The Based Ring of the Lowest Two-Sided Cell of an Affine Weyl Group

XI NANHUA

Institute of Mathematics, Academia Sinica,
Beijing 100080, China

Communicated by Walter Feit
Received January 4, 1989

1. INTRODUCTION

1.1. The purpose of this paper is to give a clear description for the based ring of the lowest two-sided cell of an affine Weyl group. Our results support the conjecture proposed in [4, IV].

1.2. Let G be a simply connected, almost simple complex algebraic group and T a maximal torus of G. Let $R \subset X = \text{Hom}(T, C^*)$ be the root system, $P \subset X$ the root lattice. Let Δ be the set of simple roots in R and R^+ be the set of positive roots in R. The Weyl group $W_0 = N_G(T)/T$ of G acts on X in a natural way and this action is stable on P and R. Thus we can form the affine Weyl group $W' = W_0 \ltimes P$ which is a normal subgroup of the extended affine Weyl group $W = W_0 \ltimes X$. There exists a finite abelian subgroup Ω of W such that $W = \Omega \ltimes W'$. Let S be the set of simple reflections of W'. Then we have a standard length function l on W' which can be extended to W by defining $l(rw) = l(w)$ for any $r \in \Omega$, $w \in W'$. We keep the same notation for the extension of l.

1.3. For any $u = \omega_1 w_1$, $w = \omega_2 w_1$, $\omega_1, \omega_2 \in \Omega$, $u_1, w_1 \in W'$, we define $P_{u, w}$ to be P_{u_1, w_1} as in [1] if $\omega_1 = \omega_2$ and define $P_{u, w}$ to be 0 if $\omega_1 \neq \omega_2$. We say that $u \leq_{LR} w$ or $u \leq_{L} w$ or $u \leq_{R} w$ if $u_1 \leq_{LR} w_1$ or $u_1 \leq_{L} w_1$ or $u_1 \leq_{R} w_1$ in the sense of [1]. These relations generate equivalence relations \sim_{LR}, \sim_{L}, \sim_{R} in W, respectively, and the corresponding equivalence classes are called two-sided cells, left cells, right cells of W, respectively. The relation \leq_{LR} (resp. \leq_{L}, \leq_{R}) in W then induces a partial order \leq_{LR} (resp. \leq_{L}, \leq_{R}) in the set of two-sided (resp. left, right) cells of W. We extend the Bruhat order \leq in W' to W by defining $u \leq w$ if and only if $\omega_1 = \omega_2$ and $u_1 \leq w_1$.

356
1.4. Let \(\mathcal{A} = \mathbb{C}[q, q^{-1}] \) be the ring of all Laurent polynomials in an indeterminate \(q \) with coefficients in \(\mathbb{C} \). The Hecke algebra \(\mathcal{H} \) of \(W \) over \(\mathcal{A} \) is a free \(\mathcal{A} \)-module with a basis \(T_w, w \in W \), and the multiplication law is given by the formulae

\[
T_r^i = q^i + (q^2 - 1) T_r \quad \text{if} \quad r \in S,
\]

\[
T_w T_{w'} = T_{ww'} \quad \text{if} \quad w, w' \in W \text{ and } l(ww') = l(w) + l(w').
\]

We have another basis of \(\mathcal{H} \), \(C_w = q^{-l(w)} \sum_{u \leq w} P_{u,w}(q^2) T_u, w \in W \). For any \(z \in W \) let \(a(z) = \max \{ \deg h_{w,u,z} | w, u \in W \} \), where \(h_{w,u,z} \in \mathcal{A} \) is determined by the expression \(C_w C_u = \sum_x h_{w,u,x} C_x \) for any \(w, u \in W \). Then \(a(z) \leq v = |R^+| \) for all \(z \in W \) (see [4, I]) and \(e_0 = \{ w \in W | a(w) = v \} \) is a two-sided cell of \(W \) (see [6, I]) which is the lowest one for the partial order \(\leq_{LR} \).

1.5. A ring with 1 is called a based ring if its additive group is a free abelian group with a basis \(\Theta \) such that the following two conditions are satisfied:

(a) If \(\theta, \theta' \in \Theta \), \(\theta \theta' = \sum_{\rho \leq \theta} n_{\rho, \theta'} \), then \(n_{\theta, \theta'} \geq 0 \).

(b) There exists an involution \(\tau \) of this ring as a group such that if \(\theta \in \Theta \) then \(\theta \theta' = \tau(\theta \theta') \), \(\theta' \in \Theta \), and

\[
\tau(\theta \theta') = \begin{cases} 1 & \text{if } \theta' = \theta \\ 0 & \text{if } \theta' \neq \theta \end{cases}
\]

where \(\tau \) is a group homomorphism from the ring to \(\mathbb{Z} \) defined by \(\tau(\sum_{\theta} n_{\theta, \theta}) = \sum_{\theta} n_{\theta} \).

From (a) one knows immediately that there exists a finite subset \(\Theta_0 \) of \(\Theta \) such that \(1 = \sum_{\theta \in \Theta_0} \theta \) and \(\theta^2 = \theta \) if \(\theta \in \Theta_0 \), \(\theta \theta' = 0 \) if \(\theta, \theta' \in \Theta_0 \) are different.

1.6. Let \(h_{w,u,z} = h_{w,u,z}^\theta + \text{lower power terms}, w, u, z \in W \), then \(h_{w,u,z} \in \mathcal{A} \). Let \(\mathcal{J} \) be the free \(\mathbb{Z} \)-module with basis \(\{ t_w | w \in W \} \). \(\mathcal{J} \) becomes a based ring if we set \(t_w t_u = \sum_x h_{w,u,z} x_z \) and define \(\tilde{t}_w = t_{w^{-1}} \). In this case we have \(\Theta = \{ t_w | w \in W \} \) and \(\Theta_0 = \{ t_d | d \in W', a(d) = l(d) - 2 \deg P_{e,d} \} \) (\(e \) is the unit of \(W \)) (see [4, II]).

