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Abstract

A partially ordered set is r-thick if every nonempty open interval contains at least r elements.
This paper studies the &ag vectors of graded, r-thick posets and shows the smallest convex
cone containing them is isomorphic to the cone of &ag vectors of all graded posets. It also
de8nes a k-analogue of the M)obius function and k-Eulerian posets, which are 2k-thick. Several
characterizations of k-Eulerian posets are given. The generalized Dehn–Sommerville equations
are proved for &ag vectors of k-Eulerian posets. A new inequality is proved to be valid and
sharp for rank 8 Eulerian posets.

Resume

Un ensemble partiellement ordonn,e est r-&epais si chacun de ses intervalles ouverts non-vides
contient au moins r ,el,ements. Dans cet article nous ,etudions les vecteurs drapeaux des ensembles
partiellement ordonn,es gradu,es r-,epais. Nous d,emontrons que le cône le plus petit contenant ces
vecteurs est isomorphe au cône des vecteurs drapeaux des ensembles partiellement ordonn,es
gradu,es quelconques. Nous d,e8nissons aussi un k-analogue de la fonction de M)obius et des
ensembles partiellement ordonn,es k-eul,eriens qui sont 2k-,epais. Nous caract,erisons les ensembles
partiellement ordonn,es k-eul,eriens de plusieurs mani>eres, et g,en,eralisons les ,equations de Dehn–
Sommerville pour le vecteur drapeaux d’un ensemble partiellement ordonn,e k-eul,erien. Nous
d,emontrons une nouvelle in,egalit,e optimale pour les ensembles partiellement ordonn,es eul,eriens
de rang 8. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we study certain classes of graded partially ordered sets (posets),
de8ned by conditions on the sizes of rank sets in intervals. We are concerned with
numerical parameters of the posets, in particular, &ag vectors and the M)obius function.

A graded poset P is a 8nite partially ordered set with a unique minimum element 0̂,
a unique maximum element 1̂, and a rank function � :P → N satisfying �(0̂) = 0, and
�(y)− �(x) = 1, whenever y∈P covers x∈P. The rank �(P) of a graded poset P is
the rank of its maximum element. Given a graded poset P of rank n + 1 and a subset
S of {1; 2; : : : ; n} (which we abbreviate as [1; n]), de8ne the S-rank-selected subposet
of P to be the poset

PS = {x∈P: �(x)∈ S}∪ {0̂; 1̂}:
Denote by fS(P) the number of maximal chains of PS . Equivalently, fS(P) is the
number of chains x1¡ · · ·¡x|S| in P such that {�(x1); : : : ; �(x|S|)}= S. (Call such a
chain an S-chain of P.) The vector (fS(P): S ⊆ [1; n]) is called the 7ag f-vector
of P. Whenever it does not cause confusion, we write fs1 ::: sj rather than f{s1 ;:::; sj}; in
particular, f{i} is always denoted fi.

In the last 20 years there has grown a body of work on numerical conditions on
&ag vectors of posets and complexes, especially those arising in geometric contexts.
A major recent contribution is the determination of the closed cone of &ag vectors of
all graded posets by Billera and Hetyei [5]. In [3] the authors study the closed cone
of &ag vectors of Eulerian posets. These are graded posets for which every (closed)
interval has the same number of elements of even rank and of odd rank.

A poset is r-thick if every nonempty open interval has at least r elements. Thus,
every poset is 1-thick, and Eulerian posets are 2-thick. In the 8rst part of this paper
we show that the closed cone of &ag vectors of r-thick posets is linearly equivalent to
the Billera–Hetyei cone, the closed cone of &ag vectors of all graded posets.

The second part of the paper de8nes a k-analogue of the M)obius function and k-
Eulerian posets (which are 2k-thick). We show that the generalized Dehn–Sommerville
equations of [1] transfer to k-Eulerian posets. These equations have a particularly nice
representation in terms of the Lk -vector, introduced here as a relative of the cd-index.
The results of this paper can be used to 8nd inequalities valid for &ag vectors of
Eulerian posets. In the last section we give as an example a new, sharp inequality for
rank 8 Eulerian posets.

Part I: r-thick posets

2. Flag vectors of arbitrary graded posets

We describe 8rst the cone of &ag vectors of all graded posets. This is due to Billera
and Hetyei [5].

An interval system on [1; n] is any set of subintervals of [1; n] that form an an-
tichain (that is, no interval is contained in another). A set S ⊆ [1; n] blocks the interval
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system I if it has a nonempty intersection with every I ∈I. The family of all
subsets of [1; n] blocking I is denoted by B[1; n](I). The main result of [5] is the
following.

