AtSRC2 and AtRbohF were PCR-amplified in-
dependently and cloned in frame with the N-terminal AcGFP tag. To mea-
sure ROS, 3xFLAG tagged AtRbohF, 3xMyc tagged AtSRC2 or 3xMyc tagged
GFP was first PCR-amplified. Subsequently, the PCR fragments of 3xFLAG-
AtRbohF, 3xMyc-AtSRC2 or 3xMyc-GFP were cloned into the BamHI site of
PEF1-MCS using an In-Fusion Cloning Kit (Clontech), resulting in pEF1-
3 xFLAG-AtRbohF, pEF1-3xMyc-AtSRC2 and pEF1-3xMyc-GFP, respectively.

2.2. Yeast two-hybrid assay

A yeast two-hybrid assay was performed as described in [14]. For
cDNA library construction, total RNA was isolated from 7-day-old seed-
lings of A. thaliana (Columbia) using the Matchmaker Library Construc-
tion & Screening Kits (Clontech) according to the manufacturer's
protocol. To detect protein-protein interactions, a dilution series of
the transformed cells were spotted on SD medium lacking tryptophan,
leucine, and histidine. We independently replicated this experiment
more than twice with similar results.

2.3. Co-immunoprecipitation analysis

Co-IP analysis was performed as described in [14]. Briefly, equal vol-
umes of two Agrobacterium strains (FLAG-AtRbohF" and Myc-AtSRC2)
were mixed and co-infiltrated into the leaves of Nicotiana benthamiana
plants. Total proteins were extracted from leaves two days after infiltra-
tion in the extraction buffer [50 mM Tris-HCI (pH 8.0), 150 mM Nadl,
10% (v/v) glycerol, 1% (v/v) Triton X-100, 10 mM NaF, 0.1 mM Na3VOy,,
1 mM CaCl,, 1 x Proteinase inhibitor cocktail (Roche) and 1 mM
EDTA]. The protein extracts were incubated in anti-FLAG M2 affinity
gel (Sigma-Aldrich) at 4 °C for 2 h. Immunoprecipitated proteins were
analyzed by Western blotting using anti-c-Myc monoclonal antibodies
(Wako) and anti-FLAG M2 monoclonal antibodies (Sigma-Aldrich).

2.4. Subcellular localization of AtSRC2 and AtRbohF

Microprojectiles were prepared with 7 pg of GFP-fusion constructs
DNA per shot and bombarded into onion epidermal cells using a Biolistic
PDS-1000/He system (Bio-Rad) with 1100 psi rupture disks. To induce
plasmolysis, cells were incubated in 0.5 M mannitol for 10-30 min.
The expression and localization of the GFP fusion proteins in the cell
were detected with a LSM5 EXCITER or LSM780 (Carl Zeiss). We inde-
pendently replicated this experiment more than five times with similar
results.

2.5. Measurement of ROS production in HEK293T cells

The ROS producing activity was assayed as described in [9]. Briefly,
HEK293T cells were transiently transfected with GeneJuice transfection
regent (Novagen) according to the manufacturer's instructions. ROS
production was detected by a luminol-amplified chemiluminescence
technique. Chemiluminescence was measured every 30 s using a
microplate luminometer Centro LB960 (Berthold Technologies). ROS
production was expressed in relative luminescence units (RLU). The
maximum value of the luminescence unit (activity) was set at 1.0.
Data are presented as the average of three samples in a representative
experiment. We independently replicated this experiment more than
five times with similar results.

2.6. Detection of ROS in plants and cold treatment

Ten-day-old Arabidopsis (Col-0) seedlings were vacuum-infiltrated
with freshly prepared NBT solution [0.1 mg ml ™' 4-nitro blue tetrazoli-
um chloride (NBT; Roche) in 0.1 M sodium phosphate buffer, pH 7.4],
stained at room temperature in the dark for 2 h and then washed
with 0.1 M sodium phosphate buffer (pH 7.4). For cold treatment of
the plants, approximately two-week-old seedlings were treated at
4 °C for 5 h. The atrbohF mutant used in this study was atrbohF-F3 [5].