Let \(\mathcal{D} = \{ d \in \mathcal{J} | a(d) - 2 \deg P_{e,d} \} \). The elements in \(\mathcal{D} \) all are involutions and are called distinguished involutions of \(W \). Let \(d \in \mathcal{D} \) be a distinguished involution then \(\gamma_{w,u,d} \neq 0 \) implies that \(w = u^{-1} \) and \(\gamma_{w,u,d} = 1 \) (see [4, II]).

Let \(w, u, z \in W \). If \(\gamma_{w,u,z} \neq 0 \), then \(w \sim_L u^{-1}, u \sim_L z, w \sim_R z \). Conversely if \(w \sim_L u^{-1} \) then \(\gamma_{w,u,z} \neq 0 \) for some \(z \in W \). Thus for any two-sided cell \(c \) of \(W \)
the \(\mathbb{Z}\)-submodule \(J_c\) of \(J\) generated by \(t_w\) \((w \in c)\) is an ideal of \(J\) and \(J_c\) is also a based ring with \(\Theta = \{t_w|w \in c\}\) and \(\Theta_0 = \{t_d|d \in \mathcal{D} \cap c\}\). In particular we know that \(J_{c_0} = J_0\) is a based ring with \(\Theta = \{t_w|w \in c_0\}\) and \(\Theta_0 = \{t_d|d \in \mathcal{D}_0\}\), where \(\mathcal{D}_0 = \mathcal{D} \cap c_0\). \(J_0\) is the main object which we shall discuss in this paper. We have a decomposition \(J = \bigoplus_c J_c\), where the sum is over all two-sided cells \(c\) of \(W\) (see \([4, \II]\)). It is easy to see that for any left cell \(I\) of \(W\), \(J_{I \cap I^{-1}}\) is a based ring, the definition of \(J_{I \cap I^{-1}}\) is similar to that of \(J_c\).

1.7. Let \(J_{\mathcal{A}} = J \otimes \mathcal{A}\). The map \(C_w \mapsto \sum_{d \in \mathcal{A}, d \in \lambda} h_{w, d, z} t_z\) defines an algebra homomorphism \(\phi'\) from \(\mathcal{H}\) to \(J_{\mathcal{A}}\) which is injective (loc. cit.). Therefore map \(C_w \mapsto \sum_{d \in \mathcal{A}_0} h_{w, d, z} t_z\) gives an algebra homomorphism \(\phi\) from \(\mathcal{H}\) to \(J_0 \otimes \mathcal{A}\).

1.8. Similarly for \((W', S')\) we can define its Hecke algebra \(\mathcal{H}'\) over \(\mathcal{A}\) and define its based ring \(J'\), which can be regarded as subalgebras of \(\mathcal{A}\) and \(J\) in a natural way, respectively. We have \(\phi'(\mathcal{H}') \subset J' \otimes \mathcal{A} = J_{\mathcal{A}}\).

1.9. Let \(G'\) be a reductive complex algebraic group which acts algebraically on a finite set \(Y\). A \(G'\)-equivariant complex vector bundle \((= G'-\text{v.b.})\) \(V\) on \(Y\) then is just a collection of finite dimensional complex vector spaces \(V_y\) \((y \in Y)\) with a given rational representation of \(G'\) on \(\bigoplus_{y \in Y} V_y\) and \(gV_y = V_{gy}\) for all \(g \in G', y \in Y\). The direct sum of \(G'\)-v.b. can be defined naturally and the Grothendieck group \(K_{G'}(Y)\) of the category of \(G'\)-v.b. on \(Y\) then is well defined. The set \(\mathcal{F}\) of isomorphism classes of irreducible \(G'\)-v.b. on \(Y\) is a basis of \(K_{G'}(Y)\). For any \(y \in Y\) let \(G'_y\) be the stabilizer of \(y\) in \(G'\). It is easy to see that there exists a bijection between \(\mathcal{F}\) and the set of pairs \((y, \rho)\) where \(y \in Y, \rho \in \text{Irr} G'_y\) (the set of isomorphism classes of irreducible rational representations of \(G'_y\)), modulo the obvious action of \(G'_y\).

Let \(Y\) be a \(G'\)-set (i.e., \(G'\) has an algebraic action on \(Y\)). Then \(Y \times Y\) is also a \(G'\)-set. \(K_{G'}(Y \times Y)\) is a based ring if we define the multiplication \(*\) in \(K_{G'}(Y \times Y)\) by setting \((V_1 * V_2)_{(y_1, y_2)} = \bigoplus_{y \in Y} V_1(y_1, y) \otimes V_2(y_2, y)\) for any \(V_1, V_2 \in K_{G'}(Y \times Y)\) and define \(\tilde{\mathcal{F}} (y_1, y_2) = V_1^{*}(y_1, y_2)\) (the complex dual of \(V_1(y_1, y_2)\)). In this case we have \(\Theta = \text{the set of isomorphism classes of irreducible } G'\text{-v.b. on } Y \times Y\) and \(\Theta_0 = \{V \in \Theta | V(y, y) = \mathbb{C} \text{ for some } y \in Y\}\).

When \(G'\) is connected then any algebraic action of \(G'\) on a finite set has to be trivial. In this case \(\mathcal{F}\) has a bijection with the set of pairs \((y, \rho)\) where \(y \in Y, \rho \in \text{Irr} G'\).

Now we can state our main result of this paper.