Theorem 2.1 (Billera and Hetyei [5]). An expression
∑

S⊆[1; n] aSfS(P) is nonnegative
for all graded posets P of rank n + 1 if and only if

∑
S∈B[1; n](I)

aS¿0 for every interval system I on [1; n]: (1)

Here is an outline of the proof from [5]. The proof of the necessity of the condition
(1) involves constructing for every interval system I on {1; 2; : : : ; n} a family of posets
{P(n;I; N ): N ∈N} of rank n + 1 such that

lim
N→∞

1
f[1; n](P(n;I; N ))

∑
S⊆[1; n]

aSfS(P(n;I; N ))) =
∑

S∈B[1; n](I)

aS :

For the other implication, let P be an arbitrary graded poset, and assume that its Hasse-
diagram is drawn in the plane. Given an interval [x; y] of P, let �(x; y) denote the
leftmost atom in [x; y]. (If y covers x then set �(x; y) =y.) The operation � has the
following crucial property:

if p∈ [x; y]⊆ [x; z] and p=�([x; z]) then p=�([x; y]): (2)

For every S ⊆ [1; n] and i∈ [1; n] de8ne MS(i) to be the smallest j∈ [i; n+1] such that
j∈ S ∪{n + 1}. Consider the set of maximal chains

FS = {0̂ =p0¡p1¡ · · ·¡pn¡pn+1 = 1̂: ∀i∈ [1; n]; pi =�([pi−1; pMS (i)])}:
It is easy to verify that FS contains exactly fS(P) elements. Moreover, there is a way of
associating a family of intervals IC to every maximal chain C = {0̂=p0¡p1¡· · ·¡pn

¡pn+1 = 1̂} such that C belongs to FS if and only if S blocks IC . The fact that one
may 8nd such a family of intervals is a direct consequence of property (2).

3. Flag vectors of r-thick posets

It is easy to expand any graded poset to obtain an r-thick poset. Let P be a graded
poset of rank n + 1. Write DrP for the poset obtained from P by replacing every
x∈P\{0̂; 1̂} with r elements x1; x2; : : : ; xr , such that 0̂ and 1̂ remain the minimum and
maximum elements of the partially ordered set, and xi¡yj if and only if x¡y in P.
The poset DrP is an r-thick graded poset of rank n+1. Clearly fS(DrP) = r|S|fS(P).

Theorem 3.1. For every positive integer r,
∑

S⊆[1; n] aSfS(P)¿0 for every graded
poset P of rank n + 1 if and only if

∑
S⊆[1; n] aSrn−|S|fS(Q)¿0 for every r-thick

poset Q of rank n + 1.
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Proof. First assume
∑

S⊆[1; n] aSrn−|S|fS(Q)¿0 for every r-thick poset Q of rank n+1.
Let P be any graded poset of rank n + 1. Since DrP is r-thick,

06
∑

S⊆[1; n]

aSrn−|S|fS(DrP)

=
∑

S⊆[1; n]

aSrn−|S|r|S|fS(P)

=
∑

S⊆[1; n]

aSrnfS(P):

Dividing by rn gives the desired inequality for all graded posets.
Now assume

∑
S⊆[1; n] aSfS(P)¿0 for every graded poset P of rank n + 1. Let Q

be an r-thick poset of rank n+ 1. For each rank i, 8x a total order of the elements of
Q of rank i. Given an interval [x; y] of Q of rank at least 2, let �(x; y) denote the set
of the 8rst r atoms in [x; y]. (If y covers x, set �(x; y) = {y}.)

The operation � satis8es the following:

if p∈ [x; y]⊆ [x; z] and p∈�([x; z]) then p∈�([x; y]): (3)

Let

FS = {0̂ =p0¡p1¡ · · ·¡pn¡pn+1 = 1̂: ∀i∈ [1; n]; pi ∈�([pi−1; pMS (i)])}:
How many sequences are in the set FS? Given any S-chain of Q, extend it to sequences
in FS one rank at a time. Having 8xed p0 through pi−1 (16i6n), if i =∈ S, then there
are exactly r choices for pi. Thus |FS |= rn−|S|fS(Q).

To each maximal chain C: 0̂ =p0¡p1¡ · · ·¡pn¡pn+1 = 1̂ of Q is assigned an in-
terval system as follows. For 16i6n, let  (C; i) be the largest j such that pi ∈�(pi−1;
pj). Let I′

C = {[i;  (C; i)]: 16i6n;  (C; i) �= n + 1}, and let IC be the interval
system consisting of minimal intervals in I′

C . We show C belongs to FS if and
only if S blocks IC . Suppose C: 0̂ =p0¡p1¡ · · ·¡pn¡pn+1 = 1̂ is in FS . Then
for all i; pi ∈�([pi−1; pMS (i)]), so by the maximality of  (C; i);  (C; i)¿MS(i). So
for all i the interval [i;  (C; i)] contains the element MS(i) of S. Thus, S blocks IC .
For the reverse implication, suppose, C is a maximal chain of Q and S blocks IC .
Let 16i6n and [i;  (C; i)]∈IC . Since S blocks IC , S ∩ [i;  (C; i)] contains an ele-
ment s. So MS(i)6s6 (C; i). Apply condition (3): pi ∈ [pi−1; pMS (i)]⊆ [pi−1; p (C; i)]
and pi ∈�([pi−1; p (C; i)]), so pi ∈�([pi−1; pMS(i) ]). Thus, C is in FS .

