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Abstract

Entity Resolution, i.e., determining whether two mentions refer to the same entity, is a crucial step in combining evidence from 
multiple sources, and is a problem encountered in a wide-range of areas, from modeling causes of cancer to identifying terrorist 
networks. Entity mentions are represented by attributes and relations to other entities. However, entity attributes and relations 
from different sources often use different names and specify relationships differently, which leads to low entity resolution 
precision and recall. Our contribution is based on our observation that relationships are more reliable than attributes when 
comparison is based on relational similarity, not exact matches. Traditional graph comparison techniques rely on finding precise 
matches of a significant part of the graph structure, and require custom comparison functions for every type of attribute and every
type of relation. This leads to a system that is difficult to maintain and enhance. We encode entity nodes and their graph 
neighborhoods in semantic vectors, efficiently indexing the vectors, and calculating vector similarity. Our approach is insensitive 
to small variations in relational graph representation. Our approach uses simple vector addition, permutation, and difference only, 
leading to reduced computational complexity. Our preliminary experiment shows 83.05% accuracy.
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1. Introduction

Entity Resolution is a crucial step in combining information from multiple sources.  A common use case is fusing 
the information about an entity mentioned in a new report with the information accumulated about the entity in a 
data repository. Most of the relevant entity information can be represented as attributed, relational graphs.  As the 
nodes and links in the graphs are from different resources, the key challenge is to correctly associate new 
observations, which typically only provide a few attributes and/or features in a sparse graph fragment, with nodes 
and links in the graphs are from different resources, the key challenge is to correctly associate new observations, 
which typically only provide a few attributes and/or features in a sparse graph fragment, with the stored entity object 
that has accumulated all attributes and features observed so far. A second challenge is that text-based observations in 
reports or social media and image or video-based observations often arrive out of order due to varying, potentially 
long delays in report generation and exploitation, so that entity resolution decisions may have to be reconsidered and 
sometimes revoked. A third challenge is that some attributes change over time, e.g., people adopt new aliases, join 
different groups.

Our technical approach is to encode graph fragments in high-dimensional semantic vectors that can be rapidly 
indexed and compared, and are insensitive to small variations in graph structure. Our recent research in using 
semantic vectors to encode the meaning and structure of language [1][2][3] initiated the idea of flattening the 
attributes and relationships using a high dimensional vector representation. Our algorithm uses a weighted distance 
function between these vectors to determine the similarity between pairs of nodes. Preliminary results showed that
the vectors correctly represented the graphical structure around a given node. We conducted a preliminary study 
using a small set of sparse, fragmented graphs generated from reports.  The experiment only considered the graph 
structure, i.e., the relationships between entity nodes (ignoring entity attributes), but still achieved 83% accuracy for 
strong matches. For example, it matched a person using two different names because of the consistent relations to 
other people, organizations, and places.

2. Related Research

Traditional graph comparison techniques rely on finding precise matches of a significant part of the graph 
structure. However, different source data will often yield slightly different graphs for the same entity that cannot be 
matched by these techniques. Traditional techniques also require custom comparison functions for every type of 
attribute and every type of relation. This leads to a system that is difficult to maintain and enhance. In contrast, our 
approach is insensitive to small variations in graph representation, e.g., relational structure and relation type, since it 
compares the relational structure of the graphs using a vector space representation. It uses vector distance as a 
generic comparison metric, but we augment the metric for attributes with well-established semantic distance metrics, 
e.g., for location and time attributes. Finally, computational complexity is another challenge for traditional 
approaches. Our approach uses simple vector addition, permutation, and difference only, leading to reduced 
computational complexity.

