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Abstract

For α an ordinal and 1 < p < ∞, we determine a necessary and sufficient condition for an �p-direct sum
of operators to have Szlenk index not exceeding ωα . It follows from our results that the Szlenk index of an
�p-direct sum of operators is determined in a natural way by the behaviour of the ε-Szlenk indices of its
summands. Our methods give similar results for c0-direct sums.
© 2010 Elsevier Inc. All rights reserved.
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0. Introduction

The Szlenk index was introduced by W. Szlenk in his influential paper [22], where an ordi-
nal index was used to show that the class of all separable, reflexive Banach spaces contains no
universal element. Since then, the Szlenk index and its variants have taken on an increasingly im-
portant role in the study of Banach spaces and their operators. We refer the reader to the surveys
[14] and [19] for details on some of the main applications of the Szlenk index.

A class of closed operator ideals naturally related to the Szlenk index has been introduced
and systematically studied by the present author in [2]. These operator ideals are denoted SZ α ,
where α is an ordinal, and elements of SZ α are known as α-Szlenk operators. The operator
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ideals SZ α are studied in [2] with regard to their operator ideal properties and their relationship
to other closed operator ideals, in particular the class of Asplund operators.

The purpose of the present paper is to present a detailed analysis of the behaviour of the Szlenk
index under the process of taking c0 and �p-direct sums of operators. In particular, we give a
precise formulation of the Szlenk index of a direct sum of operators in terms of the behaviour
of the ε-Szlenk indices of the summands. Our motivation for this is as follows. Firstly, forming
direct sums is a fundamental construction in Banach space theory, often being used to construct
examples with a particular property, and so we feel it essential to understand precisely how the
Szlenk index behaves under this procedure. Secondly, we are motivated by the following basic
question of operator ideal theory:

Question 0.1. Let I be a given operator ideal. Does I have the factorisation property? That is,
does every element of I factor continuously and linearly through a Banach space whose identity
operator belongs to I ?

In [2], results and techniques developed in the current paper are applied to obtain both positive
and negative answers to Question 0.1 for the case I = SZ α , with the answer depending upon
ordinal properties of α.

We now outline the structure of the current paper. In Section 1 we detail necessary notation and
background results regarding the Szlenk index, including several relevant results from [2]. Our
main results are presented in Section 2. Firstly, we consider the Szlenk index of �1 and �∞-direct
sums; this case is rather straightforward, but worth noting explicitly for the sake of completeness.
We then move on to our main concern, providing a formulation of the Szlenk index of c0 and
�p-direct sums of operators, where 1 < p < ∞ (see, in particular, Theorem 2.10). This case is
far more subtle than the case of �1 and �∞-direct sums and, as such, requires substantially more
effort to accomplish the desired formulation of the Szlenk index of the direct sum. Section 2
concludes with some applications of the earlier operator theoretic results to the Szlenk index of
Banach spaces. The final section, Section 3, constitutes almost half of the paper and is devoted
to proving the main technical lemma used in Section 2, namely Lemma 2.5.

1. Preliminaries

Banach spaces are typically denoted by the letters E and F . For a Banach space E and
nonempty bounded S ⊆ E, we define |S| := sup{‖x‖ | x ∈ S}. By BE we denote the closed unit
ball of E, and by IE the identity operator of E. The class of all bounded linear operators between
arbitrary Banach spaces is denoted by B, and the class of all compact operators by K . We write
ORD for the class of all ordinals, whose elements are typically denoted by the lower-case Greek
letters α, β and γ . For Λ a set, Λ<∞ denotes the set of all nonempty finite subsets of Λ. When
Λ denotes the index set over which we take a direct sum or direct product, it is always assumed
that Λ is nonempty.

Let p ∈ {0} ∪ (1,∞) and q ∈ [1,∞). We say that q is dual to p, or equivalently, p is predual
to q , if (p, q) ∈ {(0,1)} ∪ {(r, r(r − 1)−1) | r ∈ (1,∞)}.

For 1 � p � ∞, a set Λ and Banach spaces Eλ, λ ∈ Λ, the �p-direct sum of {Eλ | λ ∈ Λ} is
denoted (

⊕
λ∈Λ Eλ)p , and the c0-direct sum of {Eλ | λ ∈ Λ} is denoted (

⊕
λ∈Λ Eλ)0. If there is

a Banach space E such that Eλ = E for all λ ∈ Λ, then we may also write the �p-direct sum and
the c0-direct sum as �p(Λ,E) and c0(Λ,E), respectively. Throughout, for 1 < p,q < ∞ satis-
fying p + q = pq , we implicitly identify (

⊕
Eλ)

∗ with (
⊕

E∗)q , so that the dual of a
λ∈Λ p λ∈Λ λ
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direct sum is the dual direct sum of the duals of the spaces Eλ. Making this identification allows
us to consider direct products of the form

∏
λ∈Λ Kλ, where Kλ ⊆ E∗

λ and (|Kλ|)λ∈Λ ∈ �q(Λ),
as subsets of (

⊕
λ∈Λ Eλ)

∗
p . Similarly, (

⊕
λ∈Λ Eλ)

∗
0 is naturally identified with (

⊕
λ∈Λ E∗

λ)1
throughout.

Let Λ be a set, {Eλ | λ ∈ Λ} a family of Banach spaces indexed by Λ and p = 0 or 1 < p < ∞.
For R ⊆ Λ, we denote by UR the canonical injection of (

⊕
λ∈R Eλ)p into (

⊕
λ∈Λ Eλ)p , and by

PR the canonical surjection of (
⊕

λ∈Λ Eλ)p onto (
⊕

λ∈R Eλ)p .
For a set Λ, a family of Banach spaces {Eλ | λ ∈ Λ} and nonempty, bounded subsets

Sλ ⊆ Eλ, λ ∈ Λ, we say that {Sλ ⊆ Eλ | λ ∈ Λ} is uniformly bounded if sup{|Sλ| | λ ∈ Λ} < ∞.
If {Fλ | λ ∈ Λ} is also a family of Banach spaces indexed by Λ, a set of operators {Tλ ∈
B(Eλ,Fλ) | λ ∈ Λ} is said to be uniformly bounded if sup{‖Tλ‖ | λ ∈ Λ} < ∞. Given 1 �
p � ∞ and a uniformly bounded family of operators {Tλ ∈ B(Eλ,Fλ) | λ ∈ Λ}, the �p-direct
sum of {Tλ ∈ B(Eλ,Fλ) | λ ∈ Λ}, denoted (

⊕
λ∈Λ Tλ)p , is the continuous linear map that sends

(xλ)λ∈Λ ∈ (
⊕

λ∈Λ Eλ)p to (Tλxλ)λ∈Λ ∈ (
⊕

λ∈Λ Fλ)p . Each of the operators Tλ, λ ∈ Λ, is a sum-
mand of the direct sum (

⊕
λ∈Λ Tλ)p .

A Banach space E over the field R of real scalars is said to be Asplund if every real-valued
convex continuous function defined on a convex open subset U of E is Fréchet differentiable on
a dense Gδ subset of U . Our arguments hold for Banach spaces over the field K = R or C; note
that the notion of Asplund space may be extended (somewhat artificially) to complex Banach
spaces by declaring a complex Banach space to be Asplund precisely when its underlying real
Banach space structure is an Asplund space in the real scalar sense. By extending the notion of
Asplund space to complex Banach spaces in this way, many of the well-known characterisations
of Asplund spaces – for instance, a Banach space is Asplund if and only if each of its separable
subspaces has separable dual [3, Theorem 5.7] – then hold also for complex Asplund spaces.

For Banach spaces E and F , an operator T : E −→ F is Asplund if for any finite positive
measure space (Ω,Σ,μ), any S ∈ B(F,L∞(Ω,Σ,μ)) and any ε > 0, there exists B ∈ Σ such
that μ(B) > μ(Ω)−ε and {f χB | f ∈ ST (BE)} is relatively compact in L∞(Ω,Σ,μ) (here χB

denotes the characteristic function of B on Ω). We note that some authors, for example in [17]
and [10], refer to Asplund operators as decomposing operators. Standard references for Asplund
operators are [17] and [21], where it is shown that the Asplund operators form a closed operator
ideal and that a Banach space is an Asplund space if and only if its identity operator is an Asplund
operator. A further impressive result is that every Asplund operator factors through an Asplund
space; this is due independently to O. Reı̆nov [18], S. Heinrich [10] and C. Stegall [21].

We now define the Szlenk index, noting that our definition varies from that given by W. Szlenk
in [22]. However, the two definitions give the same index for operators acting on separable Ba-
nach spaces containing no isomorphic copy of �1 (see the proof of [12, Proposition 3.3] for
details).

Let E be a Banach space, K ⊆ E∗ a w∗-compact set and ε > 0. Define

sε(K) := {
x ∈ K

∣∣ diam(K ∩ V ) > ε for every w∗-open V 
 x
}
.

We iterate sε transfinitely as follows: let s0
ε (K) = K , sα+1

ε (K) = sε(s
α
ε (K)) for each ordinal α

and, if α is a limit ordinal, sα
ε (K) = ⋂

β<α s
β
ε (K).

The ε-Szlenk index of K , denoted Szε(K), is the class of all ordinals α such that sα
ε (K) �= ∅.

The Szlenk index of K is the class
⋃

ε>0 Szε(K). Note that Szε(K) (resp., Sz(K)) is either an
ordinal or the class ORD of all ordinals. If Szε(K) (resp., Sz(K)) is an ordinal, then we write
Szε(K) < ∞ (resp., Sz(K) < ∞), and otherwise we write Szε(K) = ∞ (resp., Sz(K) = ∞).
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For a Banach space E, the ε-Szlenk index of E is Szε(E) = Szε(BE∗), and the Szlenk index
of E is Sz(E) = Sz(BE∗). If T : E −→ F is an operator, the ε-Szlenk index of T is Szε(T ) =
Szε(T

∗BF ∗), whilst the Szlenk index of T is Sz(T ) = Sz(T ∗BF ∗).
It is clear that the Szlenk index of a nonempty w∗-compact set cannot be 0. We note also

that, by w∗-compactness, the ε-Szlenk index of a nonempty w∗-compact set K is never a limit
ordinal.