Given a system of intervals I denote by fI the number of those maximal chains C
of Q for which IC =I. (Note that fI depends not only on Q but also on the ordering
of the elements of each rank.) Then∑

S⊆[1; n]

aSrn−|S|fS(Q) =
∑

S⊆[1; n]

aS |FS |=
∑

S⊆[1; n]

aS

∑
S∈B[1; n](I)

fI

=
∑
I

fI
∑

S∈B[1; n](I)

aS :
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By Theorem 2.1 the sums
∑

S∈B[1; n](I) aS are all nonnegative, and so

∑
S⊆[1; n]

aSrn−|S|fS(Q)¿0:

Let Cr; n+1 be the smallest closed convex cone containing the &ag vectors of all
r-thick posets of rank n + 1.

Corollary 3.2. For all positive integers q and r, the invertible linear transformation
 q; r : Q2n →Q2n

de<ned by  q; r((xS)) = ((r=q)|S|xS) maps Cq; n+1 onto Cr; n+1.

To determine if a graded poset is r-thick, it is enough to check that between every
x and y with x¡y and �(y)−�(x) = 2, there are at least r elements. The de8nition of
r-thick posets can then be generalized by allowing the lower bound r to vary through
the levels of the poset. The results of this section have straightforward analogues in
that context.

Part II: k-Eulerian posets

4. The k-M)obius function

De+nition 4.1. The M=obius function of a graded poset P is de8ned recursively for any
subinterval of P by the formula

"([x; y]) =




1 if x=y;

−
∑

x6z¡y

"([x; z]) otherwise:

A graded poset P is Eulerian if the M)obius function of every interval [x; y] is given
by "([x; y]) = (−1)�(x;y).

(Here, �(x; y) = �([x; y]) = �(y) − �(x).)
See [9] for a survey of Eulerian posets. The 8rst characterization of all linear equal-

ities holding for the &ag vectors of all Eulerian posets was given by Bayer and Billera
in [1].

Theorem 4.2 (Bayer and Billera [1]). For every Eulerian poset of rank n + 1, every
subset S ⊆ [1; n], and every maximal interval [i; ‘] of [1; n]\S,

((−1)i−1 + (−1)‘+1)fS(P) +
‘∑

j=i

(−1) jfS∪{ j}(P) = 0:

Furthermore, every linear equality holding for the 7ag vector of all Eulerian posets
of rank n + 1 is a consequence of these equations.
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Next, we present generalizations of the M)obius function and of Eulerian posets.

De+nition 4.3. The k-M=obius function of a graded poset is de8ned recursively by the
formula

"k([x; y]) =




1 if x=y;

−1 − 1
k

∑
x¡z¡y

"k([x; z]) otherwise:

The following proposition gives the k-M)obius function of a poset P as a k-analogue
of the reduced Euler characteristic of the order complex of P. It is a generalization of
Philip Hall’s theorem, and is easy to prove by induction.

Proposition 4.4. If P is a graded poset of rank n + 1, then

"k(P) = −
∑

S⊆[1; n]

(
−1

k

)|S|
fn+1

S (P):

A graded poset is k-Eulerian if for every interval [x; y]⊆P, "k([x; y]) = (−1)�(x;y).
Note that 1-Eulerian is the same as Eulerian. The following proposition follows easily
from the de8nitions.

Proposition 4.5. If P is a k-Eulerian poset of rank n + 1, then
(1) every interval of P is k-Eulerian,
(2)

∑n
i=1 (−1)i−1fi(P) = k(1 − (−1)n).

The thickening operation introduced in Section 3 connects the k-M)obius function for
diQerent values of k.

Proposition 4.6. Let [x; y] be an interval of a graded poset P and ‘ a positive integer.
Consider an interval [xi; yj]⊆D‘P corresponding to [x; y]⊆P. Then

"k([x; y]) = "k‘([xi; yj]):

Proof. Recall that fS(D‘P) = ‘|S|fS(P). Since the interval [xi; yj] of D‘P is isomorphic
to D‘[x; y], the result is obtained by substitution in Proposition 4.4.

Corollary 4.7. A poset P is k-Eulerian if and only if D‘P is k‘-Eulerian.

In [3] a half-Eulerian poset was de8ned to be a poset P for which D2P is Eulerian.
Using Proposition 4.6 we can determine exactly the set of those k’s for which

k-Eulerian posets exist.