Theorem 1.10. Let \(G\) be as in 1.2, \(Y\) a \(G\)-set, and \(|Y| = |W_0|\). Then \(J_0\) and \(K_G(Y \times Y)\) are isomorphic as based rings; i.e., there exists a bijection \(\psi: \{t_w|w \in c_0\} \rightarrow \{\text{isomorphism classes of irreducible } G\text{-v.b. on } Y \times Y\}\) such
that \(\psi \) gives rise to an isomorphism of rings \(\psi: J_0 \rightarrow K_0(Y \times Y) \) and
\(\psi(t_{w^{-1}}) = \overline{\psi(t_w)} \) for any \(w \in c_0 \).

Corollary 1.11. For any \(y \in Y \) let
\[
\Gamma_y = \{ w \in c_0 | \psi(t_w)(y', y) \neq 0 \text{ for some } y' \in Y \}
\]
\[
\Gamma'_y = \{ w \in c_0 | \overline{\psi(t_w)(y, y')} \neq 0 \text{ for some } y' \in Y \}.
\]

Then \(y \rightarrow \Gamma_y \) (resp. \(y \rightarrow \Gamma'_y \)) gives a bijection between \(Y \) and the set of left (resp. right) cells in \(c_0 \) and \(J_{r_1 \cap r_1^{-1}} \cong R_G \), the ring of rational representations of \(G \).

Proof. These statements follow from \(t_w t_u \neq 0 \) if and only if \(w \sim_L u^{-1} \) and \(K_0(\{ y \} \times \{ y' \}) \) is isomorphic to \(R_G \).

2. THE GEOMETRIC REALIZATION OF \((W', S)\)

In this section we shall give a geometric realization of \((W', S)\) following [2] and prove some results which are crucial for our proof of Theorem 1.10.

2.1. Consider the real space \(E = X \otimes \mathbb{R} \). Let \(\alpha^\vee \in \text{Hom}(X, \mathbb{Z}) \) be the coroot corresponding to \(\alpha \in \mathfrak{g} \). For any \(\alpha \in \mathfrak{h}^+ \), \(n \in \mathbb{Z} \), let \(H_{\alpha, n} \) be the hyperplane \(\{ e \in E | \langle e, \alpha^\vee \rangle = n \} \) and let \(E_{\alpha, n} \) be the half-space \(\{ e \in E | \langle e, \alpha^\vee \rangle > n \} \), \(E_{\alpha, n}^- \) the half-space \(\{ e \in E | \langle e, \alpha^\vee \rangle < n \} \), respectively. The hyperplane \(H_{\alpha, n} \) determines a reflection \(\sigma_{\alpha, n} \) of \(E \) by \(\sigma_{\alpha, n}(e) = e - (\langle e, \alpha^\vee \rangle - n) \alpha \). All such reflections generate an affine motions group \(A \) of \(E \) and \(A \) acts simply transitively on the set \(M \) of the connected components of \(E - \bigcup_{\alpha \in \mathfrak{h}^+, \ n \in \mathbb{Z}} H_{\alpha, n} \). These connected components are called alcoves. We shall regard \(A \) acting on the right on \(M \) or \(E \).

Each alcove has \(k + 1 \) faces (facets with codimension 1), where \(k = |A| \). Then the set \(S_1 \) of \(A \)-orbits of faces consists of \(k + 1 \) elements. For each element \(r_1 \in S_1 \), we define a permutation of \(M \) and denote it yet by \(r_1 \): for any alcove \(A \in M \) we set \(r_1 A \) to be the unique alcove which is not equal to \(A \) and has a common face of type \(r_1 \) with \(A \). \(r_1 \) is an involution. All such involutions generate a permutation group \((W_1, S_1)\) of \(M \) which is an affine Weyl group and is isomorphic to \((W', S)\). We shall equal \((W_1, S_1)\) and \((W', S)\).

A point \(v \in E \) is called a special point if there are \(v \) hyperplanes in \(\{ H_{\alpha, n} | \alpha \in \mathfrak{h}^+, \ n \in \mathbb{Z} \} \) passing \(v \). The original point 0 is a special point. Let \(\mathcal{C}_0 = \{ e \in E | \langle e, \alpha^\vee \rangle > 0 \text{ for any } \alpha \in \mathfrak{h}^+ \} \). It is a quarter with vertex 0. For any special point \(v \) let \(\mathcal{C}_v \) be the unique quarter such that \(\mathcal{C}_0 \) is a translate
of \(C_0 \) and \(v \) is the vertex of \(C_v \). Let \(A_v \) be the unique alcove contained in \(C_v \) with closure containing \(v \). The connected components of \(E - \bigcup_{x \in A, n \in \mathbb{Z}} H_{a,n} \) are called boxes. For each special point \(v \) there exists a unique box \(\Pi_v \) such that \(A_v \subset \Pi_v \). Let \(W_v \) be the subgroup of \(W' \) stabilizing the set of alcoves with closure containing \(v \). Then for any \(w \in W' \) one has \(wA_v \subset C_v \) if and only if \(l(ww_v) = l(w) + l(w_v) \), where \(w_v \) is the longest element of \(W_v \).

2.2. We introduce a partial order \(\leq \) on \(M \). Let \(A, B \in M \) be alcoves. For any hyperplane \(H_{a,n} (a \in \mathbb{R}^+, n \in \mathbb{Z}) \) separating \(A \) and \(B \) we count 1 if \(A \) is in \(E_{a,n}^- \) and count \(-1 \) if \(A \) is in \(E_{a,n}^+ \). The sum of these \(\pm 1 \) over all hyperplanes \(H_{a,n} (a \in \mathbb{R}, n \in \mathbb{Z}) \) separating \(A \) and \(B \) is denoted by \(d(A, B) \). We say that \(A \leq B \) if there exists a sequence of alcoves \(A = A_0, A_1, \ldots, A_m = B \) such that for any \(i \) \((1 \leq i \leq m) \) we have \(d(A_{i-1}, A_i) = 1 \) and \(A_i = A_{i-1} \sigma_{H_i} \) for some \(H_i \in \{ H_{a,n} | a \in \mathbb{R}, n \in \mathbb{Z} \} \).