Fusion of redundant nodes is predicated on a close match of a pairwise comparison of the attributes of the two 
entities.  Text-valued attributes may be compared based on edit distance and numeric attributes based on value 
differences. A simple approach for computing the probability that the pair is a match is to use a weighted sum of the 
individual attribute similarity scores.  Another popular approach is rule based matching tailored to the specific data 
types of the application domain.  This may work well with some specific, narrowly-scoped applications.  However, 
manual formulation of the rule sets is labor-intensive and hard to generalize.  As analysts exploit a greater variety of 
data sources and greater volumes of data, including text and images from open source, traditional techniques are ill 
suited to adapt to changing vocabulary, attributes, and data formats, since the data is more heterogeneous and a large 
percentage is unstructured, incomplete, and of different modalities.  Furthermore, the data are more tightly linked 
and multi-relational (e.g., Walmart, the chain of discount department store or Walmart Pharmacy, the pharmacy 
within Walmart) [4], which further increases the complexity of hand-crafting comparison rules.

Recently, realizing that relationships are crucial, techniques have been developed to include information about 
entity relationships, which show greater robustness [5][6][7][8][9][10].   One of the simplest approaches is to use 
relational features as if they were attributes to provide a richer context for matching.  Examples of such features 
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include attributes of the edge (e.g., label on the edge) or neighboring entity (e.g., name), aggregates of related 
attributes, as well as sophisticated relational features constructed using First Order Logic.  Another approach is to 
use set similarity measures to compare nodes based on a set of related nodes, e.g., comparing neighborhoods with 
overlap, Jaccard coefficient, and average similarities between set members.  Adding relationships to the similarity 
computation has proven to enhance both precision and recall for entity resolution.  

However, most approaches still fail to address some of the challenges described earlier. Most of the performance 
evaluations published use only a static dataset, such as resolving authors based on a bibliography database, where all 
the information associated with each node (author) is available at once.  In a bibliography database, the changes for
each author happen infrequently and revoking an existing relationship is generally not an issue.  In military 
applications, however, information about different entities of interest changes quickly and frequently. This 
information not only includes never-seen-before attributes and relations, but also corrections of previously asserted 
attributes and relations.   Our approach is to encode the attributes of a node and its relationships with its (directly and 
indirectly connected) neighbors into a fixed length N-vector.  This vector is being updated as new information 
regarding the node arrives.  The graph similarity is measured by the similarity of the vectors that encode the graph 
node and edge attributes and topology.  

3. Technical Approach

The idea of our approach is to start with a high dimensional space in which the many different attributes and the 
relationships of an entity with the rest of the graph can be represented.  Then we project these high-dimensional data 
onto a lower-dimensional subspace, an N-dimensional space.  The resulting vectors, encoding the attributes and 
relationships, are stored with each node in the graph. 

Widdows and Cohen [13] gave a detailed description of reasoning with high dimensional vectors.  The core 
concepts and algebraic operations are summarized in the following.

Random vectors can be used to represent concepts
High-dimensional, randomly generated vectors are nearly orthogonal. Thus, the similarity between two 
vectors is near 0.  The aspect of randomly generated vectors makes them discriminative.
Superposing two vectors x and y generates a third vector such that and
are relatively large, indicating similarity. Here, + and are element-wise addition and multiplication. 
This enables retrieving one vector from the sum of vectors by using multiplication of the vector into the 
sum. This allows testing whether a certain attribute is part of an entity vector representation. 
Binding two vectors x and y generates a third vector , such that 

p
and 

are usually near 0.  However, if y and y’ are close to each other, and should be close.
This means that binding two vectors generates a vector that is different from either original vector.  
However, if any two vectors are close in the high dimensional vector space, binding to the same vector 
will not change the closeness of the resulting two vectors. As we will discuss below, the operation of 
binding allows us to represent a value associated with a specific attribute.  As long as the attribute 
values are similar, binding their vector representation with the vector representation of the attribute
name will not diminish their similarity.
There is an inverse of binding, , such that ( ( )) 1, which enables unbinding of 
two vectors (unbinding y from x), resulting in a vector that is very close to the original vector (y). This 
is useful for updating the entity vector with changed attribute values or relations.