The following proposition states some known facts about the Szlenk index.

Proposition 1.1. Let E and F be Banach spaces, T : E −→ F an operator and K ⊆ E∗ a
nonempty w∗-compact set.

(i) If E is isomorphic to a quotient or subspace of F , then Sz(E) � Sz(F ). In particular, the
Szlenk index is an isomorphic invariant of a Banach space.

(ii) Sz(E) < ∞ if and only if E is an Asplund space. Similarly, Sz(T ) < ∞ if and only if T is
an Asplund operator.

(iii) If K is absolutely convex and Sz(K) < ∞, then there exists an ordinal α such that
Sz(K) = ωα . In particular, the Szlenk index of an Asplund space or Asplund operator is
of the form ωα for some (unique) ordinal α.

(iv) Sz(K) = 1 if and only if K is norm-compact. In particular, Sz(E) = 1 if and only if
dim(E) < ∞, and Sz(T ) = 1 if and only if T is compact.

(v) Sz(E ⊕ F) = max{Sz(E),Sz(F )}.

Part (i) of Proposition 1.1 is discussed in [8]. Part (ii) is discussed in [8] in the case of spaces,
and the more general case of operators is established in [2, Proposition 2.10]. Part (iii) was proved
for K = BE∗ in [13]; see also p. 64 of [9]. As the proof of the case K = BE∗ relies only upon
the fact that BE∗ is convex and symmetric (that is, absolutely convex), the proof applies also to
arbitrary absolutely convex K . Part (iv) is a consequence of the fact that a w∗-compact set is
norm-compact if and only if its relative w∗ and norm topologies coincide (see, e.g., [4, Corol-
lary 3.1.14]), with the final assertion regarding operators requiring the use of Schauder’s theorem.
Part (v) is essentially Proposition 2.4 of [7] (see also [15, Proposition 14] for the separable case),
and will be improved upon in Theorem 2.11 below.

Definition 1.2. For each ordinal α, define SZ α := {T ∈ B | Sz(T ) � ωα}.

As noted in the introduction, elements of SZ α are known as α-Szlenk operators. We have
the following:

Theorem 1.3. (See [2, Theorem 2.2].) Let α be an ordinal. Then SZ α is a closed operator ideal.

2. Main results

It is obvious that a direct sum of operators factors any of its summands. Thus, since {T ∈ B |
Sz(T ) < ∞} is the operator ideal of Asplund operators (see Proposition 1.1(ii)), it is only in-
teresting to consider the Szlenk index of a direct sum of operators in the case that all of the
summands are Asplund. With this in mind, we henceforth consider direct sums of Asplund oper-
ators only.



2226 P.A.H. Brooker / Journal of Functional Analysis 260 (2011) 2222–2246
2.1. �1-Direct sums and �∞-direct sums

The task of determining the Szlenk index of �1-direct sums and �∞-direct sums of operators
is made considerably easier by the fact that the Banach spaces �1 and �∞ fail to be Asplund, for
this ensures that the norms of the summand operators must exhibit c0-like behaviour in order for
the direct sum operator to be Asplund. More precisely, we have the following result.

Proposition 2.1. Let Λ be a set, {Eλ | λ ∈ Λ} and {Fλ | λ ∈ Λ} families of Banach spaces, {Tλ ∈
B(Eλ,Fλ) | λ ∈ Λ} a uniformly bounded family of Asplund operators and p = 1 or p = ∞. The
following are equivalent:

(i) Sz((
⊕

λ∈Λ Tλ)p) < ∞ (that is, (
⊕

λ∈Λ Tλ)p is Asplund).
(ii) Sz((

⊕
λ∈Λ Tλ)p) = sup{Sz(Tλ) | λ ∈ Λ}.

(iii) (‖Tλ‖)λ∈Λ ∈ c0(Λ).

Proof. We prove (iii) ⇒ (ii) ⇒ (i) ⇒ (iii).
Suppose (iii) holds; we will show Sz((

⊕
λ∈Λ Tλ)p) = sup{Sz(Tλ) | λ ∈ Λ}. By Proposi-

tion 1.1(iii) there exist ordinals αλ, λ ∈ Λ, with Sz(Tλ) = ωαλ for each λ. Let αΛ = sup{αλ |
λ ∈ Λ}, so that sup{Sz(Tλ) | λ ∈ Λ} = ωαΛ . To see that (

⊕
λ∈Λ Tλ)p ∈ SZ αΛ , for n ∈ N and

λ ∈ Λ let

Tλ,n =
{

Tλ if ‖Tλ‖ > 1/n,

0 otherwise

and Vn = (
⊕

λ∈Λ Tλ,n)p . Note that {Tλ,n | λ ∈ Λ, n ∈ N} ⊆ SZ αΛ , hence Vn ∈ SZ αΛ also
since each Vn can be written as a (finite) sum of operators that factor some element of {Tλ,n |
λ ∈ Λ, n ∈ N}. It follows from the definitions that ‖Vn − (

⊕
λ∈Λ Tλ)p‖ � 1/n for each n ∈ N,

hence Vn −→ (
⊕

λ∈Λ Tλ)p as n −→ ∞. Since Vn ∈ SZ αΛ for all n and SZ αΛ is closed (Theo-
rem 1.3), we have (

⊕
λ∈Λ Tλ)p ∈ SZ αΛ . In particular, Sz((

⊕
λ∈Λ Tλ)p) � ωαΛ = sup{Sz(Tλ) |

λ ∈ Λ}. The reverse inequality follows by Theorem 1.3 and the fact that (
⊕

λ∈Λ Tλ)p factors
each of the operators Tλ, λ ∈ Λ. We have now shown (iii) ⇒ (ii).

It is trivial that (ii) ⇒ (i), so remains only to show that (i) ⇒ (iii). To this end, suppose that
(iii) does not hold. Then there exists δ > 0 and an infinite set Λ′ ⊆ Λ such that ‖Tλ‖ > δ for
all λ ∈ Λ′, and so (

⊕
λ∈Λ Tλ)p factors an isomorphic embedding of the non-Asplund space �p .

By Proposition 1.1(ii), Sz((
⊕

λ∈Λ Tλ)p) = ∞. �
2.2. c0-Direct sums and �p-direct sums (1 < p < ∞)

In this section we consider the Szlenk index of a direct sum operator (
⊕

λ∈Λ Tλ)p , where
p = 0 or 1 < p < ∞. As in the cases p = 1 and p = ∞, if (‖Tλ‖)λ∈Λ ∈ c0(Λ) then
Sz((

⊕
λ∈Λ Tλ)p) = sup{Sz(Tλ) | λ ∈ Λ}. However, the situation is not so clear if (‖Tλ‖)λ∈Λ /∈

c0(Λ), and we demonstrate this by way of an example. For an ordinal γ , we may equip the or-
dinal γ + 1 with its order topology, thereby making it a compact Hausdorff space. C. Samuel
has shown that for each α < ω1, Sz(C(ωωα + 1)) = ωα+1 (Samuel’s calculation is found in [20],
however a more direct approach has been discovered by P. Hájek and G. Lancien [7]). By the
Bessaga–Pełczyński linear isomorphic classification of C(K) spaces with K countable [1, The-
orem 1], C(ωn + 1) is linearly isomorphic to C(ω + 1) for all 0 < n < ω. Thus, in particular,
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Sz(C(ωn + 1)) = Sz(C(ω + 1)) = ω for all 0 < n < ω. For each 0 < n < ω, let Tn denote the
identity operator on C(ωn + 1). As (

⊕
0<n<ω C(ωn + 1))0 is linearly isomorphic to C(ωω + 1),

by Samuel’s result we have

Sz

(( ⊕
0<n<ω

Tn

)
0

)
= Sz

(
C

(
ωω + 1

)) = ω2 > ω = sup
{
Sz(Tn)

∣∣ 0 < n < ω
}
.

Thus the situation under consideration in this section is more subtle than the cases of �1-direct
sums and �∞-direct sums. Our goal is to determine precisely the Szlenk index of a c0-direct sum
or �p-direct sum (1 < p < ∞) of operators in terms of the overall behaviour of the ε-Szlenk
indices of the summand operators. To this end, we now introduce some notation.

Given a set Λ, a family of Banach spaces {Eλ | λ ∈ Λ}, a corresponding uniformly bounded
family {Kλ ⊆ E∗

λ | λ ∈ Λ} of absolutely convex, w∗-compact sets and 1 � q < ∞, we define

Bq(Kλ | λ ∈ Λ) :=
⋃

(aλ)λ∈Λ∈B�q (Λ)

∏
λ∈Λ

aλKλ,

and always consider Bq(Kλ | λ ∈ Λ) as a subset of (
⊕

λ∈Λ Eλ)
∗
p , where p is predual to q (recall

from Section 1 that (
⊕

λ∈Λ Eλ)
∗
p is naturally identified with (

⊕
λ∈Λ E∗

λ)q ). Such a set Bq(Kλ |
λ ∈ Λ) so defined is clearly bounded, and it is not difficult to see that it is also w∗-compact. In-
deed, for each λ ∈ Λ define Tλ : Eλ −→ C(Kλ) to be the map that sends x ∈ Eλ to the continuous
function k �→ 〈k, x〉 (k ∈ Kλ). Then the Kreı̆n–Mil’man theorem, along with other classical re-
sults regarding extreme points (see, for example, [5, Lemma 3.42] and [6, Exercise 2.4]), implies
that T ∗

λ BC(Kλ)∗ = Kλ for each λ ∈ Λ. Hence Bq(Kλ | λ ∈ Λ) = (
⊕

λ∈Λ Tλ)
∗
pB(

⊕
λ∈Λ C(Kλ))∗p ,

ensuring the w∗-compactness of Bq(Kλ | λ ∈ Λ).
We first deal explicitly with the case where the Szlenk index of a direct sum of operators has

Szlenk index ω0 = 1. The following result describes the situation for this case.

