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a b s t r a c t

We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Opti-
mized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z = 83 (Bi) (excluding
Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calcula-
tion with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function
allows us to use aNelder–Mead optimization algorithmon a training set ofmaterials to optimize the input
parameters of the pseudopotential construction for most of the periodic table. We control the accuracy
of the resulting pseudopotentials on a test set of materials independent of the training set. We find that
the automatically constructed pseudopotentials (http://www.quantum-simulation.org) provide a good
agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff
of approximately 60 Ry.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Pseudopotentials were introduced over three decades ago as
an elegant simplification of electronic structure computations [1].
They allow one to avoid the calculation of electronic states
associated with core electrons, and focus instead on valence elec-
trons that most often dominate phenomena of interest, in par-
ticular chemical bonding. In the context of Density Functional
Theory (DFT), pseudopotentials have made it possible to solve the
Kohn–Sham equations [2,3] using a plane-wave basis set, which
considerably reduces the complexity of calculations, and allows
for the use of efficient Fast Fourier Transform (FFT) algorithms.
The introduction of norm-conserving pseudopotentials (NCPPs) by
Hamann et al. in 1979 [4,5] greatly improved the accuracy of DFT
plane wave calculations by imposing a constraint (norm conser-
vation) in the construction of the potentials, thus improving the
transferability of potentials to different chemical environments.
More elaborate representations of pseudopotentials were later
proposed, most notably ultrasoft pseudopotentials [6] (USPPs) and
the projector augmentedwave [7] (PAW)method, improving com-
putational efficiency by reducing the required plane wave energy
cutoff. The implementation of these PPs is however more com-
plex than NCPPs [8]. In particular for advanced calculations in-
volving hybrid density functionals [9], many-body perturbation
theory [10], or density-functional perturbation theory [11] terms
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treating the additional on-site contributions have to be devel-
oped [12]. Both USPPs and PAWs have been used with great suc-
cess in a large number of computational studies published over the
past two decades. NCPPs were also widely used but suffered from
the need to use a large plane wave basis set for some elements,
especially transition metals.

Recently, Hamann suggested [8] a method to construct opti-
mized norm-conserving Vanderbilt (ONCV) potentials following
the USPP construction algorithm without forfeiting the norm-
conservation. The resulting potentials have an accuracy compa-
rable to the USPPs at a moderately increased plane-wave energy
cutoff.

Since the very first pseudopotentialswere introduced, there has
been an interest in a database of transferable, reference poten-
tials that could be applied for many elements in the periodic table
[5,13,14]. The need for a systematic database in high-throughput
calculations led to a recent revival of this field: Garrity et al. [15]
proposed a new set of USPPs for the whole periodic table except
the noble gases and the rare earths. Dal Corso [16] constructed a
high- and a low-accuracy PAW set for all elements up to Pu. Com-
mon to these approaches is the fact that the input parameters of
the PP construction are selected by experience based on the results
of the all-electron (AE) calculation of the bare atom. The quality of
the constructed PP is then tested by an evaluation of different crys-
tal structures and by comparing to the all-electron FLAPW [17–19]
results. To standardize the testing procedure, Lejaeghere et al. [20]
suggested to compare the area between a Murnaghan fit [21] ob-
tained with the PP and the AE calculation resulting in a quality fac-
tor ∆. Küçükbenli et al. [22] proposed a crystalline monoatomic
solid test, where this quality factor is evaluated for the simple cu-
bic (sc), body-centered cubic (bcc), and face-centered cubic (fcc)

le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/81934620?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cpc.2015.05.011
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.05.011&domain=pdf
http://www.quantum-simulation.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:martin.schlipf@gmail.com
mailto:fgygi@ucdavis.edu
http://dx.doi.org/10.1016/j.cpc.2015.05.011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


M. Schlipf, F. Gygi / Computer Physics Communications 196 (2015) 36–44 37
structure to assess the quality of a PP. There are two improvements
over these construction principles that we propose to address in
this work. First, we introduce a quality function that takes into ac-
count the computational efficiency of the PP aswell as its accuracy.
Second, we allow for a systematic feedback of this quality func-
tion onto the input parameters defining the PP. In this way, we can
introduce an automatic construction algorithm that optimizes the
properties of the PP without bias from the constructor. We apply
this algorithm to construct ONCV pseudopotentials and compare
their performancewith recent USPP [15] and PAW [16] PP libraries.
The pseudopotentials are available in UPF and XML format on our
webpage [23].