Theorem 4.8. For every positive integer n, there exists a k-Eulerian poset of rank
n + 1 if and only if k = j=2 for some positive integer j. Moreover, every k-Eulerian
poset is 2k-thick.
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Proof. The chain C of rank n + 1 is half-Eulerian. For every positive integer j, DjC
is a j=2-Eulerian poset. On the other hand, by the de8nition of the function "k , for an
interval [x; y] of rank 2 in a k-Eulerian poset,

(−1)2 = "k([x; y]) = − 1 − 1=k
∑

x¡z¡y

"k([x; z]) = − 1 − 1
k

∑
x¡z¡y

(−1):

Therefore, 2k is the number of elements z strictly between x and y. Thus, if P is a
k-Eulerian poset, then 2k is a positive integer, and P is 2k-thick.

It is easy to check by induction that a graded poset is half-Eulerian if and only if (1)
in every interval [x; y] with �(x; y) odd, the number of elements of even rank equals
the number of elements of odd rank; and (2) in every interval [x; y] with �(x; y)
even, the number of elements z with �(x; z) even is one more than the number of
elements z with �(x; z) odd. This characterization can be used to check that the fol-
lowing “vertical doubling” of an arbitrary graded poset produces a half-Eulerian poset.
Let P be any graded poset with relation ≺P . Form the set Q = {0̂; 1̂}∪ {x1; x2: x∈
P\{0̂; 1̂}}. De8ne a relation ≺Q on Q by u≺Q v if and only if one of the following
holds:

• u= 0̂; v∈P\{0̂},
• v= 1̂; u∈P\{1̂},
• u= x1 and v= x2 for some x∈P\{0̂; 1̂},
• u= xi and v=yj for some x; y∈P\{0̂; 1̂}, with x≺P y.

If P is a rank n+1 graded poset, then the resulting poset Q is a rank 2n+1 half-Eulerian
poset.

For larger k, not all k-Eulerian posets are obtained by the thickening operation. For
an example, consider the poset P of rank n + 1¿3 having elements x1; x2; : : : ; xm of
rank 1, elements y1; y2; : : : ; ym of rank 2, with xi¡yj if and only if i= j, and one
element of each other rank. It is easy to check that P is half-Eulerian, and so D2kP
is k-Eulerian. In the Hasse diagram of D2kP, the subgraph induced by the elements
of ranks 1 and 2 consists of m copies of the complete bipartite graph K2k;2k . Replace
this subgraph by any other 2k-regular bipartite graph on these elements. The resulting
graph is the Hasse diagram of another k-Eulerian poset. (Note that the only relations
changed in the poset are those between ranks 1 and 2 elements.)

The de8nition of k-Eulerian, like that of r-thick, can be generalized by varying the
multiplier k with the rank of the elements. The results of this and the next section can
easily be adapted for such posets.

5. The 0ag Lk -vector

A certain transformation of the &ag f-vector was useful in [3,5,8]. It has a natural
adaptation to the k-Eulerian setting.
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De+nition 5.1. The 7ag Lk -vector of a graded partially ordered set P of rank n+ 1 is
the vector (Lk; n+1

S (P): S ⊆ [1; n]), where

Lk; n+1
S (P) = (−1)n−|S| ∑

T⊇[1; n]\S

(
− 1

2k

)|T |
fn+1

T (P):

For k = 1
2 this is the ‘-vector of [5]; for k = 1 this is the “ce-index” of [8] and the

L-vector of [3]. The formula inverts to give

fn+1
S (P) = (2k)|S|

∑
T⊆[1; n]\S

Lk; n+1
T (P): (4)

The Lk -vector ignores the eQect of the operator D‘. If P is a graded poset of rank
n + 1, then

Lk‘; n+1
S (D‘P) =Lk; n+1

S (P): (5)

A set S ⊆ [1; n] is even if S is a disjoint union of intervals of even cardinality.
The parameters Lk; n+1

S for even sets S play a special role for k-Eulerian posets. The
k-analogue of Theorem 4.2 is the following.

Theorem 5.2. For every k-Eulerian poset P of rank n+1, every subset S ⊆ [1; n], and
every maximal interval [i; ‘] of [1; n]\S,

k((−1)i−1 + (−1)‘+1)fS(P) +
‘∑

j=i

(−1) jfS∪{ j}(P) = 0:

Every linear equality holding for the 7ag vector of all k-Eulerian posets of rank n+1
is a consequence of these equations.
In Lk -vector form, these equations are equivalent to the set of equations, Lk; n+1

S (P)
= 0 for all subsets S ⊆ [1; n] that are not even.

Call these equations the generalized Dehn–Sommerville equations, and denote by
DSk; n+1 the resulting subspace of R2n

.

Proof. The fact that the equations (in &ag f-vector form) hold for all k-Eulerian posets
follows from Proposition 4.5. Fix a set S with gap [i; ‘]. For each S-chain identify the
rank i−1 element x and rank ‘+1 element y, and apply Eq. (2) to the interval [x; y].
Sum the resulting equations for all the S-chains.