Proposition 2.2. Let Λ be a set, {Eλ | λ ∈ Λ} and {Fλ | λ ∈ Λ} families of Banach spaces,
{Tλ ∈ B(Eλ,Fλ) | λ ∈ Λ} a uniformly bounded family of operators and p ∈ {0} ∪ [1,∞]. The
following are equivalent:

(i) Sz((
⊕

λ∈Λ Tλ)p) = 1.
(ii) Sz(Tλ) = 1 for every λ ∈ Λ and (‖Tλ‖)λ∈Λ ∈ c0(Λ).

Proposition 2.2 follows immediately from Proposition 1.1(iv) and the following proposition.

Proposition 2.3. Let Λ be a set, {Eλ | λ ∈ Λ} and {Fλ | λ ∈ Λ} families of Banach spaces,
{Tλ ∈ B(Eλ,Fλ) | λ ∈ Λ} a uniformly bounded family of operators and p ∈ {0} ∪ [1,∞]. The
following are equivalent:

(i) (
⊕

λ∈Λ Tλ)p is compact.
(ii) Tλ is compact for every λ ∈ Λ and (‖Tλ‖)λ∈Λ ∈ c0(Λ).

We omit the straightforward proof of Proposition 2.3, but note that it is similar to the proof of
Proposition 2.1 presented earlier.
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The general case for c0-direct sums and �p-direct sums of operators, where 1 < p < ∞, will
be deduced from the following key result.

Proposition 2.4. Let Λ be a set, {Eλ | λ ∈ Λ} a family of Banach spaces, {Kλ ⊆ E∗
λ | λ ∈ Λ,

Kλ �= ∅} a uniformly bounded family of nonempty absolutely convex w∗-compact sets, α > 0 an
ordinal and 1 � q < ∞. The following are equivalent:

(i) Sz(Bq(Kλ | λ ∈ Λ)) � ωα .
(ii) sup{Szε(Kλ) | λ ∈ Λ} < ωα for every ε > 0.

(iii) sup{Szε(Bq(Kλ | λ ∈ F )) | F ∈ Λ<∞} < ωα for every ε > 0.

To establish Proposition 2.4, we prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i). In proving the implication
(ii) ⇒ (iii), we shall call upon the following technical result:

Lemma 2.5. Let E1, . . . ,En be Banach spaces, K1 ⊆ E∗
1 , . . . ,Kn ⊆ E∗

n nonempty, absolutely
convex, w∗-compact sets, 1 � q < ∞ and ε > 0. Let d = max{diam(Ki) | 1 � i � n} and let m

and M be natural numbers such that M � m � 2 and (2q − 1)εqM � 8qdq(m − 1). Suppose
α is an ordinal such that sωα ·M

ε (Bq(Ki | 1 � i � n)) �= ∅. Then for every δ ∈ (0, ε/16) there is
i � n such that sωα ·m

δ (Ki) �= ∅.

The proof of Lemma 2.5 is delayed until Section 3. To show (iii) ⇒ (i) we require the follow-
ing discrete variant of [7, Lemma 3.3]:

Lemma 2.6. Let Λ be a set, (Eλ)λ∈Λ a family of Banach spaces, 1 � q < ∞, p predual to q

and K ⊆ (
⊕

λ∈Λ Eλ)
∗
p nonempty and w∗-compact. Let α be an ordinal, R ⊆ Λ and ε > δ > 0.

If x ∈ sα
ε (K) and ‖U∗

Rx‖q > |K|q − ( ε−δ
2 )q , then U∗

Rx ∈ sα
δ (U∗

RK).

Proof. We fix ε, δ and R and proceed by induction on α. The conclusion of the lemma is trivially
true for α = 0. So suppose that β is an ordinal such that the conclusion of the lemma holds with
α = β; we show that it holds then also for α = β + 1. To this end, let x ∈ K be such that
‖U∗

Rx‖q > |K|q − ( ε−δ
2 )q and U∗

Rx /∈ s
β+1
δ (U∗

RK). Our goal is to show that x /∈ s
β+1
ε (K), so

we may assume that x ∈ s
β
ε (K), hence U∗

Rx ∈ s
β
δ (U∗

RK) by the inductive hypothesis. It follows

that there is w∗-open V ⊆ (
⊕

λ∈R Eλ)
∗
p such that U∗

Rx ∈ V and d := diam(V ∩ s
β
δ (U∗

RK)) � δ.

As U∗
Rx does not belong to the w∗-closed set (|K|q − ( ε−δ

2 )q)1/qB(
⊕

λ∈R Eλ)∗p , we may assume

V ∩
(

|K|q −
(

ε − δ

2

)q)1/q

B(
⊕

λ∈R Eλ)∗p = ∅.

Let W = (U∗
R)−1(V ) and let u ∈ W ∩ s

β
ε (K). Then ‖U∗

Ru‖q > |K|q − ( ε−δ
2 )q and u ∈ s

β
ε (K),

hence by the induction hypothesis U∗
Ru ∈ V ∩ s

β
δ (U∗

RK). So for u1, u2 ∈ W ∩ s
β
ε (K) we have

‖U∗
Ru1 − U∗

Ru2‖q � dq � δq . Moreover, since ‖U∗
Ru1‖q > |K|q − ( ε−δ

2 )q it follows that

∥∥u1 − P ∗
RU∗

Ru1
∥∥ �

(|K|q − ∥∥P ∗
RU∗

Ru1
∥∥q)1/q = (|K|q − ∥∥U∗

Ru1
∥∥q)1/q

<
ε − δ

.

2
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Similarly, ‖u2 − P ∗
RU∗

Ru2‖ < ε−δ
2 . We now deduce that

‖u1 − u2‖q = ∥∥P ∗
RU∗

Ru1 − P ∗
RU∗

Ru2
∥∥q + ∥∥(

u1 − P ∗
RU∗

Ru1
) − (

u2 − P ∗
RU∗

Ru2
)∥∥q

�
∥∥U∗

Ru1 − U∗
Ru2

∥∥q +
(

2 · ε − δ

2

)q

� δq + (ε − δ)q

� εq.

In particular, diam(W ∩ s
β
ε (K)) � ε. It follows that x /∈ s

β+1
ε (K), as desired.

The lemma passes easily to limit ordinals, so we are done. �
In order to state the third (and final) lemma required in the proof of Proposition 2.4, we give

the following definition.

Definition 2.7. For real numbers a � 0, b > c > 0 and 1 � d < ∞, define

σ(a, b, c, d) := inf

{
n ∈ N

∣∣∣ n �
(

2a

b − c

)d

−
(

b

b − c

)d

+ 1

}
.

With regards to Definition 2.7, note that σ(a, b, c, d) = 1 whenever 2a � b.

Lemma 2.8. Let Λ be a set, {Eλ | λ ∈ Λ} a family of Banach spaces, 1 � q < ∞, p predual to q ,
K ⊆ (

⊕
λ∈Λ Eλ)

∗
p a nonempty, w∗-compact set and ε > δ > 0. Suppose ηδ is a nonzero ordinal

such that s
ηδ

δ (U∗
F K) = ∅ for every F ∈ Λ<∞. Then s

ηδ ·σ(|K|,ε,δ,q)
ε (K) = ∅.

Proof. We claim that for each n < ω, either s
ηδ ·n
ε (K) is empty or

∣∣sηδ ·n
ε (K)

∣∣q � |K|q − n

(
ε − δ

2

)q

. (2.1)

To prove the claim, we proceed by induction on n. (2.1) holds trivially for n = 0. Suppose the
claim holds for n = m; we will show that it holds for n = m + 1. For every F ∈ Λ<∞ we have

s
ηδ

δ

(
U∗

F sηδ ·(m+1)
ε (K)

) ⊆ s
ηδ

δ (U∗
F K) = ∅. (2.2)

If s
ηδ ·m
ε (K) = ∅, we are done. Otherwise, by the induction hypothesis,

∣∣sηδ ·(m+1)
ε (K)

∣∣q � |K|q − m

(
ε − δ

2

)q

. (2.3)

If s
ηδ ·(m+1)
ε (K) �= ∅, then applying (2.2), (2.3) and Lemma 2.6 implies that for every x ∈

s
ηδ ·(m+1)
ε (K) and F ∈ Λ<∞, we have

∥∥U∗
F x

∥∥q � |K|q − m

(
ε − δ

)q

−
(

ε − δ
)q

= |K|q − (m + 1)

(
ε − δ

)q

.

2 2 2
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Thus x ∈ s
ηδ ·(m+1)
ε (K) implies

‖x‖q = sup
{∥∥U∗

F x
∥∥q ∣∣ F ∈ Λ<∞}

� |K|q − (m + 1)

(
ε − δ

2

)q

,

and so (2.1) holds for n = m + 1. The inductive proof of the claim is complete.
By definition (precisely, Definition 2.7), we have

|K|q − (
σ
(|K|, ε, δ, q) − 1

)(ε − δ

2

)q

�
(

ε

2

)q

. (2.4)

Thus, by (2.4) and the claim proved above we have

diam
(
sηδ ·(σ (|K|,ε,δ,q)−1)
ε (K)

)
� 2 · ε

2
= ε,

and we thus deduce that

sηδ ·σ(|K|,ε,δ,q)
ε (K) ⊆ sηδ ·(σ (|K|,ε,δ,q)−1)+1

ε (K) = sε
(
sηδ ·(σ (|K|,ε,δ,q)−1)
ε (K)

) = ∅. �
We now give the proof of Proposition 2.4, assuming Lemma 2.5.

Proof of Proposition 2.4. We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Throughout, p shall denote the real
number predual to q .