2.3. Let \(A \in M \), we set

\[L(A) = \{ r \in S | A \subset C_v \) and \(rA \notin C_v \) for some special point \(v \} \). \]

Let \(\mathcal{M} \) be the free \(\mathcal{A} \)-module with basis \(M \). \(\mathcal{M} \) has an unique \(\mathcal{H}' \)-module structure such that

\[T_r A = rA \quad \text{if} \quad r \notin L(A) \]
\[T_r A = q^2 rA + (q^2 - 1)A \quad \text{if} \quad r \in L(A). \]

Let \(w \in W' \), \(A \in M \), \(T_w A = \sum_{B \in M} \pi_{w,A,B} B \). It is easy to see that if \(\pi_{w,A,B} \neq 0 \) then \(\pi_{w,A,B} \) is a polynomial in \(q \) (in fact in \(q^2 \)) with positive leading coefficient (the coefficient of the highest power of \(q \) in \(\pi_{w,A,B} \)).

We shall need some results due to Lusztig.

Proposition 2.4 (see [2, 4.2]). Let \(A \in M \) be such that \(\overline{A} \ni v \) a special point of \(E \). If \(wA_v \subset C_v \), then \(\deg \pi_{w,A,B} \leq d(B, wA_v) \), and if \(\deg \pi_{w,A,B} = d(B, wA_v) \) then \(B = wA_v \lambda \) for some translation \(\lambda \) in \(\Lambda \).

2.5. Let \(v \in E \) be a special point and let \(w \in W' \) be such that \(wA_v \subset C_v \).

We set

\[E_w = q^{-l(w)} \sum_{u \leq _{ww_v} \in \mathbb{Z}} P_{ww_v} T_u. \]

It is easy to check that \(E_w C_{w_v} = C_{ww_v} \).

Let \(A_v^- = w_v A_v \). If \(wA_v \subset C_v \), then

\[D_C = q^{l(wv)} C_{wv} A_v^- = \sum_{A \in M} Q_A \cdot A \]
has the following properties (see [2, 5.2]):

(a) \(Q_{A,C} \neq 0 \) implies that \(A \leq C \).

(b) If \(A \leq C \) then \(Q_{A,C} \) is a polynomial of degree \(\leq d(A,C) - 1 \) if \(A \neq C \), and \(Q_{C,C} = 1 \).

Note that \(D_C = q^{(w_0 E_w D_A, w \in W', wA_c \subset \Pi_v, C = wA_v}.

Let \(h \) be the anti-isomorphism of \(A \) defined by \(h(T) = T^{-1} \) \(u \in W \) and let \(F_w = h(E_w) \) if \(w \in W' \), \(wA_c \subset \mathcal{C}_w \). We then have \(C_{w_f} F_w = h(E_w C_{w_f}) = h(C_{w_f}) = C_{w_f}^{-1} \).

Proposition 2.6 (see [2, 5.4]). Let \(v, u \in E \) be a special point and \(w \in W' \) be such that \(uA_v = C \in \mathcal{C}_w \). Then,

\[
q^{(w_0 v) A_v^-} = \sum_B n_B q^{d(B, C)} D_B,
\]

where \(n_B = \sum A \in B \) are determined by \(\pi_{A,B} = n_B q^{d(B, C)} + \) lower power terms,

\[
T_u \sum_{A \in B} A = \sum_B \pi_{A,B} B, \pi_{A,B} \in A.
\]

The following lemma is a key to Theorem 1.10.

Lemma 2.7. Let \(v, u \) be as in 2.6. Suppose that \(uA_v = A_v' \), i.e., \(uA_v \) is the translate of \(A_v \). Let \(w \in W' \) be such that \(wA_v \subset \mathcal{C}_w \). Then, \(C_{w_f} A_{w_f} = C_{w_f} \).

Proof. Let \(T_u \sum_{A \in v} A' = \sum_B \pi_{u,B} B \) and \(\pi_{u,B} = n_B q^{d(B, C)} + \) lower power terms, where \(C = uA_v = A_v' \). By 2.6 then we have

\[
q^{(w_0 v) A_v^-} = \sum_B n_B q^{d(B, C)} D_B.
\]

Using 2.4 we see that if \(n_B \neq 0 \) then \(B = C A \cdot A = A \cdot A \) for some translation \(A \in A \). Hence we have \(wB \subset \Pi_v \) since \(wA_v \subset \Pi_v \). Applying 2.5 we obtain

\[
q^{(w_0 v) E_w C_{w_f} A_{w_f}^{-}} = \sum_B n_B q^{d(B, C)} D_{w_B}.
\]

Let \(D_{w_B} = \sum A^{w_B} Q_{A,w_B} A \), then \(\deg Q_{A,w_B} \leq d(A, wB) - 1 \) if \(A \neq wB \) and \(Q_{wB,w_B} = 1 \). Let \(C' = wC = wuA_v \), then \(d(B, C) = d(wB, wC) = d(wB, C') \) if \(n_B \neq 0 \). Thus in the expression \(q^{(w_0 w_0 v) E_w C_{w_f} A_{w_f}^{-}} = \sum A \pi_A A \) we have \(\deg \pi_A \leq d(A, C') \) and \(\deg \pi_A = d(A, C') \) if and only if \(A \neq wB \) for some \(B \) with \(n_B \neq 0 \). In this case we have \(\pi_A = n_B q^{d(A, C')} + \) lower power terms. Therefore we can describe \(n_B \) as the coefficient of \(q^{d(A, C')} \) in \(\pi_A \) for some \(A \in M \).