Convert the &ag f-vector equations using Eq. (4). Writing V = [1; n]\S and dividing
by 2|S|k |S|+1, the result is

((−1)i−1 + (−1)‘+1)
∑
T⊆V

Lk; n+1
T + 2

‘∑
j=i

(−1) j
∑

T⊆V\{ j}
Lk; n+1
T = 0: (6)
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From this we prove by induction that Lk; n+1
V (P) = 0 (abbreviated as LV = 0) for all

noneven sets V . Let V ⊆ [1; n] be any noneven set, and let [i; ‘] be an odd maximal
interval of V . Eq. (6) gives

∑
T⊆V

LT +
‘∑

j=i

(−1) j−i+1
∑

T⊆V\{ j}
LT = 0: (7)

If T is a noneven proper subset of V , then by the induction assumption, LT = 0. So
consider an even subset T ⊆V . Since, the maximal intervals of T contained in [i; ‘]
are even, [i; ‘]\T = {j1; j2; : : : ; jt}, where t is odd, j1 − i is even, and, for 26p6t,
jp− jp−1 is odd. Thus, for 16p6t, jp− i+1 has the same parity as p. The coeUcient
of LT in (7) is 1 +

∑t
p=1 (−1) jp−i+1 = 1 +

∑t
p=1 (−1)p = 0. So Eq. (7) reduces to

LV = 0.
Conversely, suppose LV = 0 for all noneven sets V ⊆ [1; n]. We show that the equa-

tions in (6) hold. Let V ⊆ [1; n] and [i; ‘] a maximal interval of V . For ‘− i even, we
need to prove Eq. (7). (The case of ‘ − i odd is similar, and is omitted.) It suUces
to consider the terms LT with T an even set. For such T , [i; ‘]\T = {j1; j2; : : : ; jt} as
above, with t odd, and jp − i + 1 ≡ p (mod 2). So the coeUcient in (7) of LT is
1 +

∑t
p=1(−1) jp−i+1 = 1 +

∑t
p=1(−1)p = 0. Thus Eq. (7) holds.

To complete the proof, it suUces to show that the linear span of the Lk -vectors
of k-Eulerian posets of rank n + 1 is the subspace of R2n

determined by the equa-
tions Lk; n+1

S (P) = 0 for all subsets S ⊆ [1; n] that are not even. This can be accom-
plished by 8nding a set of linearly independent vectors in the span of the Lk -vectors of
k-Eulerian posets, one vector for each even subset S ⊆ [1; n]. In [5] Billera and Hetyei
constructed, for each interval system I, a sequence of graded posets P(n;I; N ). The
construction starts with a rank n + 1 chain, and replicates intervals of ranks in the
poset. For an even set S, let I[S] be the set of maximal intervals in S. (For example,
for S = {1; 3; 4; 7; 8; 9; 10}, I[S] = {[1]; [3; 4]; [7; 10]}.) If S is an even subset of [1; n],
then P(n;I[S]; N ) is half-Eulerian for all N . Furthermore, the sequence of L1=2-vectors
of these posets satis8es the following. Here m is the number of intervals in I[S].

lim
N→∞

1
Nm L1=2; n+1

T (P(n;I[S]; N )) =




(−1) j if T is the union

of j intervals of S;

0 otherwise:

(See [3] for details.) Using (5), we get for any positive integer 2k,

lim
N→∞

1
Nm Lk; n+1

T (D2kP(n;I[S]; N )) =




(−1) j if T is the union

of j intervals of S;

0 otherwise:

For 8xed k the limiting Lk -vectors for each even interval system I[S] are linearly inde-
pendent, since for each even set S, the vector formed from the sequence (P(n;I[S]; N ))
has T -entry 0 for all T not containing S.
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A &ag vector can by chance lie in the subspace DSk; n+1 without the poset being
k-Eulerian. However, k-Eulerian posets are characterized by the equations holding lo-
cally. The k = 1 case of this is in [3]. The proof requires the convolution of &ag
operators, de8ned by Kalai [7] (see also [6]). It is de8ned for the &ag numbers by
fm
S ∗fn

T =fm+n
S∪{m}∪(T+m), and is extended by bilinearity to linear combinations. For pm+1

and qn+1 linear combinations of chain operators in ranks m+1 and n+1, respectively,
their convolution on a rank m + n poset P satis8es

pm+1 ∗ qn+1(P) =
∑
x∈P

�(x)=m

pm+1([0̂; x])qn+1([x; 1̂]):

Convolution behaves nicely on the &ag Lk -vector. For a rank m + n + 2 poset P,

Lk;m+1
S ∗ Lk; n+1

T (P) =
∑
x∈P

�(x)=m+1

Lk;m+1
S ([0̂; x])Lk; n+1

T ([x; 1̂])

= 2kLk;m+n+2
S∪(T+m+1)(P): (8)

Theorem 5.3. A graded partially ordered set P is k-Eulerian if and only if for every
interval [x; y]⊆P of positive even rank Lk;�(x;y)

[1; �(x;y)−1]([x; y]) = 0.