To show (i) ⇒ (ii), suppose by way of a contraposition that there is ε > 0 such that
sup{Szε(Kλ) | λ ∈ Λ} � ωα . For each λ′ ∈ Λ, the restriction P ∗

{λ′}|Kλ′ is a norm-isometric, w∗-
homeomorphic embedding of Kλ′ into Bq(Kλ | λ ∈ Λ), hence Szδ(Bq(Kλ | λ ∈ Λ)) � Szδ(Kλ′)
for all δ > 0 and λ′ ∈ Λ. Thus

Szε

(
Bq(Kλ | λ ∈ Λ)

)
� sup

{
Szε(Kλ)

∣∣ λ ∈ Λ
}

� ωα. (2.5)

As Szε(Bq(Kλ | λ ∈ Λ)) cannot be a limit ordinal, we deduce from (2.5) that

Sz
(
Bq(Kλ | λ ∈ Λ)

)
� Szε

(
Bq(Kλ | λ ∈ Λ)

)
> ωα.

This proves (i) ⇒ (ii).
Suppose (ii) holds. For each ε > 0 let 1 < mε < ω and βε < α be such that sup{Szε/32(Kλ) |

λ ∈ Λ} < ωβε ·mε . Set d = sup{diam(Kλ) | λ ∈ Λ} and for each ε ∈ (0,1) let Mε ∈ N be such that
(2q − 1)εqMε � 8qdq(mε − 1). By Lemma 2.5, for F ∈ Λ<∞ we have Szε(Bq(Kλ | λ ∈ F )) <

ωβε · Mε , hence

sup
{
Szε

(
Bq(Kλ | λ ∈ Λ)

) ∣∣ F ∈ Λ<∞}
� ωβε · Mε < ωα.

Thus, (ii) ⇒ (iii).
Suppose that (iii) holds. As U∗

F Bq(Kλ | λ ∈ Λ) = Bq(Kλ | λ ∈ F ) for each F ∈ Λ<∞, apply-
ing Lemma 2.8 with K = Bq(Kλ | λ ∈ Λ), δ = δ(ε) = ε/2 and ηδ(ε) = sup{Szε/2(U

∗
F Bq(Kλ |

λ ∈ Λ)) | F ∈ Λ<∞} (< ωα) yields
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Sz
(
Bq(Kλ | λ ∈ Λ)

) = sup
{
Szε

(
Bq(Kλ | λ ∈ Λ)

) ∣∣ ε > 0
}

� sup
{
ηδ(ε) · σ (

sup
{|Kλ|

∣∣ λ ∈ Λ
}
, ε, ε/2, q

) ∣∣ ε > 0
}

� ωα,

hence (iii) ⇒ (i). �
Remark 2.9. The idea that an iterated implementation of Lemma 2.6 (c.f. Lemma 2.8 and its
proof) might be used to prove the implication (iii) ⇒ (i) in the proof of Proposition 2.4 was
essentially suggested to the author by Gilles Lancien; previous versions of the main results of
this chapter used a slightly different argument (also using Lemma 2.6, but just a single direct
application) and required the additional hypothesis that Kλ = BE∗

λ
for all λ (see Theorem 2.11).

The following result, along with Proposition 2.2, determines precisely the Szlenk index of a
c0-direct sum or �p-direct sum of operators (1 < p < ∞) in terms of properties of the ε-Szlenk
indices of the summands.

Theorem 2.10. Let Λ be a set, {Eλ | λ ∈ Λ} and {Fλ | λ ∈ Λ} families of Banach spaces,
{Tλ :Eλ −→ Fλ | λ ∈ Λ} a uniformly bounded family of Asplund operators, α > 0 an ordinal
and p = 0 or 1 < p < ∞. The following are equivalent:

(i) Sz((
⊕

λ∈Λ Tλ)p) � ωα .
(ii) sup{Szε(Tλ) | λ ∈ Λ} < ωα for all ε > 0.

It follows that if (
⊕

λ∈Λ Tλ)p is noncompact, then

Sz

((⊕
λ∈Λ

Tλ

)
p

)
= inf

{
ωα

∣∣ sup
{
Szε(Tλ)

∣∣ λ ∈ Λ
}

< ωα for all ε > 0
}
.

Proof. For convenience we set T = (
⊕

λ∈Λ Tλ)p . The equivalence of (i) and (ii) is achieved
by applying Proposition 2.4 with Kλ = T ∗

λ BF ∗
λ

for all λ ∈ Λ, for in this case T ∗B(
⊕

λ∈Λ Eλ)∗p =
Bq(T ∗

λ BF ∗
λ

| λ ∈ Λ), where q ∈ [1,∞) is dual to p.
For each λ ∈ Λ let αλ denote the unique ordinal satisfying Sz(Tλ) = ωαλ . Let αΛ = sup{αλ |

λ ∈ Λ}. The set

{
ωα

∣∣ sup
{
Szε(Tλ)

∣∣ λ ∈ Λ
}

< ωα for all ε > 0
} 
 ωαΛ+1

is nonempty, hence

Sz(T ) � inf
{
ωα

∣∣ sup
{
Szε(Tλ)

∣∣ λ ∈ Λ
}

< ωα for all ε > 0
}

by the implication (ii) ⇒ (i) above.
To complete the proof, we now suppose that T is noncompact. As Sz(T ) is a power of ω, it

is enough to show that Sz(T ) > ωβ holds for β satisfying ωβ < inf{ωα | sup{Szε(Tλ) | λ ∈ Λ} <

ωα for all ε > 0}. Take such β . If β = 0, then Sz(T ) > ωβ by noncompactness of T . On the other
hand, if β > 0 then there is ε > 0 so small that Szε(T ) � sup{Szε(Tλ) | λ ∈ Λ} � ωβ . As Szε(T )

cannot be a limit ordinal, we conclude that Sz(T ) � Szε(T ) > ωβ . �
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2.3. Applications

Our first result here is the following Banach space analogue of Theorem 2.10 which deter-
mines precisely the Szlenk index of a c0-direct sum or �p-direct sum of Banach spaces in terms
of the behaviour of the ε-Szlenk indices of the summand spaces.

Theorem 2.11. Let Λ be a set, {Eλ | λ ∈ Λ} a family of Asplund spaces, α > 0 an ordinal and
p = 0 or 1 < p < ∞. The following are equivalent:

(i) Sz((
⊕

λ∈Λ Eλ)p) � ωα .
(ii) sup{Szε(Eλ) | λ ∈ Λ} < ωα for all ε > 0.

It follows that if (
⊕

λ∈Λ Eλ)p is infinite dimensional, then

Sz

((⊕
λ∈Λ

Eλ

)
p

)
= inf

{
ωα

∣∣ sup
{
Szε(Eλ)

∣∣ λ ∈ Λ
}

< ωα for all ε > 0
}
.

Proof. The conclusions of the theorem follow by taking Tλ to be the identity operator of Eλ for
each λ ∈ Λ in the statement of Theorem 2.10. �
Theorem 2.12. Let Λ be a set, E an infinite dimensional Banach space and 1 < p < ∞. Then

Sz(E) = Sz
(
c0(Λ,E)

) = Sz
(
�p(Λ,E)

)
.

Proof. Apply Theorem 2.11 with Eλ = E for all λ ∈ Λ. �
The previous theorem, Theorem 2.12, allows us to add to the class of ordinals γ for which

the Szlenk index of C(γ + 1) is known (here, γ + 1 is equipped with its order topology). The
computation of the Szlenk index of C(ω1 + 1), in particular Sz(C(ω1 + 1)) = ω1 · ω, is due
to Hájek and Lancien [7]. Essentially using the fact that Sz(C(ξ + 1)) = Sz(C(ζ + 1)) for or-
dinals ξ and ζ satisfying ξ � ζ < ξ · ω (an easy consequence of Proposition 1.1(v)), Hájek
and Lancien deduce that Sz(C(γ + 1)) = ω1 · ω whenever ω1 � γ < ω1 · ω. We claim that
Sz(C(γ + 1)) = ω1 · ω whenever ω1 � γ < ω1 · ωω, a fact that will follow once we have shown
that Sz(C(ξ + 1)) = Sz(C(ζ + 1)) whenever ξ and ζ are ordinals satisfying ω � ξ � ζ < ξ ·ωω.
If ξ and ζ are ordinals satisfying ω � ξ � ζ < ξ · ωω, then there exists n < ω such that C(ζ + 1)

is isomorphic to a subspace of C(ξ · ωn + 1). Thus, by Proposition 1.1(i), it suffices to show that
Sz(C(ξ + 1)) = Sz(C(ξ · ωn + 1)) for all n < ω. This is obviously true for n = 0, and if true
for some n then, since C(ξ · ωn+1 + 1) is isomorphic to c0(ω,C(ξ · ωn + 1)), Theorem 2.12
yields

Sz
(
C

(
ξ · ωn+1 + 1

)) = Sz
(
c0

(
ω,C

(
ξ · ωn + 1

)))
= Sz

(
C

(
ξ · ωn + 1

))
= Sz

(
C(ξ + 1)

)
,

which completes the proof.
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The following proposition asserts that the set of all countable values of the Szlenk index
of Banach spaces is attained by the class of Banach spaces with a shrinking basis. A further
consequence of this result is that if for α < ω1 there exists a Banach space of Szlenk index ωα ,
then Pełczyński’s complementably universal basis space (see [16]) has a complemented subspace
of Szlenk index ωα .

Proposition 2.13. Let 0 < α < ω1. The following are equivalent:

(i) There exists a Banach space E with Sz(E) = ωα .
(ii) There exists a Banach space E with a shrinking basis and Sz(E) = ωα .

To prove Proposition 2.13, we shall call on the following result regarding subspaces and quo-
tients, due to G. Lancien [13] and [11, Theorem III.1]:

Proposition 2.14. Let β < ω1 and let E be a Banach space such that Sz(E) > β .

(i) There is a separable closed subspace F of E such that Sz(F ) > β .
(ii) If E∗ is norm separable, then for every δ > 0 there is a closed subspace F of E such that

Sz(E/F) > β and E/F has a shrinking basis with basis constant not exceeding 1 + δ.