2.7. Preparation of total RNA and real-time PCR analysis

Total RNA was isolated from roots of 10-day-old seedlings. Real-time
RT-PCR was performed using THUNDERBIRD qPCR mix (TOYOBO) and
Applied Biosystems 7500 Real-Time PCR system. The primers used
were as follows: AtRbohF (forward, 5'-AGCAGAACGAGCATCACCTT-3/;
reverse, 5'-GGATTCGATCTCGGATTTCA-3’) and TUB2 (forward, 5-ATT
CCCCCGTCTTCACTTCT-3’; reverse, 5'-GCACATTCAGCATCTGCTCGT-3").
Data were normalized by the level of TUB2 mRNA expression in each
sample.

2.8. Northern blotting

Total RNAs (10 pg) were electrophoresed, transferred to a nylon
membrane and hybridized with a digoxigenin-labeled RNA probe spe-
cific for the AtSRC2 transcript. The probe was generated with DIG RNA
Labeling kit (SP6/T7) (Roche). Alkaline phosphatase-conjugated anti-
bodies anti-DIG (Roche) and CDP-Star (Roche) were used for immuno-
logical detection of DIG.

3. Results and discussion
3.1. Isolation of AtSRC2 as an AtRbohF-interacting protein

To isolate proteins that interact with AtRbohF, we performed a yeast
two-hybrid screen with an Arabidopsis ¢cDNA library. The full-length
AtRbohF was not suitable for this screen because it has six TM helices
(Fig. 1A). Since the cytosolic N-terminal region of Rboh functions as a
regulatory domain [9-12,22-24], we used the N-terminal region of
AtRbohF (AtRbohFY; amino acid residues 1-387) as the bait. Screening
of 4.56 x 10° yeast transformants resulted in the isolation of a fragment
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containing the C2 domain of AtSRC2 (amino acid residues 23-176)
(Fig. 1A). The C2 domain has been reported to act as a module for
protein—protein interaction or Ca?"-dependent phospholipid-binding
[25,26]. Cells co-expressing both the AtSRC2 fragment and AtRbohFY
were able to grow in the absence of histidine (Fig. 1B). These results in-
dicate that AtSRC2 interacted with the N-terminal region of AtRbohF in
yeast cells. The C2 domain of animal phospholipase C-delta 1 (PLC-61)
binds its own EF-hand motif as an intramolecular interaction [27].
AtRbohF has two EF-hands in the N-terminal region (Fig. 1A),
suggesting that the C2 domain of AtSRC2 may interact with the EF-
hand motifs of AtRbohF.

3.2. Interaction of AtSRC2 with AtRbohF in plant cells

We performed co-IP experiments to examine the interaction be-
tween AtRbohF and AtSRC2 in plant cells. The N-terminal FLAG-tagged
AtRbohF" (FLAG-AtRbohFY) and the N-terminal Myc-tagged full length
AtSRC2 (Myc-AtSRC2) were transiently co-expressed in N. benthamiana
leaves by agroinfiltration. The cell extracts from leaves were subsequent-
ly subjected to immunoprecipitation using anti-FLAG antibody, and the
immunocomplexes were analyzed by Western blotting with anti-Myc
antibody. As shown in Fig. 2, Myc-AtSRC2 was co-immunoprecipitated

A AtRbohF (944 a.a.)

N terminal region

1-387 a.a.
EF ™ FAD NADPH

AtSRC2 (324 a.a.)

The isolated region
23-176 a.a.

[ T 1

C2 domain TM

B
bait prey | N—
AtRbohFN
AtRbohFN AtSRC2

(N-terminal) (23-176 a.a.)

-Trp -Leu -His

Fig. 1. Interaction of AtSRC2 with the N-terminal region of AtRbohF in a yeast two-hybrid
assay. (A) Schematic representation of the domain structures of AtRbohF and AtSRC2.
AtRbohF is a TM protein with six TM helices. The N-terminal region of AtRbohF contains
two EF-hand motifs (EF), whereas the C-terminal region has FAD- and NADPH-binding
domains. The region used for the yeast two-hybrid assay included amino acid residues
1-387 of AtRbohF. AtSRC2 has a C2 domain and a TM helix. The region isolated by the
yeast two-hybrid screen includes amino acid residues 23-176 of AtSRC2. (B) Interaction
of the N-terminal region of AtRbohF with the AtSRC2 fragment in a yeast two-hybrid
assay. Protein interaction was determined by a growth assay on medium lacking trypto-
phan (Trp), leucine (Leu) and histidine (His). Dilutions (from 10° to 10°) of transformed
cells were spotted onto the plates. The interaction between pGBKT7-53 (p53) and
pGADT7-T (SV4O0 large T-antigen) was used as a positive control. The pGADT7 empty vec-
tor was used as a negative control.