Proof. Since every interval of a k-Eulerian partially ordered set is k-Eulerian, Theo-
rem 5.2 gives that Lk;�(x;y)

[1; �(x;y)−1]([x; y]) = 0 for all intervals [x; y] of positive even rank.

Now assume that for every interval [x; y] of positive even rank, Lk;�(x;y)
[1; �(x;y)−1]([x; y])=0.

Then by Eq. (8), for every interval [x; y]⊆P and for every S ⊆ [1; �(x; y)− 1] that is
not even, Lk;�([x;y])

S ([x; y]) = 0.
For P of rank n + 1, by Proposition 4.4,

"k(P) =−
∑

S⊆[1; n]

(
−1

k

)|S|
fn+1

S (P) = −
∑

S⊆[1; n]

(
−1

k

)|S|
(2k)|S|

∑
T⊆[1; n]\S

Lk; n+1
T (P)

=−
∑

T⊆[1; n]

Lk; n+1
T (P)

∑
S⊆[1; n]\T

(−2)|S| = −
∑

T⊆[1; n]

Ln+1
T (P)(−1)n−|T |:

Since, Lk; n+1
T (P) is nonzero only if T is an even set, and then |T | is an even number,

"k(P) = (−1)n+1
∑

T⊆[1; n]

Ln+1
T (P) = (−1)n+1fn+1

∅ (P) = (−1)n+1:

The same argument can be repeated for every interval of P, showing that it is a
k-Eulerian poset.

Using this result, we get the following curious characterization via the M)obius
function.
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Theorem 5.4. A graded poset P is k-Eulerian if and only if the 2k-M=obius function
of every interval [x; y]⊆P of even rank is zero.

Proof. Let P be a graded poset. By Corollary 4.7 P is k-Eulerian if and only if D2P
is 2k-Eulerian if and only if for every interval [xi; yj] of D2P with �(xi; yj) even

L2k;�(xi ;yj)
[1; �(xi ;yj)−1]([xi; yj]) = 0

if and only if for every interval [xi; yj] of D2P with �(xi; yj) even

∑
T⊆[1; �(xi ;yj)−1]

(
− 1

4k

)|T |
fT ([xi; yj]) = 0

if and only if for every interval [x; y] of P with �(x; y) even

∑
T⊆[1; �(x;y)−1]

(
− 1

4k

)|T |
2|T |fT ([x; y]) = 0

if and only if for every interval [x; y] of P with �(x; y) even

∑
T⊆[1; �(x;y)−1]

(
− 1

2k

)|T |
fT ([x; y]) = 0

if and only if for every interval [x; y] of P with �(x; y) even "2k([x; y]) = 0.

In particular, a graded poset P is half-Eulerian if and only if the (usual) M)obius
function of [x; y] is zero for every [x; y]⊆P of even rank.

The L1-vector of a graded poset is the vector of coeUcients of the ce-index, intro-
duced in [8] as a variation of the cd-index of an Eulerian poset. (The cd-index of an
Eulerian poset, due to Fine (see [4]), is a vector linearly equivalent to the &ag vec-
tor; it embodies the generalized Dehn–Sommerville equations of Theorem 4.2.) In [8],
Stanley observed that the existence of the cd-index for a graded poset is equivalent to
the vanishing of the coeUcients of ce-words containing an odd string of e’s; in our
notation this says L1;n+1

S (P) = 0 for all subsets S ⊆ [1; n] that are not even. Thus, the
last part of Theorem 5.2 (as well as the 8rst part) is already known for k = 1.

The Lk -vector for general k can be presented in the same way. For P any graded
poset of rank n + 1, write a generating function for the &ag f-vector as follows:

,(a; b) =
∑

S⊆[1; n]

fSuS ;

where uS = u1u2 : : : un with ui = a if i =∈ S and ui = b if i∈ S. Then

,
(
e;

c − e
2k

)
=

∑
T⊆[1; n]

LT vT ;
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where vT = v1v2 : : : vn with vi = c if i =∈T and vi = e if i∈T . The equations of Theo-
rem 5.2 for k-Eulerian posets can then be rephrased as saying that ,(e; (c − e)=(2k))
is a polynomial in (the noncommuting expressions) c and ee.

6. The cone of k-Eulerian 0ag vectors

Theorem 3.1, along with the description of the cone of &ag vectors of general graded
posets [5], can be used to generate all the inequalities valid for all r-thick posets.
The inequalities for 2k-thick posets are, in particular, valid for all k-Eulerian posets,
but they may not be sharp. We would like to know the essential inequalities, that
is, the closed cones of &ag vectors of Eulerian and of half-Eulerian posets. In [3]
these cones are studied and are completely determined up through rank 7. (See also
[2] for data on the cone.) In the context of this paper, the results can be stated as
follows.