This paper is organized as follows: In Section 2, we outline the
properties of the ONCV PPs and introduce the input parameters
that will be optimized by the algorithm. In Section 3, we introduce
the quality function to assess the performance of a PP, specify the
materials we use to construct and test a PP, outline the setting of
the DFT calculation, and finally present the optimization algorithm
that iterates construction and testing until a good PP is found.
We compare the constructed PPs to results obtained with the
FLAPW, the USPP, and the PAW method in Section 4 and draw our
conclusions in Section 5.

2. ONCV pseudopotentials

The optimized norm-conserving Vanderbilt (ONCV) pseudopo-
tentials were recently proposed by Hamann [8]. Here, we briefly
sketch their construction, following Hamann, to highlight the in-
put parameters (bold in text) that determine the properties of the
PP. The general idea is to introduce an upper limit wave vector qc
and optimize the pseudo wave functions ϕi(r) such that the resid-
ual kinetic energy

Eij(qc) =


∞

qc
dqq4ϕi(q)ϕj(q) (1)

above this cutoff is minimized. Here, ϕi(q) is the Fourier transform
of the pseudo wave function

ϕi(q) = 4π


∞

0
drr2 jl(qr)ϕi(r), (2)

jl(qr) a spherical Bessel function, and l the angular momentum
of the pseudo wave function. On the one hand, the cutoff
qc determines which features of the physical potential can be
described by the PP. On the other hand, increasing qc makes the
PP harder and hence more costly to evaluate.

For every angularmomentum, a projector radius rc determines
in which region the pseudoization is done. The projector radius
is approximately inversely proportional to the cutoff qc so that
a smaller value increases the computational cost along with the
accuracy. Outside of this radius the wave function should follow
the true all-electron wave function ψ . To ensure the continuity
at this radius, one imposes M constraints on the continuity of the
pseudo wave function

dnϕ

drn


rc

=
dnψ

drn


rc

, (3)

forn = 0, . . . ,M−1. In thiswork,weuseM = 5 for all constructed
PPs.

The basis set used in the optimization is constructed from
spherical Bessel functions. As the basis functions are only used in-
side the sphere, they are set to zero outside of the projector radius.
This destroys the orthogonality of the basis, so that one needs to
orthogonalize it again. A linear combination of the orthogonalized
basis functions yields a new basis where a single basis function ϕ0
satisfies the constraints in Eq. (3) and for all other basis functions
ξNn the value and the M − 1 derivatives at rc are zero. As a conse-
quence, the sum of ϕ0 and any linear combination of the ξNn will
satisfy the constraints in Eq. (3). It is advantageous to select those
linear combinations of ξNn that have amaximal impact on the resid-
ual energy by evaluating the eigenvalues en and eigenvectors ξRn

ϕi = ϕ0 +

N−M
n=1

xnξRn . (4)

In this work, we construct the PPs with N = 8 basis functions.
Notice that the optimization of the pseudo wave function is per-
formed under the constraint that the norm of the all-electronwave
function is conserved rc

0
drr2


ϕ∗

i (r)ϕj(r)− ψ∗

i (r)ψj(r)


= 0. (5)