With the exception of the basis constant assertion of part (ii), Proposition 2.14 is proved
in [13]. Lancien’s proof follows closely the proof of [11, Theorem III.1], and the extra assertion
above regarding the basis constant is easily added to Lancien’s result using the observations
regarding basis constants in the proof of [11, Theorem III.1].

Proposition 2.13 is an immediate consequence of the following:

Proposition 2.15. Let α > 0 be a countable ordinal and E a Banach space with Sz(E) = ωα .
Then there exist closed subspaces F ⊆ E and G ⊆ �2(F ) such that �2(F )/G has a shrinking
basis and Sz(�2(F )/G) = ωα .

Proof. For each n ∈ N, Proposition 2.14(i) yields a separable closed subspace Dn of E such that
Sz(Dn) > Sz1/n(E). Let F = span(

⋃
n∈N

Dn). Then

ωα = Sz(E) = sup
n

Sz1/n(E) � sup
n

Sz(Dn) � Sz(F ) � Sz(E) = ωα,

hence equality holds throughout. In particular, Sz(F ) = ωα and, as F is a separable Asplund
space (indeed, Sz(F ) < ∞), F ∗ is norm separable. For each n ∈ N let Fn = F . Then, by Propo-
sition 2.14(ii), for each n ∈ N there is a closed subspace Gn of Fn such that Sz(Fn/Gn) >

Sz1/n(E) and Fn/Gn has a shrinking basis with basis constant not exceeding 2. Let G denote
the image of (

⊕
n∈N

Gn)2 under its natural embedding into (
⊕

n∈N
Fn)2. Then (

⊕
n∈N

Fn)2/G is
naturally isometrically isomorphic to (

⊕
n∈N

Fn/Gn)2. Note that (
⊕

n∈N
Fn/Gn)2 has a shrink-

ing basis since it is the �2-direct sum of a countable family of Banach spaces with shrinking
bases that have uniformly bounded basis constants. On the one hand, by Theorem 2.12 we have

Sz

((⊕
Fn

)
2
/G

)
� Sz

((⊕
Fn

)
2

)
= Sz(F ) = ωα.
n∈N n∈N
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On the other hand,

Sz

((⊕
n∈N

Fn

)
2
/G

)
= Sz

((⊕
n∈N

Fn/Gn

)
2

)
� sup

n
Sz1/n(En) = Sz(E) = ωα.

Thus (
⊕

n∈N
Fn)2/G has a shrinking basis and Szlenk index ωα . �

Proposition 2.16. Let α be an ordinal. Then there exists a Banach space of Szlenk index ωα+1.

Proof. Our proof is based on the construction of Szlenk in [22], by which we construct Banach
spaces Eβ indexed by the class of ordinals β . Let E0 = {0}, Eβ+1 = Eβ ⊕1 �2 and, if β is a
limit ordinal, Eβ = (

⊕
γ<β Eγ )2. It is shown in [14, Theorem 4] that for this construction we

have Sz1(Eβ) > β for all ordinals β . As the assertion of the proposition is known to be true
for α = 0 (for example, Sz(�2) = ω), we assume that α > 0 and let β ′ denote the least ordinal
such that Sz(Eβ ′) > ωα . Then, by Proposition 1.1(iii), Sz(Eβ ′) � ωα+1. By Proposition 1.1(v)
and the definition of β ′, it must be that β ′ is a limit ordinal, hence Eβ ′ = (

⊕
β ′′<β ′ Eβ ′′)2. It fol-

lows that Sz(Eβ ′) = Sz((
⊕

β ′′<β ′ Eβ ′′)2) � ωα+1, where the final inequality here follows from
Theorem 2.11 and the fact that, for all ε > 0,

sup
{
Szε(Eβ ′′)

∣∣ β ′′ < β ′} � sup
{
Sz(Eβ ′′)

∣∣ β ′′ < β ′} � ωα < ωα+1.

It is now clear that Sz(Eβ ′) = ωα+1, so we are done. �
Implicit in the proof of Proposition 2.16 is the following fact: for a set Λ, Banach spaces

{Eλ | λ ∈ Λ}, p = 0 or 1 < p < ∞ and α an ordinal satisfying sup{Sz(Eλ) | λ ∈ Λ} � ωα , we
have Sz((

⊕
λ∈Λ Eλ)p) � ωα+1. This follows easily from Theorem 2.11, but seems to have been

known for some time. For example, the separable case was established in [15, Proposition 15],
and the result is also implicit in the proof of [14, Proposition 5].

Propositions 2.16 and 2.13 concern themselves with the existence of Banach spaces having
a particular Szlenk index. The author is not aware of a complete classification of the possible
values of the Szlenk index of a Banach space. Proposition 1.1(iii) asserts that the Szlenk index of
a Banach space is a power of ω. On the other hand, as the Szlenk index of a Banach space E is the
supremum of the countable set {Sz1/n(E) | n ∈ N}, it follows that the Szlenk index of a Banach
space is of countable cofinality. In particular, if α is an ordinal of uncountable cofinality, then α

is a limit ordinal and ωα cannot be the Szlenk index a Banach space since cf (ωα) = cf (α) � ω1.
In view of this fact and Proposition 2.16, a complete classification of values of the Szlenk index
of Banach spaces will be achieved if one establishes an affirmative answer to the following
question, which we believe to be open:

Question 2.17. Let α be an ordinal with cf (α) = ω. Does there exist a Banach space with Szlenk
index equal to ωα?

A partial answer to Question 2.17 is found in [15] where it is shown that if Tωα denotes the
ωα th Tsirel’son space, where α < ω1, then Sz(Tωα ) = ωωα+1

. The values taken by the Szlenk
index on the class of all operators between Banach spaces will be determined in Proposition 2.18
below.
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To conclude the current section, we now apply Proposition 2.16 to obtain, amongst other
things, a characterisation of those limit ordinals α for which the operator ideal

⋃
β<α SZ α is

closed.

Proposition 2.18. Let α > 0 be an ordinal. The following are equivalent:

(i) cf (α) � ω1.
(ii) ωα is not the Szlenk index of any operator between Banach spaces.

(iii) SZ α = ⋃
β<α SZ β .

(iv) α is a limit ordinal and
⋃

β<α SZ β is closed.

Proof. We will show that (i) ⇒ (ii)⇒(iii) ⇒ (iv) ⇒ (i).
To see that (i) ⇒ (ii), suppose that there exists an operator T such that ωα = Sz(T ) =

sup{Sz1/n(T ) | n ∈ N}. Then cf (α) � cf (ωα) = ω < ω1.
The implication (ii) ⇒ (iii) is immediate from Proposition 1.1(iii).
Now suppose that (iii) holds. Then

⋃
β<α SZ β is closed by Theorem 1.3. Moreover, α is

a limit ordinal. Indeed, otherwise we may write α = ζ + 1, where ζ is an ordinal, and by
Proposition 2.16 there exists a Banach space E such that IE ∈ SZ ζ+1 \ SZ ζ = SZ α \⋃

β<α SZ β = ∅, which is absurd.
Finally, we show that (iv) ⇒ (i). Suppose by way of a contraposition that cf (α) = ω

and let {αn | n < ω} ⊆ α be cofinal in α. Then {αn + 1 | n < ω} is also cofinal in α, and⋃
n<ω SZ αn+1 = ⋃

β<α SZ β . So to complete the proof, it suffices to construct an operator

T ∈ ⋃
n<ω SZ αn+1 \ ⋃

n<ω SZ αn+1. To this end, for each n < ω let En be a Banach space
whose Szlenk index is ωαn+1 (cf. Proposition 2.16), and set E = (

⊕
n<ω En)2. Define T ∈ B(E)

by setting T (xn)n<ω = ((n + 1)−1xn)n<ω for each (xn)n<ω ∈ E. Since T factors IEn for each
n < ω, we have

Sz(T ) � sup
{
Sz(En)

∣∣ n < ω
} = sup

{
ωαn+1

∣∣ n < ω
} = ωα,

hence T /∈ ⋃
n<ω SZ αn+1. On the other hand, with Am (m < ω) denoting the operator on E

that sends (xn)n<ω ∈ E to the element (yn)n<ω of E that satisfies yn = xn if n � m, and yn = 0
otherwise, we have that IE1⊕···⊕Em factors AmT for all m < ω, hence

Sz(AmT ) � Sz(E1 ⊕ · · · ⊕ Em) = max
{
ωαi+1

∣∣ 1 � i � m
}
.

In particular, AmT ∈ ⋃
n<ω SZ αn+1 for m < ω. As limm→ω ‖AmT − T ‖ = 0, it follows that

T ∈ ⋃
n<ω SZ αn+1(E). �

Remark 2.19. The existence of an operator of Szlenk index ωα whenever cf (α) � ω (Proposi-
tion 2.18(ii) ⇒ (i)) is used in the proof of [2, Theorem 5.1], where it is shown that if β is an
ordinal with cf (β) � ω, then SZ ωβ does not have the factorisation property.

3. Proof of Lemma 2.5

Our goal in this section is to prove Lemma 2.5. We proceed via a sequence of lemmas, whose
general theme is to establish upper bounds (in terms of set containment) on various derived
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sets sα
ε (K), where K is w∗-compact, α is an ordinal and ε > 0. The sets K that we shall con-

sider are typically direct products, for it will be seen later that the set Bq(Ki | 1 � i � n) in the
statement of Lemma 2.5 can be ‘approximated’ from above (with respect to set containment) in
a convenient way by a finite union of direct products of w∗-compact sets. Indeed, this so-called
approximation of Bq(Ki | 1 � i � n) plays a key role in our proof.

We mention another important aspect of our results in this section. As noted earlier,
Lemma 2.5 is used to establish the implication (ii) ⇒ (iii) of Proposition 2.4. Note that in the
statement of Proposition 2.4(iii), there is no (finite) upper bound on the cardinality of the finite
sets F ∈ Λ<∞. It is thus important for us in this section, when aiming for estimates of ε-Szlenk
indices of direct products, to obtain estimates that are independent of the (finite) number of fac-
tors in a given direct product. Our efforts in this regard are reflected in the fact that the numbers
M and n in the statement of Lemma 2.5 are independent of one another.