For the work described in this paper, we chose a binary form of random vectors, called Random Indexing (RI)
vectors, to encode the node and edge (attributes and relationships) information at each node.  Random Indexing is 
computationally simple and highly scalable, especially compared to techniques that compute semantic vectors by 
training a multi-layer neural network. Our implementation is based on the high dimensional random vector 
techniques described by Kanerva [11].  Encoding of the attributes is realized by the binding operation and simple 
vector addition.  The binding operation is implemented through the XOR logic function ( ). There is another 
reversible operation, vector permutation [12] that we use to represent relationships. A more detailed description of 
our approach follows.
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3.1. Encoding Attributes and Relations of an Entity

To bind a specific value to an attribute, we use vector multiplications.  For example, if A is the vector for an 
attribute, e.g., “name”, and V is the value for the attribute, for example, “Alice”, the resulting vector that represent 
the statement that the name being Alice is defined by . It is important in our application domain that the RI 
vector representation is able to easily change attribute values, for example, a person’s name.  To replace an existing 
value V with a new value V’, we can simply perform (see [11] for mathematical derivation)

(1) 
This simple technique still works when we replace a single attribute value in the composite representation of an 

entity with many attributes. Assuming an entity has n attributes, each with attribute name represented by vector Ni,
and its value, represented by vector Vi, the resulting vector that encodes the multiple attributes of one entity is 
defined by,

(2)

To replace a specific attribute, e.g., V1 with V1’, we plan to perform

(3) 

However, we have not yet explored how to best realize the subtraction operation in the RI framework.  To do this,
we believe that we will need to use real number vectors [13] instead of the binary vectors we have been 
experimenting with.  

To summarize, high dimensional random vectors allow us to
enrich the vector representation of an entity with additional attributes, e.g., adding a new attribute with 

value of as attributes are discovered, by simply adding it to the existing semantic vector

correct erroneous attribute values with new values as discussed above (Equation 3).

To illustrate with an example, an entity Alice with two attributes can be represented in the form of

Alice 
Name Alice 
Affiliation ATL 

(4)

where is the vector representation for the entity Alice and are the vector representation 

denoting attributes of name and affiliation and are the vector representation of the values to these 

attributes.

3.2. Encoding Graph Structures with Permutation

Permutation has been shown to efficiently encode order in a sequence of elements. We use it to encode the graph 
structures centered on an entity by encoding the chain (direct, one-level, two-level connections) of its relationships.
If we permute one of the vectors in a pair of bindings (A*V), e.g., A, we have , where is the 
permutation matrix. Permutation can be easily reversed.

(5)
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Fig 1 An example graph representing the relationships between different entities

We attach the information that an entity has a relationship with another entity similar to how we attach attributes 
and their values, but use vector permutation to indicate the distance of the relationship: a single permutation for a 
direct relationship, a double permutation for a second-level relationship and so on.  Using the example in Fig 1.,
Alice has a direct relationship with entity nodes ATL and HomeA.  She also has a second-level relationship with 
Bob and a third-level relationship with Bob’s HomeB.   We constrain the length of the chain of connections and only 
model relations up to two levels of connection.

(6)

3.3. Preliminary Experiments

In previous research, we experimented with RI encoding of the semantic meanings of words and analyzed the 
results in [1][2][3].  Our next step was to evaluate the performance of using permutation to encode the graph 
structures.  For this experiment, we exclusively represented the relational structure of the subgraph, ignoring the 
attributes, in a single vector per entity. We use the same form of Random Indexing vectors as in [1][2][3].  They are 
sparse high dimensional vectors of elements 0, 1 and -1.

We generated a set of entities from a collection of reports using our Entity Extraction algorithm [14].  Our data 
source contained 79 text reports that mention 32 different persons total.  The only directly available attribute in the 
data for a person is his/her name. We were able to use each person’s unique name as the ground truth, since we only 
used the graph structure, not the attributes, nor the labels of the type of relationships, in this experiment. We classify 
the relationships into two types in this experiment, i.e., positive or negative relationship.  By positive relationship, 
we refer to any relationships with a friendly or neutral sense, such as friend of or work with.  By negative, we refer 
to relationships such as attacked by, etc.  The encoding scheme we use for the example in Fig 1 is as following. 