From the obtained pseudo wave functions, one can construct
projectors χi

χi(r) = (εi − T − Vloc)φi(r), (6)

where T is the kinetic energy operator. Vloc is the local potential
that follows the all-electron potential outside of rc and is extended
smoothly to the origin by a polynomial. For occupied states εi is the
eigenvalue of the all-electron calculation. For unoccupied states,
one needs to specify this energy shift before the construction of
the PP. Following Ref. [8], we construct two projectors per angular
momentum l ≤ lmax and only the local potential for all l > lmax
above. The projectors define the following nonlocal potential

VNL =


ij

χi

B−1
ij


χj

 (7)

where

Bij =

ϕi

χj

, (8)

which is a Hermitian matrix when normconserving pseudo wave
functions are constructed [6]. One can simplify this potential by a
unitary transformation to the eigenspace of the Bmatrix.

3. Computational details

3.1. Quality function

In order to employ numerical optimization algorithms in the
construction of PPs, we need a function thatmaps themultidimen-
sional input parameter space onto a single number, the quality of
the PP. A good PP is characterized by a small relative deviation

δPPalat = aPPlat/a
AE
lat − 1 (9)

between the lattice constant obtained in the plane-wave PP calcu-
lation aPPlat and in theAE calculation aAElat , respectively. A second crite-
rion is the plane-wave energy cutoff Ecut necessary to converge the
PP calculation. These two criteria competewith each other because
the pseudoization of the potential reduces the necessary energy
cutoff at the cost of a lower accuracy near the nucleus. Hence, we
need to specify a target accuracy δ0 which we want to achieve for
our PPs, i.e., for all materials

δPPalat  ≤ δ0. We select δ0 = 0.2%moti-
vated by the fact that the choice of different codes or input param-
eters in the all-electron calculation may already lead to a relative
error of approximately 0.1%. To discriminate between PPs within
the target accuracy, we include a term∝ 1/Ecut in the quality func-
tion, favoring smoother PPs over hard ones. For PPs that are signif-
icantly outside

δPPalat  > 2δ0 our target accuracy, we only focus on
optimizing the relative deviation by an 1/(δPPalat)

2 term. We choose
a smooth continuation between the two regions, resulting in the
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Fig. 1. (Color online) Quality function for various energy-cutoffs Ecut . For small δ,
it is proportional to 1/Ecut; for large δ proportional to 1/δ2 and independent of Ecut .

function depicted in Fig. 1. The quality function has the following
form

q(δ, Ecut) =


A + Cδ2 + Dδ3 + Eδ4 + Fδ5 δ < 2δ0
(2δ0/δ)2 δ ≥ 2δ0

(10)

with

A = 1 +
1280
Ecut

y0 = 1 +
680
Ecut

C =
32y0 − 16A − 29

4δ30
D =

19A − 48y0 + 54
4δ20

E =
96y0 − 33A − 122

16δ40
F =

5A − 16y0 + 22
16δ50

.

The function can be multiplied by an arbitrary scaling constant,
which we set such that the value of the quality function is 1 atδPPalat  = 2δ0.

3.2. Sets of materials

As the constructed pseudopotentials depend on the set of
materials used in the optimization algorithm, it is important that
the set contain physically relevant environments of the atom.
Furthermore, we select highly symmetric structures with at most
two atoms per unit cell to reduce the computation time. As
representatives of a metallic environment, we select the simple
cubic (sc), the body-centered cubic (bcc), the face-centered cubic
(fcc), and the diamond-cubic (dc) structure. Ionic environments
are provided in a rock-salt or zinc-blende structure, where we
combine elements such that they assume their most common
oxidation state. This leads to a combination of elements from the
lithium group with the fluorine group, the beryllium group with
the oxygen group, and so on. We always use the three smallest
elements of the respective groups to guarantee a variation in size
of the resulting compounds. For the transition metals, several
oxidation states are often possible. Hence, we combine them with
carbon, nitrogen, and oxygen to test these different valencies. As
the noble gases do not form compounds, we test them only in the
sc, bcc, fcc, and dc structure.