On the other hand, we have \(T_{w_0} \sum_{A \in v} A' = T_{w} \sum_B \pi_{u,B} B = \sum_A \pi_A A \). If
deg $\pi_{u,B} = d(B, C)$ then $B = A;\lambda$ for some translation $\lambda \in A$, hence one knows that $T_u, B = wB$. Note that $\pi_{w', B', B'}$ has a positive leading coefficient for any $w' \in W'$, $B', B'' \in M (2.3)$ and that the Kazhdan–Lusztig polynomial $P_{w', w''}$ has non-negative coefficients for any $w', w'' \in W$. According to the above description of n_B we see that $\deg \pi_A \leq d(A, C')$ and $\deg \pi_A = d(A, C')$ if and only if $A = wB$ for some B with $n_B \neq 0$, and π_A has leading coefficient n_B in this case. By 2.6 we have the equality

$$E_w C_{uw_v} A_v^- = C_{uw_v} A_v^-.$$

The lemma therefore can be deduced from the following result.

Lemma 2.8. Let $v \in E$ be a special point and let $U_v = \{ u \in W' | l(uw_v) = l(u) + l(w_v) \}$, then $\sum_{u \in U_v} a_u C_{uw_v} A_v^- = \sum_{u \in U_v} b_u C_{uw_v} A_v^- \quad \text{(finite sums)}$ implies that $\sum_{u \in U_v} a_u C_{uw_v} = \sum_{u \in U_v} b_u C_{uw_v}$.

Proof: Let u_0 be an element in $\{ u \in U_v | a_u \neq 0 \text{ or } b_u \neq 0 \}$ with maximal length, then

$$\sum_{u \in U_v} a_u C_{uw_v} A_v^- = a_{u_0} u_0 A_v + \sum_{u \in A_v \neq B} a_B B = b_{u_0} u_0 A_v + \sum_{u \in A_v \neq B} b_B B.$$

Hence $a_{u_0} = b_{u_0}$. Using induction on $l(u_0)$ we see that the lemma holds.

Theorem 2.9. Let w, u, v be as in 2.7. Let $w' \in W'$ be such that $w'A_v \in c_v$, then $E_w C_{uw_v} F_{w'} = C_{uw_v} F_{w'}$.

Proof: (1) For any $x \in W$, set $\tilde{T}_x = q^{-l(x)} T_x$. Let $x, y \in W$, write that

$$\tilde{T}_x \tilde{T}_y = \sum_{z \in W} f_{x,y,z} \tilde{T}_z, \quad f_{x,y,z} \in A.$$

Then we have

(a) $f_{x,y,z}$ is a polynomial in $q - q^{-1} = \xi$ with non-negative integer coefficients and $\deg \xi f_{x,y,z} \leq v$ (see [4, 1, Theorem 7.2]).

Let $f_{x,y,z} = \gamma_{x,y,z} \xi^r + \text{lower degree terms}$, then we have

(b) If $x, y, z \in c$, then $\gamma_{x,y,z} = \gamma_{x', y', z'}$ (see [4, I, 5.2 and 7.10]). Let $x, y \in c_0, z \in W$ be such that $l(xz^{-1}) = l(x) + l(z)$ and $l(zy) = l(z) + l(y)$, then

$$\tilde{T}_{xz^{-1}} \tilde{T}_{zy} = \tilde{T}_x (\tilde{T}_{z^{-1}} \tilde{T}_z) \tilde{T}_y$$

$$= \tilde{T}_x \left(\sum_{z' \in \Xi_{x^{-1}, z, z'}} \tilde{T}_{z'} \right) \tilde{T}_y.$$
Note that $f_{z^{-1},z,e} = 1$, by (a) and (b) we see that
\[(c) \quad \gamma_{z^{-1},z,e} = 1, \quad \gamma_{z^{-1},z,e} = 1, \quad \gamma_{z^{-1},z,e} = 1, \quad \gamma_{z^{-1},z,e} = 1.
\]
It is easy to see that
\[(d) \quad \gamma_{w_z, w_e, w_e} = 1.
\]
(2) We have
\[(d') \quad E_w C_{uw_1} C_{w_2} F_w = C_{uw_2} C_{w_1 w'_1} \quad (2.7, 2.5) = \sum_{z} h_{wwzw, w'w'_1w^{-1}z} C_z \quad (1.4).
\]
Because $w'w_2w'_1$ is a distinguished involution of W (see [6, II, Theorem 6.1]), we know that
\[(e) \quad \gamma_{wwzw, w'_1w'_1w^{-1}z} \neq 0 \quad \text{if and only if} \quad z = wuw_z w'_1w^{-1}, \quad \text{and in this case} \quad \gamma_{wwzw, w'_1w'_1w^{-1}z} = 1 \quad \text{(see [4, II, 1.4 and 1.8]).}
\]
By (b), (d), and (e) we see that
\[(f) \quad \gamma_{wwzw, w'_1w'_1w^{-1}z} \neq 0 \quad \text{if and only if} \quad z = wuw_z w'_1w^{-1}.
\]
That is equivalent to saying that
\[(g) \quad \deg h_{wwzw, w'_1w'_1w^{-1}z} = v \quad \text{if and only if} \quad z = wuw_z w'_1w^{-1}.
\]
(3) We have
\[(h) \quad E_w C_{uw_2} C_{w_3} F_w = q^{-v}(\sum_{w
 This is a proof of the theorem.

2.10. Let $u \in E$ be a special point and let $X_u^+ = \{x \in X | l(w,x) = l(w) + l(x)\}$. For any $x \in X_u^+$ there exist some $\omega \in \Omega$, $u \in U_v$ such that $w_x w_u = \omega u$. It is obvious that $uA_v \subset C_v$ is a translate A_v' of A_v. Let $w, w' \in W'$ be such that $w_A \subset \Pi_v, w' A_v \subset \Pi_v$, then we have the following

Corollary 2.11. In the setup of 2.10, we have $E_w C_{w_2} F_w = C_{w_1 w'w^{-1}}$.