Input IP (anti-FLAG)
FLAG-AtRbohFN — + - +
Myc-AtSRC2 + + + +
anti-FLAG S— —
- -
anti-Myc | (R e

Fig. 2. Interaction of AtSRC2 with the N-terminal region of AtRbohF in plant cells. Co-IP
assay in N. benthamiana leaf extracts. Myc-AtSRC2 (38 kDa) was transiently expressed
with or without FLAG-AtRbohF" (47 kDa) in N. benthamiana leaves by agroinfiltration.
Protein extracts were immunoprecipitated with anti-FLAG antibodies and subjected to
Western blotting using anti-FLAG or anti-Myc antibodies.

with FLAG-AtRbohFY, suggesting that AtSRC2 interacts with AtRbohF in
plant cells.

This observation suggests that AtSRC2 could be localized near AtRbohF
in plant cells. To test this idea, we transiently expressed the N-terminal
GFP-tagged AtSRC2 (GFP-AtSRC2) or AtRbohF (GFP-AtRbohF) in onion
epidermal cells by biolistic bombardment and observed their intracellular
localization of the proteins by confocal microscopy. Free GFP used as a
control was distributed throughout the cytosol including the cytoplasmic
strands and the nuclei (Fig. 3 upper). AtRbohF has been shown biochem-
ically to be an intrinsic plasma membrane protein [28]. Consistently, the
fluorescence of GFP-AtRbohF was observed at the cell periphery in

Merged

GFP fluorescense

GFP

GFP
-AtRbohF

GFP
-AtSRC2

Fig. 3. Subcellular localization of GFP-AtRbohF and GFP-AtSRC2 in onion epidermal cells.
Each GFP fusion protein was transiently expressed in the cells by biolistic bombardment.
Plasmolysis was induced by incubation in 0.5 M mannitol for 10-30 min. Fluorescence
images are single confocal sections. Bright field (differential interference contrast) and
fluorescence images are merged. The arrow indicates the location of a cell wall. Scale
bar = 100 pm.
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plasmolyzed cells (Fig. 3 middle), supporting the notion that AtRbohF is
localized to the plasma membrane. The fluorescence of GFP-AtSRC2 was
observed at the cell periphery as well as in the cytoplasm of plasmolyzed
cells (Fig. 3 bottom). AtSRC2 possesses a transmembrane domain in the C-
terminal region (Fig. 1A), and has been detected in the highly-purified
plasma membrane fraction of Arabidopsis [29]. These results support
the idea that some of AtSRC2 could interact and function with AtRbohF
in plant cells.

3.3. AtSRC2 enhances the Ca?7-dependent ROS-producing activity
of AtRbohF

To examine if AtSRC2 affects the ROS-producing activity of AtRbohF,

we performed co-expression analyses in HEK293T cells. lonomycin in-
duced rapid and transient ROS production in the cells expressing
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FLAG-tagged full length AtRbohF (FLAG-AtRbohF), whereas no ROS pro-
duction was detected in the cells transfected only with Myc-AtSRC2,
Myc-GFP or the empty vector (Fig. 4A). Similarly, CA induced slow and
continuous ROS production in the cells transfected with FLAG-AtRbohF,
but not in those transfected with Myc-AtSRC2, Myc-GFP or the empty
vector (Fig. 4B). All tagged proteins were detected in HEK293T cells by
Western blotting (Fig. 4C). These results indicate that AtSRC2 does not
possess any ROS-producing activity in HEK293T cells.