Finally, we need to separate these materials into two sets. The
training set consists of the bcc, and the fcc structure as well as
all rock-salt compounds. It is used in the optimization algorithm
to construct the PPs. As the PPs are specifically optimized to
reproduce the structural properties of the training set, we can only
judge if the PPs are highly accurate by calculating an independent
test set. The test set contains the sc and the dc structure as well
as all zinc-blende compounds. In total, the training and test sets
consist of 602materials, where every noble-gas atom is part of four
materials, and every other element is part of at least ten materials.

3.3. Computational setup

All pseudopotentials are constructed using the Perdew–Burke–
Ernzerhof (PBE) generalized gradient density functional [24]. We
use an 8×8×8Monkhorst–Pack k-pointmesh in the AE as well as
in the PP calculation.While thismay not be sufficient to completely
converge the lattice constant with respect to the numbers of
k-points, the errors in the PP and the AE calculation are expected
to be the same, so that we can still compare the results. To ensure
thatmetallic systems converge,weuse a Fermi-type smearingwith
a temperature of 315.8 K corresponding to an energy of 0.001 htr.

For the AE calculation, we use the FLAPW method as imple-
mented in the Fleur code [25]. We converge the plane-wave
cutoff and add unoccupied local orbitals to provide sufficient vari-
ational freedom inside the muffin-tin spheres. The precise nu-
merical values necessary to converge the calculation are different
for every material; all input files can be obtained from our web
page [23]. We obtain the lattice constant by a Murnaghan fit [21]
through 11 data points surrounding the minimum of the total en-
ergy. We converge the AE lattice constant such that the relative
error is at most 0.1%. There are methodological limitations of the
FLAPW method that make a higher accuracy difficult to obtain for
some elements: (i) On the one hand, only core states are treated
fully relativistically. On the other hand, the non-spherical parts of
the potential are only taken into account for valence states. (ii)
Because the plane-waves only exist in the interstitial region, the
maximum number of basis functions is limited to avoid linear de-
pendence of the basis set. (iii) The additional basis functions in the
muffin-tin spheresmust be linearly independent, limiting themin-
imal energy parameter for these functions.

The automatic construction of pseudopotentials requires every
material to be calculated several hundred times. Hence, we
approximate the Murnaghan equation of state by a parabola that
we fit through data points at the AE lattice constant and a 1%
enlarged or reduced value. We test the constructed PPs with the
Quantum ESPRESSO [26] plane-wave DFT code. Our test consists
of a calculation with a large energy cutoff of Emax

cut = 160 Ry that
we consider to be the converged solution. Then, we decrease the
cutoff in steps of ∆E = 10 Ry to the minimum of 40 Ry. Notice
that as illustrated by Fig. 2, the actual deviation compared to the
AE calculationmay decrease even thoughwe reduced the accuracy
of the calculation. To correct for this, we adjust the deviation such
that it is monotonically decreasing using the following correction

δPPcorr(E
i
cut) = |δPP(Emax

cut )| +

i
k=1

|δPP(Ek
cut)− δPP(Ek−1

cut )| (11)

where E i
cut = Emax

cut − 10i. This ensures that the deviation at a
given cutoff energy is an upper bound to the deviation at any larger
cutoff.

3.4. Optimizing pseudopotentials

Weuse aNelder–Mead algorithm [27] also known as theDown-
hill SimplexMethod [28] to optimize the PPs. In this algorithm, the
N input parameters of a specific PP are represented by a point in a
N-dimensional space. We start with (N + 1) PPs that form a sim-
plex in this space. By replacing the worst corner by a better PP the
simplex contracts towards the optimal PP. As convergence crite-
ria, we visually inspect the change of quality of the PP. In addition,
we require that the input parameters of the PP are converged to
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Fig. 2. (Color online) Relative deviation δ of a PP w.r.t. the AE calculation. The
blue circles indicate the deviation obtained at a certain energy cutoff Ecut . The
red diamonds show the corrected deviation that is monotonically decreasing with
increasing cutoff (see text).

at least two significant digits. The advantages of the Nelder–Mead
algorithm are that we do not need to know the derivatives of the
quality function with respect to the input parameters and that it
can find PP parameters that lie outside of the starting simplex.