Proof. Note that $w_x w_u = \omega u$ and one knows that $(\omega^{-1} w \omega) A_v \subset \Pi_v$.

Hence

\[E_w C_{w,x} F_{w'} = E_w T_\omega C_{w,w_x} F_{w'} = T_\omega E_{\omega^{-1} w_0} C_{w,w_x} F_{w'} = T_\omega C_{\omega^{-1} w_0 w_x,w'}^{-1} \]

(2.9)

\[= C_{w_0 w_x w^{-1}} = C_{w_0 x w'}^{-1}. \]

The corollary is proved.

3. THE CENTER OF \(J_0 \)

In this section we describe the center of \(J_0 \) explicitly.

3.1. For any \(x \in X \) we choose \(x', x'' \in X^+ = X^+_0 \) such that \(x = x' x'' \) and then define \(\bar{\gamma}_x = q^{l(x')} T_x (q^{l(x')} T_x)^{-1} \). \(\bar{\gamma}_x \) is independent of the choices of \(x' \) and \(x'' \). We denote the conjugacy class of \(x \in X \) in \(\mathcal{W} \) by \(\mathcal{O}_x \), and let \(z_x = \sum_{x' \in \mathcal{O}_x} \bar{\gamma}_{x'} \). Then the additive subgroup \(Z \) of \(\mathcal{H} \) generated by \(\{ z_x | x \in X \} \) is a free abelian group and \(Z \otimes \mathcal{A} \) is just the center of \(\mathcal{H} \). Note that \(z_x \), \(x \in X^+ \) is a basis of \(Z \). For any \(x \in X^+ \) let \(V(x) \) be the unique (up to isomorphism) rational irreducible representation of \(G \) with the highest weight \(x \). Denote \(d(x',x) \) as the dimension of the \(x' \)-weight space \(V(x)_{x'} \) of \(V(x) \). Then \(S_x = \sum_{x' \in X^+} d(x',x) z_{x'} \), \(x \in X^+ \) is another basis of \(Z \).

3.2. Let \(\sigma \in \mathcal{W} \) be the set \(\{ \omega w | \omega \in \Omega, w \in \mathcal{W}' \text{ and } w A_0 \subset \Pi_0 \} \). Then

\[c_0 = \{ \omega w_0 w^{-1} | \omega \in \Omega, u \in U_0, w \in \sigma \} \quad \text{(see [6, 1])}, \]

where \(w_0 \) is the longest element in \(W_0 \). For any \(\omega \in \Omega, u \in U_0 \), there exists unique \(w' \in \sigma, x \in X^+ \) such that \(\omega u = w' w_0 x w_0 \). Hence

\[c_0 = \{ w' w_0 x w^{-1} | w', w' \in \sigma, x \in X^+ \}. \]

Each element in \(c_0 \) has a unique expression of the form \(w' w_0 x w^{-1} \).

Let \(z_1 = w_1' w_0 x w_1^{-1}, z_2 = w_2' w_0 x w_2^{-1} \), \(w_i, w_i \in \sigma \) \((i = 1, 2)\), \(x, x' \in X^+ \). Then \(z_1 \sim L z_2 \) if and only if \(w_1 = w_2 \) (see [6, II]). As a result one has \(z_1 \sim L z_i^{-1} \) if and only if \(w_1 = w_i' \).

For any \(w = \omega w_1, \omega \in \Omega, w_1 \in \mathcal{W}', \) and \(w_1 A_0 \subset \Pi_0 \) we set \(E_w = T_\omega E_{w_1} \) and \(F_w = h(E_w) = F_{w_1} T_\omega^{-1} \). Then Corollary 2.11 can be re-expressed as follows.

Lemma 3.3. Let \(w, w' \in \sigma, x \in X^+ \), then \(E_w C_{w_0,x} F_{w'} = C_{w_0 x w^{-1}} \).

Lemma 3.4. Let \(x \in X^+ \), \(w, w' \in \sigma \), then \(S_x C_{w_0,x} = C_{w_0 x w^{-1}}. \)
Proof. By 3.3 we see that $S_x C_{w_0 w^{-1}} = E_w S_x C_{w_0 F_w}$. But $S_x C_{w_0} = C_{w_0 x}$ (see [3, 8.6]). Hence $S_x C_{w_0 w^{-1}} = E_w C_{w_0 x} F_w = C_{w_0 x w^{-1}}$ (3.3). The lemma is proved.

3.5. Let $v \in E$ be a special point and let $w, w' \in W'$ be such that $w A_v \subset \Pi_v$, $w' A_v \subset \Pi_v$. Let $x \in X^+$. Note that there exists $\omega \in \Omega$ such that $w_v = \omega^{-1} w_0 \omega$ and $\omega x w^{-1} \in X^+$ one has $S_{\omega x w^{-1}} C_{w w_0 w^{-1}} = C_{w w_0 x w^{-1}}$ by 3.4.

Theorem 3.6. $\phi(Z)$ is just the center of J_0. Let Γ be a left cell in c_0 and $d \in \Gamma$ be a distinguished involution, then $\phi(Z) d = J_{\Gamma \cap \Gamma^{-1}}$.