Theorem 6.1 (Bayer and Hetyei [3]). For rank n + 167,
(1) the closed cone of 7ag vectors of half-Eulerian posets of rank n + 1 is the

intersection of the cone C1; n+1 of 7ag vectors of all graded posets of rank
n + 1 with the subspace DS1=2; n+1 determined by the half-Eulerian equations of
Theorem 5.2;

(2) the closed cone of 7ag vectors of Eulerian posets of rank n+1 is the intersection
of the cone C2; n+1 of 7ag vectors of all 2-thick graded posets of rank n+1 with
the generalized Dehn–Sommerville subspace DS1; n+1; and

(3) the two cones are isomorphic.

We do not know if this theorem extends to higher ranks. However, for all ranks,
part 1 of the theorem implies parts 2 and 3.

Theorem 6.2. Let CONEk; n+1 be the statement,

The closed cone of 7ag vectors of k-Eulerian posets of rank n + 1 is the inter-
section of the cone C2k; n+1 of 7ag vectors of all 2k-thick graded posets of rank
n + 1 with the generalized Dehn–Sommerville space DSk; n+1.

For all k¿1 (with 2k an integer) and all positive integers n,

CONE1=2; n+1 ⇒ CONEk; n+1:

Proof. Recall the map  1;2k of Corollary 3.2; it maps C1; n+1 onto C2k; n+1. Clearly
it also maps DS1=2; n+1 onto DSk; n+1. So  1;2k(C1; n+1 ∩DS1=2; n+1) =C2k; n+1 ∩DSk; n+1,
which contains the cone of k-Eulerian &ag vectors. On the other hand, for any half-
Eulerian poset P;  1;2k((fS(P))) = (fS(D2kP)), the &ag vector of the k-Eulerian poset
D2kP. If CONE1=2; n+1 holds, then C1; n+1 ∩DS1=2; n+1 is the cone of half-Eulerian &ag
vectors, and its image is contained in the cone of k-Eulerian &ag vectors. Thus, if
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CONE1=2; n+1 holds, then C2k; n+1 ∩DSk; n+1 is exactly the closed cone of &ag vectors of
k-Eulerian posets.

Another question raised in [3] on the structure of these cones can be answered. For
rank at most 7, all facet inequalities of the half-Eulerian (and with slight modi8cation,
Eulerian) cone are generated from two basic types of inequalities.

Theorem 6.3 (Bayer and Hetyei [3]). Let S and T be disjoint subsets of [1; n], such
that every maximal interval of the complement of S contains at most one element
of T. Then for every rank n + 1 half-Eulerian poset P,

∑
R⊆T

(−1)|T\R|fS∪R(P)¿0:

Let 16i¡j¡‘6n. Then for every rank n + 1 half-Eulerian poset P,

fi‘(P) − fi(P) − f‘(P) + fj(P)¿0:

Other valid inequalities are obtained by the convolution of inequalities of these types.
The question arose whether these generate all inequalities valid for the &ag vectors of
all half-Eulerian posets. They do not.

Proposition 6.4. For all half-Eulerian posets P of rank 8,

f8
1356(P) − f8

135(P) − f8
356(P) + f8

15(P) − f8
16(P)

+f8
35(P) + f8

36(P) − f8
3 (P)¿0;

or, in L1=2-vector form,

L1=2;8
45 (P) + L1=2;8

2345 (P) + L1=2;8
56 (P) + L1=2;8

1256 (P) − L1=2;8
2367 (P)

−L1=2;8
3467 (P) + L1=2;8

4567 (P) + L1=2;8
124567(P)60: (9)

This inequality determines a facet of the closed cone of 7ag vectors of half-Eulerian
posets, and does not follow from the inequalities of Proposition 6.3.

The proposition remains valid if “half-Eulerian” is replaced by k-Eulerian, and each
fS is replaced by (2k)n−|S|fS .

Proof. We 8rst show the inequality is not a convolution of lower rank inequalities. In
Lk -vector form the convolution satis8es the rule Lk; i+1

T ∗ Lk; j+1
V = 2kLk; i+j+2

T∪(V+i+1) (see Eq.
(8)). So the convolution of linear expressions for ranks i+1 and j+1 with n= i+j+1
gives a linear combination of Lk; n+1

S involving only subsets S ⊆ [1; n] not containing
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i + 1. Since each element of [1; 7] occurs in some set S in inequality (9), it is not a
convolution of lower rank inequalities.

We now show that the inequality determines a facet of the cone. Billera and Hetyei
list the facet inequalities for the general graded cone up through rank 5. The inequality
of the proposition comes from applying one of the rank 5 Billera–Hetyei inequalities to
the rank-selected subposet P{1;3;5;6} of an arbitrary half-Eulerian poset P. To check it is
a facet of the half-Eulerian cone, we give 20 linearly independent limiting normalized
L1=2-vectors of half-Eulerian posets, for which the inequality holds with equality. The
8rst 16 posets are Billera–Hetyei limit posets determined by interval systems as in the
following table.