We first establish the following general result regarding the behaviour of sα
ε derivatives of

finite unions of w∗-compact sets.

Lemma 3.1. Let E be a Banach space, K1, . . . ,Kn ⊆ E∗ w∗-compact sets and ε > 0. Let α be
an ordinal and m < ω. Then:

(i) sα
ε (

⋃n
i=1 Ki) ⊆ ⋃n

i=1 sα
ε/2(Ki).

(ii) smn
ε (

⋃n
i=1 Ki) ⊆ ⋃n

i=1 sm
ε (Ki).

(iii) If α is a limit ordinal, then sα
ε (

⋃n
i=1 Ki) ⊆ ⋃n

i=1 sα
ε (Ki).

Proof. (i) holds trivially for α = 0. Suppose that β is an ordinal such that (i) holds for all α � β

and let x ∈ E∗ \⋃n
i=1 s

β+1
ε/2 (Ki). Then for 1 � i � n there is w∗-open Ui 
 x such that diam(Ui ∩

s
β

ε/2(Ki)) � ε/2. It follows that for x1, x2 ∈ (
⋂n

i=1 Ui) ∩ (s
β
ε (

⋃n
i=1 Ki)) we have

‖x1 − x2‖ � ‖x1 − x‖ + ‖x − x2‖ � ε

2
+ ε

2
= ε,

hence diam((
⋂n

i=1 Ui)∩(s
β
ε (

⋃n
i=1 Ki))) � ε. In particular, x /∈ s

β+1
ε (

⋃n
i=1 Ki), and so (i) passes

to successor ordinals.
Suppose that β is a limit ordinal such that (i) holds for all α < β . Then

sβ
ε

(
n⋃

i=1

Ki

)
=

⋂
α<β

sα
ε

(
n⋃

i=1

Ki

)
⊆

⋂
α<β

n⋃
i=1

sα
ε/2(Ki). (3.1)

Let x ∈ s
β
ε (

⋃n
i=1 Ki). Then for each α < β we may choose iα ∈ {1, . . . , n} such that x ∈

sα
ε/2(Kiα ), and for some i′ ∈ {1, . . . , n} the set {α < β | iα = i′} is cofinal in β . Hence

x ∈
⋂

iα=i′
sα
ε/2(Ki′) =

⋂
α<β

sα
ε/2(Ki′) = s

β

ε/2(Ki′) ⊆
n⋃

i=1

s
β

ε/2(Ki). (3.2)

Since x ∈ s
β
ε (

⋃n
Ki) was arbitrary, (i) passes to limit ordinals, and thus holds for all ordinals α.
i=1
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Statement (ii) is trivial for m = 0. To see that it is true for m = 1, we first let Pk = {F ⊆
{1, . . . , n} | |F | = k}, k ∈ N. It suffices to show that for all l < ω,

sl
ε

(
n⋃

i=1

Ki

)
⊆

(
n⋃

i=1

sε(Ki)

)
∪

( ⋃
F ∈Pl+1

⋂
i∈F

Ki

)
. (3.3)

Indeed, taking l = n in (3.3) gives (ii) with m = 1 (since
⋃

F ∈Pl+1

⋂
i∈F Ki = ∅ when l = n). It

is clear that (3.3) holds for l = 0. Suppose now l′ < ω is such that (3.3) holds for l = l′; we show
that it holds also for l = l′ + 1. Let

x ∈ E∗\
((

n⋃
i=1

sε(Ki)

)
∪

( ⋃
G∈Pl′+2

⋂
j∈G

Kj

))
.

We want to show that x /∈ sl′+1
ε (

⋃n
i=1 Ki), so by the induction hypothesis it suffices to assume

that

x ∈ sl′
ε

(
n⋃

i=1

Ki

)
⊆

(
n⋃

i=1

sε(Ki)

)
∪

( ⋃
F ∈Pl′+1

⋂
i∈F

Ki

)
,

hence

x ∈
( ⋃

F ∈Pl′+1

⋂
i∈F

Ki

)
\
((

n⋃
i=1

sε(Ki)

)
∪

( ⋃
G∈Pl′+2

⋂
j∈G

Kj

))
. (3.4)

By (3.4) there is (a unique) Fx ∈ Pl′+1 such that x ∈ (
⋂

i∈Fx
Ki) \ (

⋃
i′ /∈Fx

Ki′). For each i ∈ Fx

let Ui 
 x be w∗-open and such that diam(Ui ∩ Ki) � ε and Ui ∩ ⋃
i′ /∈Fx

Ki′ = ∅. Then U =⋂
i∈Fx

Ui is a w∗-neighbourhood of x and

U ∩
((

n⋃
i=1

sε(Ki)

)
∪

( ⋃
F ∈Pl′+1

⋂
i∈F

Ki

))
= U ∩

⋂
i∈Fx

Ki =
⋂

i∈Fx

Ui ∩ Ki

has norm diameter not exceeding ε (because diam(Ui ∩ Ki) � ε for i ∈ Fx ). It follows then by
(3.3) and the induction hypothesis on l = l′ that

x /∈ sε

((
n⋃

i=1

sε(Ki)

)
∪

( ⋃
F ∈Pl′+1

⋂
i∈F

Ki

))
⊇ sl′+1

ε

(
n⋃

i=1

Ki

)
,

as required. In particular, (3.3) holds for all l < ω and (ii) holds for m = 1.
Suppose h < ω is such that (ii) holds for all m � h. Then

s(h+1)n
ε

(
n⋃

i=1

Ki

)
⊆ sn

ε

(
n⋃

i=1

sh
ε (Ki)

)
⊆

n⋃
i=1

sh+1
ε (Ki),

so that (ii) holds for m = h + 1, and thus for all m by induction.
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For (iii), we prove the case n = 2, with the general case then following from this case and a
straightforward induction on n. So we want to show that if α is a nonzero limit ordinal, then

sα
ε (K1 ∪ K2) ⊆ sα

ε (K1) ∪ sα
ε (K2). (3.5)

To this end, it suffices to consider the case α = ωβ , β > 0, since the general case follows from
finitely many iterations of this case. Indeed, every limit ordinal α is the sum of finitely many
ordinals of the form ωβ , β > 0. We proceed by induction on β . For β = 1 we note that, by (ii),

sω
ε (K1 ∪ K2) =

⋂
m<ω

s2m
ε (K1 ∪ K2) ⊆

⋂
m<ω

(
sm
ε (K1) ∪ sm

ε (K2)
)
, (3.6)

and then a similar argument to that used to obtain (3.2) from (3.1) yields (iii) for α = ω. Suppose
now that (3.5) holds for α = ωβ , some β > 0. Then a straightforward induction on l < ω shows
that for all such l we have

sωβ ·l
ε (K1 ∪ K2) ⊆ sωβ ·l

ε (K1) ∪ sωβ ·l
ε (K2). (3.7)

(3.7) and an argument similar to that used to obtain (3.2) from (3.1) yields

sωβ+1

ε (K1 ∪ K2) ⊆ sωβ+1

ε (K1) ∪ sωβ+1

ε (K2);
in particular, (iii) passes to successor ordinals. The straightforward proof that (iii) passes to limit
ordinals uses, once again, a similar cofinality argument to that used to obtain (3.2) from (3.1)
above. �

The next three lemmas are specifically concerned with sα
ε derivatives of direct products of

w∗-compact sets, considered as w∗-compact subsets of dual spaces of direct sums of Banach
spaces.

We require more notation. Given Banach spaces E1, . . . ,En, nonempty w∗-compact sets
K∗

1 ⊆ E∗
1 , . . . ,K∗

n ⊆ E∗
n , 1 � q < ∞ and a1, . . . , an � 0 real numbers such that

∑n
i=1 a

q
i � 1,

for each ε > 0 we define

Aε :=
{

(εi)
n
i=1 ∈ Rn

∣∣∣ n∑
i=1

a
q
i ε

q
i � εq and 0 � εi � diam(Ki), 1 � i � n

}
.

In all places where we use the notation Aε , the w∗-compact sets K1, . . . ,Kn, real numbers
a1, . . . , an and 1 � q < ∞ will be fixed, so no ambiguity should arise from this notation. It is
elementary to see that Aε = ∅ if and only if εq >

∑n
i=1[ai · diam(Ki)]q .

We adopt the notational convention that sα
0 (K) = K for every ordinal α and w∗-compact K .

Lemma 3.2. Let E1, . . . ,En be Banach spaces and K1 ⊆ E∗
1 , . . . ,Kn ⊆ E∗

n w∗-compact sets.
Let 1 � q < ∞, ε > 0 and let a1, . . . , an � 0 be real numbers such that

∑n
i=1 a

q
i � 1. Let p be

predual to q and consider
∏n

i=1 aiKi as a subset of (
⊕n

i=1 Ei)
∗
p . Then, for every δ ∈ (0, ε),

sε

(
n∏

aiKi

)
⊆

⋃ n∏
aisεi

(Ki).
i=1 (εi )∈Aδ i=1
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Proof. We first suppose that εq >
∑n

i=1[ai · diam(Ki)]q . Then sε(
∏n

i=1 aiKi) is empty since
diam(

∏n
i=1 aiKi) < ε. The assertion of the lemma follows.

Suppose now that εq �
∑n

i=1[ai · diam(Ki)]q , so that Aε′ �= ∅ for 0 < ε′ � ε. Let δ ∈ (0, ε),
(aixi)

n
i=1 ∈ sε(

∏n
i=1 aiKi) and, for 1 � i � n, define

δi := inf
{
diam(Ki ∩ Ui)

∣∣ Ui a w∗-neighbourhood of xi

}
.