Proof. First we know that $\phi(Z)$ is in the center of $J_0 \otimes \mathcal{A}$ (see [4, III]). Note that $\mathcal{O}_0 = \{w w_0 w^{-1} | w \in \sigma\}$ (see [6, II, Theorem 6.1]). By the definition of ϕ and 3.4 we have

$$\phi(S_x) = \sum_{w \in \sigma} t_{w w_0 w^{-1}} \in J_{\Gamma}, \quad x \in X^+.$$

Now let $b = \sum_{u} a_u t_u$ be in the center of J_0. We need to prove that b is a linear combination of some $\phi(S_x), x \in X^+$. Suppose that $a_u \neq 0, u \in c_0$. Choose $d \in \mathcal{O}_0$ such that $d \sim_L u$, then t_d appears in $t_{u^{-1} b}$ with coefficient $a_u \neq 0$. But $t_{u^{-1} b} = b t_{u^{-1}}$, hence $d \sim_L u^{-1}$. Thus $u \sim_L u^{-1}$ and there exist some $w \in \sigma, x \in X^+$ such that $u = w w_0 x w^{-1}$. Let $u' = w' w_0 x w'^{-1}, w' \in \sigma$, we assert that $a_{u'} = a_u$. In fact let $u_1 = w w_0 x w_{1}^{-1}$, then $t_{w w_0 x w_{1}^{-1}}$ appears in $b t_{u_1}$ with coefficient a_u and appears in $t_{u_1} b$ with coefficient $a_{u'}$. Therefore b is a linear combination of some $\phi(S_{x'}), x' \in X^+$. The first assertion is proved. The second one follows from the explicit expression of $\phi(S_x)$ and 3.2.

4. The Proof of Theorem 1.10

4.1. Let $x, x', x'' \in X^+$, we denote $m(x, x', x'')$ as the multiplicity of $V(x'')$ appearing in the tensor product $V(x) \otimes V(x')$. Then $S_x S_{x'} = \sum_{x'' \in X^+} m(x, x', x'') S_{x''}$.

Lemma 4.2. Let $w_1 = w w_0 x w^{-1}, w_2 = w w_0 x' w^{-1}, w \in \sigma, x, x' \in X^+$. Then $\gamma_{w_1, w_2, w_3} \neq 0, w_3 \in c_0$, implies that $w_3 = w w_0 x'' w^{-1}$ for some $x'' \in X^+$ and in this case we have $\gamma_{w_1, w_2, w_3} = m(x, x', x'')$.

Proof. If $\gamma_{w_1, w_2, w_3} \neq 0$ then $w_3 \sim_L w_2, w_3^{-1} \sim_L w_1^{-1} \sim_L w_2$. Hence $w_3 \sim_L w_1^{-1}$ and $w_3 = w w_0 x'' w^{-1}$ for some $x'' \in X^+$ (3.2). $\gamma_{w_1, w_2, w_3} = m(x, x', x'')$ follows from 3.4, 4.1, and ϕ is an algebra homomorphism from \mathcal{A} to $J_0 \otimes \mathcal{A}$.
Corollary 4.3. Let \(w_i \in \sigma, \; i = 1, 2, 3, 4, \; x, x' \in X^+ \) and let \(u_1 = w_1 w_3 w_2^{-1}, \; u_2 = w_3 w_0 x' w_4^{-1} \). Then

(a) \(\gamma_{u_1, u_2, u_3} = 0 \) for any \(u_3 \in c_0 \) if \(w_2 \neq w_3 \).

(b) If \(w_2 = w_3 \) and \(\gamma_{u_1, u_2, u_3} \neq 0 \) then \(u_3 = w_1 w_0 x'' w_4^{-1} \) for some \(x'' \in X \) and \(\gamma_{u_1, u_2, u_3} = m(x, x', x'') \).

Proof. (a) follows from \(u_1 \not\sim u_2^{-1} \).

Now suppose that \(w_2 = w_3 \). Let \(u_1' = w_0 x w_2^{-1}, \; u_2' = w_2 w_0 x', \) then \(h_{u_1', u_2', u_3'} \neq 0 \) implies that \(u_3' = w_0 x'' \) for some \(x'' \in X^+ \) since \(u_3' \sim u_2' \) and \(u_3' \sim_R u_1' \). Using 4.2 we see that \(\gamma_{u_1', u_2', u_3'} = m(x, x', x'') \). By 3.3 we know that \(h_{u_1, u_2, u_1 w_0 x'' w_4^{-1}} = h_{u_1, u_2, u_3'} \). The corollary is proved.

4.4. Proof of Theorem 1.10. Let \(Y = \sigma, \) then \(|Y| = |W_0| \). Let \(G \) act on \(Y \) trivially. For any \(u \in c_0, \; u = w w_0 x w' w^{-1}, \) \(w, w' \in \sigma, \; x \in X^+ \), let \(V(u) \) be the unique irreducible \(G \)-v.b. on \(Y \times Y \) such that \(V(u)(w, w') = V(x) \). The map \(t_u \rightarrow V(u) \) defines a bijection between the set \(\{ t_u | u \in c_0 \} \) and the set of isomorphism classes of irreducible \(G \)-v.b. on \(Y \times Y \). By 4.3 we know that the bijection gives rise to an isomorphism \(\psi \) of rings between \(J_0 \) and \(K_G(Y \times Y) \). \(\psi(t_u \cdot v) = \overline{V(u)} \) follows from \(V(x)^* = V(w_0 x w_0^{-1}) \). The theorem is proved.

4.5. Let \(r_0 \) be the unique simple reflection of \(W' \) which doesn't belong to \(W_0 \). For any two-sided cell \(c \neq \{ e \} \) of \(W_0 \), there is a unique left cell \(\Gamma \) in \(c \) such that \(ur \leq u, \; u \in \Gamma, \; r \in S \) implies that \(r = r_0 \) (see [5]). If \(c = \{ e \} \), let \(\Gamma = c \). Then the element \(u \in \bigcup \Gamma_c \cap \Gamma_c^{-1} \) is just the shortest one in the double coset \(W_0 u W_0 = W_0 x W_0, \; x \in X^+ \). Thus \(\bigcup \Gamma_c \cap \Gamma_c^{-1} \) has a bijection with \(X^+ \). Let \(x_1, x_2, ..., x_k \) be basic weights; i.e., \(x_1, x_2, ..., x_k \) generate \(X \) and \(\langle x', x_i \rangle > 0 \) for all \(x \in A \) except one \(x \in A \) and \(\langle x', x_i \rangle = 1 \).