(7)

With only one type of attribute, we simply chose as an identity vector, such that .
Similarly, with only two types of relationships, we chose the operation of and 
. The relationships in the subgraphs are generated from the events, organizations and places that are described in 
each of the reports.  Due to the limited number of reports, we separated the data (reports) into n sets and used n-fold 
cross-validation to assess the results. Our procedure was:

- Sort the files alphabetically and number them 1 to 79.  
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- Select
The 10 odd files of  file 1-20 (1, 3, 5, … 19)
The 10 even files of file 1-20
The 10 odd files of file 21-40
The 10 even files of file 21-40
etc.

Using the test set, one file at a time, the procedure continued as follows:
1. Run our Entity Extraction (EE) software to extract entities and their relationships.
2. Use one set of the data as test set, build the “base” (comparison) relational graph from the remaining sets
3. Build the semantic vector for each of the observed entities extracted from the file, using the relationships 

extracted from that file only
4. Compute the vector similarity of the observed entity in question with rest of the entities
5. Pick the highest ranked entity in the database (in terms of similarity score) as the candidate for 

resolution
6. If the similarity score > threshold_1, declare that the observed entity is an observation of the highest 

ranked entity
7. If the similarity score is in between threshold_1 and threshold_2, we assume there is a possibility that 

the observed entity is a observation of the highest ranked entity
8. If the similarity score < threshold_2, consider the observed entity an observation of a new entity

Overall, resolution accuracy for matches higher than threshold_1 or lower than threshold_2 is 83.05%, using 
predefined thresholds. 

In the experiment, we only go as deep as 2 levels in entity relationships.  Fig 2 shows an example of subgraphs 
and their similarity scores.  For the two entities, Alice and Elise, if we only look at the first level of connections, the 
two graph structures look very different.  The cosine similarity of the two vectors is 0.4.  However, if we consider 
both level 1 and 2 relationships, the cosine similarity increases as we observe that the two subgraph structure are 
indeed similar if we consider both levels.

Fig 2 Example of subgraphs with their similarity scores  
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The two thresholds were not optimized to fit the experiment.   Due to the small amount of data, the graphs 
generated from one document and even some of the graphs built from multiple documents are very small. In reality,
graphs generated even from large dataset can be very sparse and fragmented. 

The experiments presented here demonstrate the potential applicability of a vector space model to difficult 
entity resolution problems. In our previous and current research, we have studied semantic representations for node 
labels and graph structures.  However, there are many other forms of data that can be associated with an entity,
especially when dealing with reports from multiple sources and in various modalities.   Additional issues include,

Representing numerical values. While names and descriptions are typically represented in textual form,
data, such as details of financial transactions and geographical proximity, are represented by continuous 
numerical values.  Widdows and Cohen [13] discussed techniques to generate vectors that represent 
numeric quantities using orthogonal endpoint vectors and weighted interpolations.
Representing visual information. Vector representation for image and video is a well-studied field. The 
vector encoding technique discussed in this paper is well suited to combine different vectors into a single 
representation.  However, we will likely need to use real or complex vectors [13] instead of a binary vector 
form.

4. Conclusions and Future Research

In this paper, we presented a simple and versatile method to encode entity attributes and relationships with high 
dimensional random vectors.  Our work is motivated by the sparseness and the inconsistencies in large multi-source 
datasets and the resulting complexity of subgraph matching. The main advantage of our technique is the capability 
of adding new as well as revoking outdated or erroneous attributes and relationships. Another advantage is its low 
computational complexity.  Our previous experiments showed Random Indexing vectors capability to encode 
semantic meanings [1][2][3].   In this paper, we presented some preliminary result on using Random Indexing 
vectors with permutation to encode graph structures, i.e., entity relationships.

We have only started to explore the performance of high dimensional random vectors. One future research 
direction is determining how to best initialize and choose the sparseness of the vectors.  When vectors are too sparse, 
multiplications will result in more zeros than desired.  Since the operations are bit-wise, complexity is not an issue.  
However, sparseness is important to energy-efficient implementation in hardware.

Another focus of our future research is in enhancing the robustness of encoding the graph structures.  While 
graph structures are more uniform in databases such as citeseer, etc., graph segments generated from reports by 
different analyst can differ significantly.  We will extend our initial research in using permutation to better handle 
the variations in graph structures with techniques such as N-grams.
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