P1 ∅
P2 [1; 2]
P3 [2; 3]
P4 [3; 4]
P5 [1; 2][3; 4]
P6 [2; 3][4; 5]
P7 [1; 2][5; 6]
P8 [1; 2][3; 4][5; 6]
P9 [3; 6]
P10 [6; 7]
P11 [1; 2][6; 7]
P12 [1; 4][6; 7]
P13 [4; 5][6; 7]
P14 [2; 3][4; 5][6; 7]
P15 [1; 2][4; 7]
P16 [2; 7]

The next three limit posets are obtained from the rank 7 Extremes 2, 3 and 4 of [3,
Theorem 4.8] by inserting a single new element of rank 1, shifting the old elements
up one rank.

To describe the last sequence of posets, let us (re)introduce the following general-
ization of the operator Dr . Given a graded poset P of rank n+1 denote by Dr

[u;v](P) the
poset obtained from P by replacing each x∈P satisfying �(x)∈ [u; v] with r elements
x1; x2; : : : ; xr (keep every y∈P satisfying �(y) =∈ [u; v] unchanged), and by setting the
following order relations. The ([1; n]\[u; v])-rank-selected subposet of P and of Dr

[u;v](P)
are identical. For x; y∈P satisfying �(x)∈ [u; v] and �(y) =∈ [u; v] set xi¡y or xi¿y
in Dr

[u;v](P) if and only of the same relation holds between x and y in P. Finally for
x; y∈P satisfying u6�(x)¡�(y)6v set xi¡yj in Dr

[u;v](P) if and only if i= j and
x¡y in P.

For example, Fig. 1 shows D2
[1;2](C4) where C4 is a chain of rank 4. Note that for

a graded poset P of rank n+ 1 the graded poset Dr(P) is isomorphic to Dr
[1;1]D

r
[2;2] : : :

Dr
[n; n](P). The same notation is used in [3].
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Fig. 1. D2
[1; 2](C4).

Let N be an arbitrary positive integer, and C8 be a chain of rank 8. Consider now
the following four graded posets.

PI(N ) =DN+1
[1;2]D

N+1
[2;3]D

N+1
[4;5]D

N
[1;7](C8);

PII(N ) =DN 2

[1;3]D
N+1
[1;5]D

N
[1;7](C8);

PIII(N ) =DN 2−N+2
[1;4] DN+2

[4;5]D
N
[6;7](C8);

PIV(N ) =DN+2
[1;2]D

N 3−N 2+2
[2;7] (C8):

The {4; 5; 6; 7}-rank-selected subposets of PI(N ) and PII(N ) are both isomorphic to
DN+1

[1;2]D
N
[1;4](C5), where C5 is a chain of rank 5; the {6; 7}-rank-selected subposets of

PI(N ); PII(N ), and PIII(N ) are all isomorphic to DN
[1;2](C3) where C3 is a chain of

rank 3. Let P(N ) be the graded poset of rank 8 obtained from PI(N ), PII(N ), PIII(N ),
and PIV(N ) by performing the following identi8cations:

• identify the bottom element 0̂ of all four posets,
• identify the top element 1̂ of all four posets,
• identify PI(N ){4;5;6;7} with PII(N ){4;5;6;7},
• identify PI(N ){6;7} with PIII(N ){6;7}.

Fig. 2 indicates how the four posets are identi8ed, in a schematic way.
Straightforward calculation shows that P(N ) is a half-Eulerian poset, for each posi-

tive N . Furthermore, the normalized L1=2-vectors, (L1=2;8
S (P(N ))=N 4), converge.

The rows of the matrix below are the normalized L1=2-vectors of the 20 limit posets.
In the columns are the values of L1=2;8

S (divided by the appropriate power of N ), with
the sets S in the order

∅, {1; 2}, {2; 3}, {3; 4}, {1; 2; 3; 4}, {4; 5}, {1; 2; 4; 5}, {2; 3; 4; 5}, {5; 6},
{1; 2; 5; 6}, {2; 3; 5; 6}, {3; 4; 5; 6}, {1; 2; 3; 4; 5; 6}, {6; 7}, {1; 2; 6; 7}, {2; 3; 6; 7},
{3; 4; 6; 7}, {1; 2; 3; 4; 6; 7}, {4; 5; 6; 7}, {1; 2; 4; 5; 6; 7}, {2; 3; 4; 5; 6; 7}.
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Fig. 2. P(N ).

It is easy to check the rows are linearly independent.




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
1 −1 0 −1 1 0 0 0 −1 1 0 1 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0
3 0 −1 −1 0 −1 0 1 −1 0 0 0 0 −1 0 0 0 0 1 0 0
3 0 −2 0 0 −1 0 1 −1 0 1 −1 0 −1 0 0 0 0 1 0 0
3 0 −1 −1 0 −1 0 1 0 0 0 −1 0 −2 0 0 1 0 1 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
1 0 −1 0 0 −1 0 1 0 0 0 0 0 −1 0 1 0 0 1 0 −1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
4 −2 −1 0 −1 −2 1 1 0 0 0 0 0 −1 0 0 0 1 1 0 −1



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