Then
∑n

i=1 a
q
i δ

q
i � εq > δq . Let f : {1, . . . , n} −→ R be a map such that

∑n
i=1 a

q
i f (i)q � δq

and f (i) ∈ {0} ∪ (0, δi) for all i (note that [0, δi) is empty whenever δi = 0). We claim that with
f so defined, xi ∈ sf (i)(Ki) for 1 � i � n. Indeed, if δi = 0 then f (i) = 0, hence xi ∈ Ki =
sf (i)(Ki) by convention. On the other hand, if δi > 0, then for all w∗-open Ui 
 xi we have
diam(Ki ∩Ui) � δi > f (i), hence xi ∈ sf (i)(Ki) in this case too. Note that (f (i))ni=1 ∈ Aδ since
f (i) � δi � diam(Ki) for all i and

∑n
i=1 a

q
i f (i)q � δq , hence

(aixi)
n
i=1 ∈

n∏
i=1

aisf (i)(Ki) ⊆
⋃

(εi )∈Aδ

n∏
i=1

aisεi
(Ki). �

Lemma 3.3. Let E1, . . . ,En be Banach spaces and K1 ⊆ E∗
1 , . . . ,Kn ⊆ E∗

n w∗-compact sets.
Let 1 � q < ∞, ε > 0 and let a1, . . . , an � 0 be real numbers such that

∑n
i=1 a

q
i � 1. Let p

be predual to q and consider
∏n

i=1 aiKi as a subset of (
⊕n

i=1 Ei)
∗
p . Then, for every δ ∈ (0, ε),

0 < m < ω and ordinal α,

sωα ·m
ε

(
n∏

i=1

aiKi

)
⊆

⋃
(εi,1),...,(εi,m)∈Aδ/2

n∏
i=1

ais
ωα

εi,m

(
sωα

εi,m−1

(
. . . sωα

εi,1
(Ki) . . .

))
. (3.8)

Proof. If εq >
∑n

i=1[ai ·diam(Ki)]q , then sωα ·m
ε (

∏n
i=1 aiKi) is empty since diam(

∏n
i=1 aiKi) <

ε and ωα · m � 1. The assertion of the lemma follows.
Suppose now that εq �

∑n
i=1[ai · diam(Ki)]q , so that Aε′ �= ∅ whenever 0 < ε′ � ε. For

α = 0 and m = 1, (3.8) is a consequence of Lemma 3.2. Suppose that α is an ordinal such that
(3.8) holds for m = 1,2, . . . , k, for some 0 < k < ω. We will show that (3.8) holds for α and
m = k + 1. Fix δ ∈ (0, ε) and note that A(ε+δ)/4 ⊆ Aδ/2 since δ/2 < (ε + δ)/4. We now detail
a method that assigns to each (εi)

n
i=1 ∈ A(ε+δ)/4 an element (εi)

n
i=1 of a certain finite subset of

Aδ/2. For (εi)
n
i=1 ∈ A(ε+δ)/4 and 1 � i � n, define

ji := max
{
j ∈ N ∪ {0} ∣∣ j (ε − δ) � 4εi

}
and set εi = ji(ε − δ)/4. Note that εi � εi � diam(Ki) and

(
n∑

i=1

a
q
i ε

q
i

)1/q

�
(

n∑
i=1

a
q
i ε

q
i

)1/q

−
(

n∑
i=1

a
q
i (εi − εi)

q

)1/q

� ε + δ

4
− ε − δ

4

= δ
,

2
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hence (εi)
n
i=1 ∈ Aδ/2. Moreover, for (εi,1)

n
i=1, . . . , (εi,m)ni=1 ∈ A(ε+δ)/4 we have

sωα

εi,m

(
sωα

εi,m−1

(
. . . sωα

εi,1
(Ki) . . .

)) ⊆ sωα

εi,m

(
sωα

εi,m−1

(
. . . sωα

εi,1
(Ki) . . .

))
(3.9)

for all 1 � i � n. Let A = {(εi)
n
i=1 | (εi)

n
i=1 ∈ A(ε+δ)/4} ⊆ Aδ/2. Then A is finite, with

|A| �
⌈

4 · max1�i�n diam(Ki)

ε − δ
+ 1

⌉n

.

The finiteness of A will allow us to invoke Lemma 3.1 in the next step of our proof. To complete
our demonstration that (3.8) holds for m = k + 1, we henceforth treat the cases α = 0 and α > 0
separately.

If α = 0, then for δ ∈ (0, ε) we have, by the induction hypothesis, (3.9), Lemma 3.1(i) and
Lemma 3.2,

sk+1
ε

(
n∏

i=1

aiKi

)
⊆ sε

( ⋃
(εi,1),...,(εi,k)∈A(ε+δ)/4

n∏
i=1

aisεi,k

(
sεi,k−1

(
. . . sεi,1(Ki) . . .

))w∗)

⊆ sε

( ⋃
(εi,1),...,(εi,k)∈A(ε+δ)/4

n∏
i=1

aisεi,k

(
sεi,k−1

(
. . . sεi,1(Ki) . . .

)))

⊆
⋃

(εi,1),...,(εi,k)∈A(ε+δ)/4

sε/2

(
n∏

i=1

aisεi,k

(
sεi,k−1

(
. . . sεi,1(Ki) . . .

)))

⊆
⋃

(εi,1),...,(εi,k),(εi,k+1)∈Aδ/2

n∏
i=1

aisεi,k+1

(
sεi,k

(
. . . sεi,1(Ki) . . .

))
,

as required.
On the other hand, if α > 0 then it follows from the induction hypothesis, (3.9) and

Lemma 3.1(iii) that

sωα ·(k+1)
ε

(
n∏

i=1

aiKi

)
⊆ sωα

ε

( ⋃
(εi,1),...,(εi,k)∈A(ε+δ)/4

n∏
i=1

aisωα

εi,k

(
sωα

εi,k−1

(
. . . sωα

εi,1
(Ki) . . .

))w∗)

⊆ sωα

ε

( ⋃
(εi,1),...,(εi,k)∈A(ε+δ)/4

n∏
i=1

ais
ωα

εi,k

(
sωα

εi,k−1

(
. . . sωα

εi,1
(Ki) . . .

)))

⊆
⋃

(εi,1),...,(εi,k)∈A(ε+δ)/4

sωα

ε

(
n∏

i=1

ais
ωα

εi,k

(
sωα

εi,k−1

(
. . . sωα

εi,1
(Ki) . . .

)))

⊆
⋃

(εi,1),...,(εi,k),(εi,k+1)∈Aδ/2

n∏
i=1

ais
ωα

εi,k+1

(
sωα

εi,k

(
. . . sωα

εi,1
(Ki) . . .

))
,

as we would like.
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Finally, suppose that β is a nonzero ordinal (either limit or successor) such that (3.8) holds for
all m < ω and α < β; we show that (3.8) then holds for m = 1 and α = β . Fix δ ∈ (0, ε) and let
A be defined as above. Then, since A ⊆ Aδ/2, to complete the induction it suffices to show that

sωβ

ε

(
n∏

i=1

aiKi

)
⊆

⋃
(εi )∈A

n∏
i=1

ais
ωβ

εi
(Ki). (3.10)

To prove (3.10), we shall establish the following two inclusions:

sωβ

ε

(
n∏

i=1

aiKi

)
⊆

⋂
(l,α)∈(0,ω)×β

⋃
(εi )∈A

n∏
i=1

ais
ωα ·l
εi

(Ki) (3.11)

and

⋂
(l,α)∈(0,ω)×β

⋃
(εi )∈A

n∏
i=1

ais
ωα ·l
εi

(Ki) ⊆
⋃

(εi )∈A

n∏
i=1

ais
ωβ

εi
(Ki). (3.12)

We first deal with (3.11). To this end, let

x ∈ sωβ

ε

(
n∏

i=1

aiKi

)
=

⋂
(m,α)∈(0,ω)×β

sωα ·m
ε

(
n∏

i=1

aiKi

)
.

Then, since ε+δ
2 < ε, it follows from the induction hypothesis and (3.9) that

x ∈
⋂

(m,α)∈(0,ω)×β

⋃
(εi,1),...,(εi,m)∈A(ε+δ)/4

n∏
i=1

ais
ωα

εi,m

(
sωα

εi,m−1

(
. . . sωα

εi,1
(Ki) . . .

))

⊆
⋂

(m,α)∈(0,ω)×β

⋃
(εi,1),...,(εi,m)∈A

n∏
i=1

ais
ωα

εi,m

(
sωα

εi,m−1

(
. . . sωα

εi,1
(Ki) . . .

))
.

So for each (m,α) ∈ (0,ω) × β there are (εi,1,m,α)ni=1, . . . , (εi,m,m,α)ni=1 ∈ A such that

x ∈
n∏

i=1

ais
ωα

εi,m,m,α

(
sωα

εi,m−1,m,α

(
. . . sωα

εi,1,m,α
(Ki) . . .

))
. (3.13)

Suppose l ∈ (0,ω) and α < β and set ml = |A| · l. Then there is a subset Jl,α ⊆ {1,2, . . . ,ml}
with |Jl,α| = l and |{(εi,j,ml,α)ni=1 | j ∈ Jl,α}| = 1. Let (εi,l,α)ni=1 denote the unique element of
{(εi,j,ml,α)ni=1 | j ∈ Jl,α}(⊆ A). We may write Jl,α = {j1 < j2 < · · · < jl}, and then by (3.13) we
have, in particular,
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x ∈
n∏

i=1

ais
ωα

εi,ml ,ml ,α

(
sωα

εi,ml−1,ml ,α

(
. . . sωα

εi,1,ml ,α
(Ki) . . .

))

⊆
n∏

i=1

ais
ωα

εi,jl ,ml ,α

(
sωα

εi,jl−1,ml ,α

(
. . . sωα

εi,j1,ml ,α
(Ki) . . .

))

=
n∏

i=1

ais
ωα ·l
εi,l,α

(Ki)

⊆
⋃

(εi )∈A

n∏
i=1

ais
ωα ·l
εi

(Ki).