Then FLAG-AtRbohF was co-transfected with either Myc-AtSRC2 or
Myc-GFP into HEK293T cells. lonomycin-induced ROS production was
markedly enhanced in the cells co-expressing AtSRC2 than the control
co-expressing Myc-GFP (Fig. 4D). Meanwhile, CA-induced ROS produc-
tion by AtRbohF was not affected (Fig. 4E). Western blot analysis
showed that co-expression of Myc-AtSRC2 did not affect the level of
AtRbohF protein (Fig. 4F). These results indicate that AtSRC2 enhances
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Fig. 4. Effect of AtSRC2 on the AtRbohF-mediated ROS production in HEK293T cells. (A and D) lonomycin-induced ROS production. (B and E) Calyculin A-induced ROS production. After
5 min of baseline measurement, 1 uM ionomycin or 0.1 uM CA was added to medium. All quantified data are means + S.E. (n = 3). (Cand F) Expressed proteins were detected by West-
ern blotting with anti-FLAG and anti-Myc antibodies. As a loading control, 3-actin was used. Protein molecular masses are FLAG-AtRbohF (111 kDa), Myc-AtSRC2 (38 kDa), Myc-GFP
(31 kDa) and -actin (42 kDa).


image of Fig.�4

T. Kawarazaki et al. / Biochimica et Biophysica Acta 1833 (2013) 2775-2780 2779

the Ca?*-dependent ROS-producing activity of AtRbohF, but does not
affect its phosphorylation-induced activation in HEK293T cells.

3.4. ROS production and gene expression under cold stress

Expression of the soybean SRC2 gene is induced by low temperature
treatment [21]. Induction of AtSRC2 expression by cold treatment within
2 hin Arabidopsis seedling leaf tissue has also been shown by serial anal-
ysis of gene expression (SAGE), a sequence-based technology developed
to generate a transcript expression profile in a high throughput, accurate
and non-biased manner [30]. Indeed, Northern blot analysis showed that
expression of the AtSRC2 gene was markedly induced at 4 °C within 5 h
in Arabidopsis roots (Fig. 5A).
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Fig. 5. Effect of low temperature treatment on the expression of AtSRC2 and AtRbohF, and
ROS generation in Arabidopsis roots. (A) The effect of low temperature treatment on the
expression of AtSRC2 gene was analyzed by Northern blotting. Ethidium bromide-stained
rRNA (lower panel) is shown as a loading control. (B) Detection of ROS in roots using NBT.
Roots were stained with NBT and categorized into five groups based on the staining inten-
sity. Percentages of the stained roots of each category are shown for the wild-type and
atrbohF mutant plants. n = 140 (wild-type 0 h), 162 (wild-type 5 h), 148 (atrbohF 0 h)
or 167 (atrbohF 5 h). Scale bar = 50 um. (C) Effect of low temperature treatment on the
expression of the AtRbohF gene was detected by real-time RT-PCR. Average values and
standard errors of three independent experiments are shown.

Based on our findings that AtSRC2 binds to the N-terminal region of
AtRbohF in plant cells (Fig. 2) and up-regulates Ca® "-dependent ROS-
producing activity of AtRbohF in HEK293T cells (Fig. 4), we hypothe-
sized that AtSRC2 may play a role in regulating the ROS production
during the cold stress response. To test this hypothesis, we assayed
the ROS accumulation in roots using nitroblue tetrazolium (NBT) stain-
ing and analyzed the effect of low-temperature treatment.

The intensity of NBT staining was semi-quantitatively categorized into
five groups (Fig. 5B). In the wild-type plants, the number of roots catego-
rized at the levels 4 and 5 increased under low-temperature treatment for
5 h in the dark, indicating that low-temperature treatment induced ROS
production in roots. In the atrbohF mutant, the low temperature-
induced ROS accumulation was slightly mitigated in comparison with
the wild-type (Fig. 5B). The low temperature-induced ROS production
in Arabidopsis is abolished by diphenylene iodonium (DPI), an NADPH
oxidase inhibitor [31]. These results suggest that AtRbohF participates,
at least partially, in the low temperature-induced ROS production.

Next, we examined the expression level of the AtRbohF gene in wild-
type low temperature-treated roots by real-time RT-PCR analysis. The
expression of AtRbohF was not affected by the cold treatment (Fig. 5C).
Taken together, these results suggest that the low temperature-induced
AtRbohF-dependent ROS accumulation cannot be explained by the in-
duction of AtRbohF expression but is correlated with the induction of
AtSRC2 gene. This result implies that the low temperature-induced ROS
production by AtRbohF may be enhanced by binding of AtSRC2 to
AtRbohF.