Proposition 4.6. In the setup of 4.5, we have \(u \in c_0 \) if and only if \(x_i^{-2} x \in X^+ \) for all basic weights \(x_i \).

Proof. Assume that \(u \in \Gamma_{c_0} \cap \Gamma_{c_0}^{-1} \), then \(u = w w_0 x' w^{-1} \), for some \(w \in \sigma, \; x' \in X^+ \). Since \(ur \leq u, \; r \in S \) implies that \(r = r_0 \), \(w \in \sigma \) is an element in \(\sigma \) with maximal length. Hence \(w = x_1 x_2 ... x_k w_0 \), and \(u = x_1^2 x_2^2 ... x_k^2 x' w_0 \). So \(x = x_1^2 x_2^2 ... x_k^2 x' \). The proposition is proved.

5. The Representations

In this section we give some discussions on the representations of \(J_0 = J_0 \otimes \mathbb{C}, \; K_G(Y \times Y) = K_G(Y \times Y) \otimes \mathbb{C}, \) and \(J_{\Gamma} \cap \Gamma^{-1} = J_{\Gamma} \cap \Gamma^{-1} \otimes \mathbb{C}, \; \Gamma \) a left cell in \(c_0 \).
5.1. We recall some results about the representations of J_0 and $K_G(Y \times Y)$ due to Lusztig. The reference is [4, III and IV].

It is known that the isomorphism classes of irreducible representations of J_0 has a bijection with the set of pairs (s, ρ) modulo the action of G, where $s \in G$ is a semisimple element and ρ is an irreducible representation of $A(s) = Z_G(s)/Z_G(s)''$ appearing in some $H^{2i}(\beta^i, \mathbb{C})$, here β^i is the variety of Borel subgroups of G containing s. Now G is simply connected, almost simple, hence $A(s) = \{e\}$ and ρ is always a unit representation. Thus the set of isomorphism classes of irreducible representations of J_0 has a bijection with the set of semisimple conjugacy classes of G. Let $E(s)$ be the irreducible module of J_0 corresponding to the conjugacy containing s. Then $E(s)$ can be described as the unique irreducible module of J_0 with $\phi(S_x)$ acting on it by scalar $\text{tr}(s, V(x))$.

Let Y be as in 4.4. Let \mathcal{F} be the algebra of \mathbb{C}-valued functions on $Y \times Y$, the multiplication in \mathcal{F} is given by $f * f' (y_1, y_2) = \sum_{y \in Y} f(y_1, y) f'(y, y_2), f, f' \in \mathcal{F}, (y_1, y_2) \in Y \times Y$. For any semisimple element $s \in G$ we have an algebra homomorphism $h_s : K_G(Y \times Y) \to \mathcal{F}$, by associating to each G-vb. V on $Y \times Y$ to the function $f(y, y') = \text{tr}(s, V_{y,y'})$. Let F be the vector space of all functions $Y \to \mathbb{C}$. F becomes an irreducible module of \mathcal{F} if we define $f\mu(y) = \sum_{y' \in Y} f(y, y') \mu(y'), f \in \mathcal{F}, \mu \in F, y \in Y$, which in fact is the unique (up to isomorphism) irreducible of \mathcal{F}. Via homomorphism h_s, F becomes an irreducible module $F(s)$ of $K_G(Y \times Y)$. Mas $s \to F(s)$ gives a bijection between the set of semisimple conjugacy classes of G and the set of irreducible modules (up to isomorphism) of $K_G(Y \times Y)$.

Proposition 5.2. Each irreducible module of J_0 has dimension $|W_0|$. Via the isomorphism $\psi \otimes \text{id} : J_0 \to K_G(Y \times Y)$, $F(s)$ becomes an irreducible module of J_0 which is just $E(s)$.

Proof. The first assertion follows from $|Y| = |W_0|$. The second one follows from the fact that $\psi(\phi(S_x)) (x \in X^+) acts on $F(s)$ by scalar $\text{tr}(s, V(x))$.

5.3. **Remark.** Is it true that any irreducible module of $J_c \otimes \mathbb{C}$ has dimension $\leq |W_0|$ for every two-sided cell c of W?

5.4. For any semisimple element $s \in G$, let I_s be the irreducible module of $Z \otimes \mathbb{C}$ such that $S_x (x \in X^+)$ acts on it by scalar $\text{tr}(s, V(x))$. I_s becomes an irreducible module of $J_{\Gamma \cap \Gamma^{-1}}$ via the isomorphism $\sum_{x \in X^+} S_x \otimes a_x \to \sum_{x \in X^+} \phi(S_x) t_d \otimes a_x$, $a_x \in \mathbb{C}$, here Γ is a left cell in c_0, d is the distinguished involution in Γ. $s \to I_s$ gives a bijection between the set of semisimple conjugacy classes of G and the set of isomorphism classes of irreducible modules of $J_{\Gamma \cap \Gamma^{-1}}$.

481/134/2-8
PROPOSITION 5.5. Let Γ be a left cell in c_0, $d \in \Gamma$ be the distinguished involution, then $t_d E(s) = I_s$.

Proof. It is easy to see that I_s must appear in some $t_d E(s')$ for some semisimple element s' in G. But $t_d E(s')$ is a direct sum of some copies of I_s if $t_d E(s') \neq 0$. Hence $t_d E(s) \neq 0$. Now $E(s)$ has dimension $|W_0|$ and the number of left cells in c_0 is also $|W_0|$. Therefore $\dim t_d E(s) = 1$ and $t_d E(s) = I_s$. The proposition is proved.

ACKNOWLEDGMENT

I wish to thank Prof. G. Lusztig for helpful comments and for pointing out that 5.3 is true according to Matsumoto (LN, 590).

REFERENCES