As l ∈ (0,ω) and α < β were arbitrary, (3.11) follows.
We now prove (3.12). Let

y ∈
⋂

(l,α)∈(0,ω)×β

⋃
(εi )∈A

n∏
i=1

ais
ωα ·l
εi

(Ki),

and for each l ∈ (0,ω) and α < β let (εi,(l,α))
n
i=1 ∈ A be such that

y ∈
n∏

i=1

ais
ωα ·l
εi,(l,α)

(Ki).

For each (εi)
n
i=1 ∈ A, let

A
[
(εi)

n
i=1

] = {
ωα · l ∣∣ 0 < l < ω, α < β, (εi,(l,α))

n
i=1 = (εi)

n
i=1

}
.

Since {ωα · l | 0 < l < ω, α < β} is cofinal in ωβ and {A[(εi)
n
i=1] | (εi)

n
i=1 ∈ A} is a finite

partition of {ωα · l | 0 < l < ω, α < β}, there exists (ρi)
n
i=1 ∈ A such that A[(ρi)

n
i=1] is cofinal

in ωβ . It follows that

y ∈
⋂

ξ∈A[(ρi )
n
i=1]

n∏
i=1

ais
ξ
ρi

(Ki) ⊆
n∏

i=1

ai

( ⋂
ξ∈A[(ρi )

n
i=1]

s
ξ
ρi

(Ki)

)

=
n∏

i=1

ai

( ⋂
ξ<ωβ

s
ξ
ρi

(Ki)

)

=
n∏

i=1

ais
ωβ

ρi
(Ki)

⊆
⋃

(εi )∈A

n∏
i=1

ais
ωβ

εi
(Ki).

At last, the proof of Lemma 3.3 is complete. �
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Lemma 3.4. Let E1, . . . ,En be Banach spaces and K1 ⊆ E∗
1 , . . . ,Kn ⊆ E∗

n nonempty w∗-
compact sets. Let 1 � q < ∞, ε > 0 and let a1, . . . , an � 0 be real numbers such that∑n

i=1 a
q
i � 1. Let d = max{diam(Ki) | 1 � i � n} and let m,M ∈ N be such that M � m � 2

and (2q − 1)εqM � 8qdq(m − 1). Let p be predual to q and consider
∏n

i=1 aiKi as a
subset of (

⊕n
i=1 Ei)

∗
p . If α is an ordinal such that sωα ·m

ε/8 (Ki) = ∅ for all 1 � i � n, then

sωα ·M
ε (

∏n
i=1 aiKi) = ∅.

Proof. If εq >
∑n

i=1[ai ·diam(Ki)]q , then sωα ·M
ε (

∏n
i=1 aiKi) is empty since diam(

∏n
i=1 aiKi)<

ε and ωα · M � 1. The assertion of the lemma follows.
So suppose now that εq �

∑n
i=1[ai · diam(Ki)]q . Then Aε′ �= ∅ whenever 0 < ε′ � ε. Apply-

ing Lemma 3.3 with δ = ε/2, we see that sωα ·M
ε (

∏n
i=1 aiKi) is contained in a union of sets of

the form

n∏
i=1

ais
ωα

εi,M

(
sωα

εi,M−1

(
. . . sωα

εi,1
(Ki) . . .

))
, (3.14)

where (εi,1)
n
i=1, (εi,2)

n
i=1, . . . , (εi,M)ni=1 ∈ Aε/4. For each such product (3.14),

a
q

1

(
M∑

j=1

ε
q

1,j

)
+ a

q

2

(
M∑

j=1

ε
q

2,j

)
+ · · · + a

q
n

(
M∑

j=1

ε
q
n,j

)
� Mεq

4q
.

Since
∑n

i=1 a
q
i � 1, there is h ∈ {1, . . . , n} such that

∑M
j=1 ε

q
h,j � Mεq/4q . We claim that at

least one of the following two conditions holds for such h:

(a) There exists a subset {j1 < j2 < · · · < jm} ⊆ {1,2, . . . ,M} such that min{εh,j1 , . . . , εh,jm} �
ε/8.

(b) There exists j � M such that εh,j > d .

Indeed, suppose that (a) does not hold. Then there are distinct j1, . . . , jm−1 in {1, . . . ,M} such
that εh,j < ε/8 whenever j ∈ {1, . . . ,M} \ {j1, . . . , jm−1}. It follows then that

m−1∑
k=1

ε
q
h,jk

>
Mεq

4q
− (M − m + 1)

(
ε

8

)q

= M

((
ε

4

)q

−
(

ε

8

)q)
+ (m − 1)

(
ε

8

)q

> M

((
ε

4

)q

−
(

ε

8

)q)

� dq(m − 1).

Thus ε
q
h,jk

> dq for some k � m−1, hence εh,jk
> d for some k � m−1. In particular, (b) holds

whenever (a) does not.
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If (b) holds, then the factor ahs
ωα

εh,M
(sωα

εh,M−1
(. . . sωα

εh,1
(Kh) . . .)) is empty since diam(Kh) � d <

εh,j for j satisfying (b). It follows then that the product
∏n

i=1 ais
ωα

εi,M
(sωα

εi,M−1
(. . . sωα

εi,1
(Ki) . . .)) is

empty also, giving the desired result. On the other hand, if (a) holds then

sωα

εh,M

(
sωα

εh,M−1

(
. . . sωα

εh,1
(Kh) . . .

)) ⊆ sωα

εh,jm

(
sωα

εh,jm−1

(
. . . sωα

εh,j1
(Kh) . . .

))
⊆ sωα ·m

ε/8 (Kh).

We conclude that sωα ·M
ε (

∏n
i=1 aiKi) is contained in a union of direct products of the form

(3.14), with each such direct product having a factor contained in a scalar multiple of one of
the sets sωα ·m

ε/8 (Ki), 1 � i � n. From this it is clear that if sωα ·m
ε/8 (Ki) = ∅ for all 1 � i � n, then

sωα ·M
ε (

∏n
i=1 aiKi) ⊆ ∅. �

The next and final lemma required for our proof of Lemma 2.5 shows how we can put a set
Bq(Ki | 1 � i � n) inside a finite union of direct products of w∗-compact sets in a way that will
be useful for us.

Lemma 3.5. Let E1, . . . ,En be Banach spaces, K1 ⊆ E∗
1 , . . . ,Kn ⊆ E∗

n nonempty, absolutely
convex, w∗-compact sets, 1 � q < ∞ and l ∈ N. Let L = Nn ∩ (l + n1/q)B�n

q
. Then

Bq(Ki | 1 � i � n) ⊆
⋃

(ki )
n
i=1∈L

n∏
i=1

ki

l
Ki.

Proof. Let (ai)
n
i=1 ∈ B�n

q
and set ji = inf{j ∈ N | l|ai | < j}, 1 � i � n. Then ji − 1 � l|ai |

for all i, hence ‖(ji)
n
i=1‖�n

q
� ‖(lai)

n
i=1‖�n

q
+ n1/q � l + n1/q . In particular, (ji)

n
i=1 ∈ L. As the

sets Ki , 1 � i � n, are absolutely convex, we have aiKi ⊆ ji

l
Ki for all i, hence

∏n
i=1 aiKi ⊆∏n

i=1
ji

l
Ki . It follows that

Bq(Ki | 1 � i � n) =
⋃

(ai )∈B�nq

n∏
i=1

aiKi

⊆
⋃

(ki )
n
i=1∈L

n∏
i=1

ki

l
Ki. �

We note a few points of interest regarding the sets
⋃

(ki )∈L

∏n
i=1

ki

l
Ki from Lemma 3.5. For

each l ∈ N, let Ll = Nn ∩ (l + n1/q)B�n
q
. Then the intersection of the collection

{⋃(ki )∈Ll

∏n
i=1

ki

l
Ki}l∈N is precisely Bq(Ki | 1 � i � n); this follows from the observation that

for l ∈ N, each point of
⋃

(ki )∈Ll

∏n
i=1

ki

l
Ki is no greater than n1/q · l−1 · max{diam(Ki) | 1 �

i � n} in norm distance from Bq(Ki | 1 � i � n). We may thus think of {⋃(ki )∈Ll

∏n
i=1

ki

l
Ki}l∈N

as a sequence of increasingly closer approximations to the set Bq(Ki | 1 � i � n), and our need
to closely approximate Bq(Ki | 1 � i � n) is reflected by our choice of l in the following proof
of Lemma 2.5.
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Proof of Lemma 2.5. Fix δ ∈ (0, ε/16). Let l � 16δn1/q(ε − 16δ)−1 be an integer and let L =
Nn ∩ (l + n1/q)B�n

q
. By Lemma 3.5 and the hypothesis of Lemma 2.5,

sωα ·M
ε

( ⋃
(ki )∈L

n∏
i=1

ki

l
Ki

)
⊇ sωα ·M

ε

(
Bq(Ki | 1 � i � n)

)
� ∅.

Thus, since L is finite, by Lemma 3.1(i) there exists (hi)
n
i=1 ∈ L such that

sωα ·M
ε/2

(
n∏

i=1

hi

l
Ki

)
�= ∅. (3.15)

Let ρ = (1+ n1/q

l
)−1. By (3.15) and the homogeneity of the derivations s

γ

ε′ (where γ is an ordinal
and ε′ > 0), we have

sωα ·M
ρε/2

(
n∏

i=1

ρhi

l
Ki

)
= ρsωα ·M

ε/2

(
n∏

i=1

hi

l
Ki

)
�= ∅. (3.16)

Thus, since ‖( ρhi

l
)ni=1‖�n

q
� 1, it follows from (3.16) and Lemma 3.4 that there is i � n such that

sωα ·m
ρε/16(Ki) �= ∅. As ρε/16 � δ, we conclude that sωα ·m

δ (Ki) ⊇ sωα ·m
ρε/16(Ki) � ∅. This completes

the proof. �
Remark 3.6. Lemma 2.5 is similar to [2, Lemma 5.9]. Though many of the arguments and
preliminary results used here in the proof of Lemma 2.5 have been employed similarly in the
proof of [2, Lemma 5.9], neither of these technical lemmas are strong enough to be used in place
of the other in the proofs of the respective theorems for which they have been developed.
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