4. Conclusions

Our findings suggest that the cold-inducible protein AtSRC2 is a
novel activator of the Ca®'-dependent activation of AtRbohF that
enhances deliberate ROS production. This result implies a novel mecha-
nism for regulating AtRbohF-mediated ROS production under cold
stress. Low temperature induces expression of the AtSRC2 gene
(Fig. 5A) and cytosolic Ca>™ increase [32]. The translated AtSRC2 binds
to AtRbohF to enhance the Ca?*-dependent ROS-producing activity of
AtRbohF. Regulated ROS production may play a role in regulating the ex-
pression of cold responsive transcription factor genes or activating
MAPK cascade.

Acknowledgments

We thank Ms. Masako Yamaguchi (Carl Zeiss Microscopy Co., Ltd.,
Tokyo) for the technical support on confocal microscopy, Drs. Shinichiro
Sawa, Atsuko Kinoshita and Yoshihisa Ueno for the technical advice, and
Drs. Takashi Araki, Masaaki Niwa, Yasuomi Tada for providing the materi-
al. This work was supported in part by the Ministry of Education, Culture,
Sports, Science and Technology (MEXT) of Japan [Grants-in-Aid for Young
Scientist (B) to HK. (No. 21770054), for Scientific Research on Innovative
Areas to HK. (No. 21200068) and to K.K. (Nos. 21117516 and 23117718)
and for Scientific Research B to KK (Nos. 19370023 and 23380027)].

References

[1] N. Suzuki, G. Miller, J. Morales, V. Shulaev, M.A. Torres, R. Mittler, Respiratory burst
oxidases: the engines of ROS signaling, Curr. Opin. Plant Biol. 14 (2011) 691-699.

[2] D.Marino, C. Dunand, A. Puppo, N. Pauly, A burst of plant NADPH oxidases, Trends
Plant Sci. 17 (2012) 9-15.

[3] M.A. Torres, ].L. Dangl, Functions of the respiratory burst oxidase in biotic interac-
tions, abiotic stress and development, Curr. Opin. Plant Biol. 8 (2005) 397-403.

[4] M. Sagi, R. Fluhr, Production of reactive oxygen species by plant NADPH oxidases,
Plant Physiol. 141 (2006) 336-340.

[5] M.A. Torres, ].L. Dangl, ].D. Jones, Arabidopsis gp91phox homologues AtrbohD and
AtrbohF are required for accumulation of reactive oxygen intermediates in the
plant defense response, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 517-522.

[6] J-M. Kwak, 1.C. Mori, Z.M. Pei, N. Leonhardt, M.A. Torres, ].L. Dangl, RE. Bloom, S.
Bodde, ].D. Jones, J.I. Schroeder, NADPH oxidase AtrbohD and AtrbohF genes func-
tion in ROS-dependent ABA signaling in Arabidopsis, EMBO J. 22 (2003) 2623-2633.


http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0005
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0005
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0010
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0010
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0015
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0015
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0020
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0020
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0025
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0025
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0025
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0030
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0030
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0030
image of Fig.�5

2780

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Kawarazaki et al. / Biochimica et Biophysica Acta 1833 (2013) 2775-2780

R. Desikan, K. Last, R. Harrett-Williams, C. Tagliavia, K. Harter, R. Hooley, ].T.
Hancock, SJ. Neill, Ethylene-induced stomatal closure in Arabidopsis occurs via
AtrbohF-mediated hydrogen peroxide synthesis, Plant J. 47 (2006) 907-916.

L. Ma, H. Zhang, L. Sun, Y. Jiao, G. Zhang, C. Miao, F. Hao, NADPH oxidase AtrbohD
and AtrbohF function in ROS-dependent regulation of Na*/K* homeostasis in
Arabidopsis under salt stress, J. Exp. Bot. 63 (2011) 305-317.

Y. Ogasawara, H. Kaya, G. Hiraoka, F. Yumoto, S. Kimura, Y. Kadota, H. Hishinuma, E.
Senzaki, S. Yamagoe, K. Nagata, M. Nara, K. Suzuki, M. Tanokura, K. Kuchitsu, Syner-
gistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca?* and phosphor-
ylation, J. Biol. Chem. 283 (2008) 8885-8892.

S. Takeda, C. Gapper, H. Kaya, E. Bell, K. Kuchitsu, L. Dolan, Local positive feedback
regulation determines cell shape in root hair cells, Science 319 (2008) 1241-1244.
S. Kimura, H. Kaya, T. Kawarazaki, G. Hiraoka, E. Senzaki, M. Michikawa, K. Kuchitsu,
Protein phosphorylation is a prerequisite for the Ca?"-dependent activation of
Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback
regulation of Ca?* and reactive oxygen species, Biochim. Biophys. Acta 1823 (2012)
398-405.

S. Takahashi, S. Kimura, H. Kaya, A. lizuka, H.L. Wong, K. Shimamoto, K. Kuchitsu,
Reactive oxygen species production and activation mechanism of the rice
NADPH oxidase OsRbohB, |. Biochem. 152 (2012) 37-43.

H. Sumimoto, Structure, regulation and evolution of Nox-family NADPH oxidases
that produce reactive oxygen species, FEBS J. 275 (2008) 3249-3277.

S. Kimura, T. Kawarazaki, H. Nibori, M. Michikawa, A. Imai, H. Kaya, K. Kuchitsu, The
CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH
oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterol-
ogous expression system, J. Biochem. 153 (2013) 191-195.

S. Vanderauwera, P. Zimmermann, S. Rombauts, S. Vandenabeele, C. Langebartels,
W. Gruissem, D. Inze, F. Van Breusegem, Genome-wide analysis of hydrogen
peroxide-regulated gene expression in Arabidopsis reveals a high light-induced
transcriptional cluster involved in anthocyanin biosynthesis, Plant Physiol. 139
(2005) 806-821.

I. Gadjev, S. Vanderauwera, T.S. Gechev, C. Laloi, I.N. Minkov, V. Shulaev, K. Apel, D.
Inze, R. Mittler, F. Van Breusegem, Transcriptomic footprints disclose specificity of
reactive oxygen species signaling in Arabidopsis, Plant Physiol. 141 (2006) 436-445.

[17] J.T. Vogel, D.G. Zarka, H.A. Van Buskirk, S.G. Fowler, M.F. Thomashow, Roles of the

(18]

CBF2 and ZAT12 transcription factors in configuring the low temperature
transcriptome of Arabidopsis, Plant J. 41 (2005) 195-211.

K. Maruyama, M. Takeda, S. Kidokoro, K. Yamada, Y. Sakuma, K. Urano, M. Fujita, K.
Yoshiwara, S. Matsukura, Y. Morishita, R. Sasaki, H. Suzuki, K. Saito, D. Shibata, K.
Shinozaki, K. Yamaguchi-Shinozaki, Metabolic pathways involved in cold acclima-
tion identified by integrated analysis of metabolites and transcripts regulated by
DREB1A and DREB2A, Plant Physiol. 150 (2009) 1972-1980.

(19]

[20]

(21]

(22]

(23]

[24]

(25]

K. Ichimura, T. Mizoguchi, R. Yoshida, T. Yuasa, K. Shinozaki, Various abiotic stresses
rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPKS6, Plant J. 24 (2000)
655-665.

S.J. Neill, R. Desikan, A. Clarke, R.D. Hurst, ].T. Hancock, Hydrogen peroxide
and nitric oxide as signalling molecules in plants, J. Exp. Bot. 53 (2002)
1237-1247.

R. Takahashi, E. Shimosaka, cDNA sequence analysis and expression of two
cold-regulated genes in soybean, Plant Sci. 123 (1997) 93-104.

M. Kobayashi, I. Ohura, K. Kawakita, N. Yokota, M. Fujiwara, K. Shimamoto, N. Doke,
H. Yoshioka, Calcium-dependent protein kinases regulate the production of reactive
oxygen species by potato NADPH oxidase, Plant Cell 19 (2007) 1065-1080.

H.L. Wong, R. Pinontoan, K. Hayashi, R. Tabata, T. Yaeno, K. Hasegawa, C. Kojima,
H. Yoshioka, K. Iba, T. Kawasaki, K. Shimamoto, Regulation of rice NADPH oxi-
dase by binding of Rac GTPase to its N-terminal extension, Plant Cell 19
(2007) 4022-4034.

T. Oda, H. Hashimoto, N. Kuwabara, S. Akashi, K. Hayashi, C. Kojima, HL. Wong, T.
Kawasaki, K. Shimamoto, M. Sato, T. Shimizu, Structure of the N-terminal regulatory
domain of a plant NADPH oxidase and its functional implications, J. Biol. Chem. 285
(2010) 1435-1445.

M. Miyazaki, K. Kaibuchi, H. Shirataki, H. Kohno, T. Ueyama, ]. Nishikawa, Y. Takai,
Rabphilin-3A binds to a M(r) 115,000 polypeptide in a phosphatidylserine- and
Ca?*-dependent manner, Brain Re. Mol. Brain Res. 28 (1995) 29-36.

[26] J.Rizo, T.C. Sudhof, C2-domains, structure and function of a universal Ca?*-binding

[27]

[28]

[29]

[30]

[31]

[32]

domain, J. Biol. Chem. 273 (1998) 15879-15882.

L.O. Essen, O. Perisic, R. Cheung, M. Katan, R.L. Williams, Crystal structure of a mam-
malian phosphoinositide-specific phospholipase C delta, Nature 380 (1996) 595-602.
T. Keller, H.G. Damude, D. Werner, P. Doerner, R.A. Dixon, C. Lamb, A plant ho-
molog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a
plasma membrane protein with Ca?* binding motifs, Plant Cell 10 (1998)
255-266.

E. Alexandersson, G. Saalbach, C. Larsson, P. Kjellbom, Arabidopsis plasma membrane
proteomics identifies components of transport, signal transduction and membrane
trafficking, Plant Cell Physiol. 45 (2004) 1543-1556.

SJ. Robinson, L.A. Parkin, Differential SAGE analysis in Arabidopsis uncovers in-
creased transcriptome complexity in response to low temperature, BMC Genomics
9 (2008) 434.

H. Wang, ]. Huang, X. Liang, Y. Bi, Involvement of hydrogen peroxide, calcium, and
ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis
callus, Planta 235 (2012) 53-67.

M.R. Knight, AK. Campbell, S.M. Smith, AJ. Trewavas, Transgenic plant aequorin reports
the effects of touch and cold-shock and elicitors on cytoplasmic calcium, Nature 352
(1991) 524-526.


http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0035
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0035
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0035
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0040
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0040
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0040
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0040
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0040
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0045
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0045
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0045
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0045
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0045
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0045
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0050
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0050
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0055
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0060
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0060
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0060
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0065
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0065
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0070
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0070
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0070
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0070
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0075
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0075
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0075
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0075
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0075
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0080
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0080
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0080
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0085
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0085
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0085
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0090
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0090
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0090
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0090
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0090
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0095
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0095
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0095
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0100
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0100
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0100
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0105
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0105
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0110
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0110
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0110
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0115
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0115
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0115
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0115
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0120
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0120
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0120
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0120
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0125
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0125
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0125
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0125
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0125
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0130
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0130
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0130
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0130
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0135
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0135
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0140
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0140
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0140
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0140
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0140
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0140
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0145
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0145
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0145
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0150
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0150
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0150
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0155
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0155
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0155
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0160
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0160
http://refhub.elsevier.com/S0167-4889(13)00247-4/rf0160

	A low temperature-�inducible protein AtSRC2 enhances the ROS-�producing activity of NADPH oxidase AtRbohF
	1. Introduction
	2. Materials and methods
	2.1. Plasmid construction
	2.2. Yeast two-hybrid assay
	2.3. Co-immunoprecipitation analysis
	2.4. Subcellular localization of AtSRC2 and AtRbohF
	2.5. Measurement of ROS production in HEK293T cells
	2.6. Detection of ROS in plants and cold treatment
	2.7. Preparation of total RNA and real-time PCR analysis
	2.8. Northern blotting

	3. Results and discussion
	3.1. Isolation of AtSRC2 as an AtRbohF-interacting protein
	3.2. Interaction of AtSRC2 with AtRbohF in plant cells
	3.3. AtSRC2 enhances the Ca2+-dependent ROS-producing activity of AtRbohF
	3.4. ROS production and gene expression under cold stress

	4. Conclusions
	Acknowledgments
	References