To create the initial simplex, we start from a reasonable starting
guess for the N input parameters to construct a PP for the neutral
atom.We used the example input files providedwith the ONCVPSP
package [8], where available, or generated our own PP otherwise.
States that could be considered as semicore states are included in
the valence window. A detailed list for the individual elements is
given in the supplementary material [29]. We construct (N + 1)
PPs based on the starting-guess PP with random modifications to
the input parameters. We allow changes of up to 20% of any of
the input parameters, but control that the necessary conditions
(e.g. projector radius ≥ radius of local potential) are always
fulfilled.

We assess the quality for each of the initial PPs and each of
the PPs that are created during the optimization procedure in the
following fashion: (i) The PP is rejected if it cannot be created by
the ONCVPSP code or if it exhibits ghost states in the vicinity of the
Fermi energy. The latter is evidenced by changes in the logarithmic
derivative as compared to the AE result. (ii) If the PP is not rejected,
we evaluate the quality function on the training set of materials.
(iii)We compute the geometricmean of all thematerials the tested
PP is used in.

In the case of the rock-salt compounds, we test always only
one of the PP and for the other element we use a PP from the
GBRV database [15]. After 80–200 iterations of the Nelder–Mead
algorithm, all PPs have converged. Then, we restart the algorithm
using these first generation PP as starting guess. Now, we employ
the first generation PPs in the compounds so that our resulting
PPs become independent of the GBRV database. Once the second
generation is converged as well (another 100 iterations), the
properties of the training set are well reproduced for almost all
materials.

3.5. Refining the training set

For a fewmaterials, the second generation PPs do not reproduce
the AE results on the test set of materials. Our proposed
optimization algorithm provides an easy solution to overcome
these cases by adding additional materials to the training set. In
particular, for the early transitionmetals (Sc–Mn) it is necessary to
include the sc structure in the training set. Furthermore,we include
the dimer of hydrogen and nitrogen into the test set, because the
Table 1
Comparison of the performance of the USPPs in the GBRV database [15] and the
high-accuracy PAWs in PSLIB [16] with the ONCV PPs in the SG15 database (this
work) formaterials in a bcc structure.Weanalyze the relative deviation of the lattice
constant δalat and the bulk modulus δB0 between a PP and the AE calculation. The
average reveals if the PPs have a systematic bias and the root-mean-square (rms)
average tests the size of the error. We also show the proportion of materials that
are not accurately described at various energy cutoffs.

GBRV PSLIB SG15

Average δalat (%) 0.03 0.03 0.04
rms average δalat (%) 0.12 0.11 0.08
% of materials with |δalat | > 0.2%1 10.94 40.00 23.19
% of materials with |δalat | > 0.2%2 9.38 15.56 8.70
% of materials with |δalat | > 0.2%3 9.38 4.44 2.90

Average δB0 (%) 0.36 −0.32 0.52
rms average δB0 (%) 3.31 2.53 3.19
% of materials with |δB0 | > 5.0%1 25.00 62.22 53.62
% of materials with |δB0 | > 5.0%2 14.06 26.67 18.84
% of materials with |δB0 | > 5.0%3 9.38 8.89 7.25

Total number of materials 64 45 69
1 With an energy cutoff of 40Ry.
2 With an energy cutoff of 60Ry.
3 With an energy cutoff of 160Ry.

second generation PPs for these two elements do not describe the
bond length of the dimer accurately.

We emphasize that our optimization algorithm could account
for other material properties. As long as one is able to define a
quality function,whichmaps the result of a PP potential calculation
onto a number, it is possible to optimize the input parameters of
the PP generation by standard numerical optimization techniques.

4. Results

We compare the performance of the ONCV PPs constructed in
thiswork (SG15) [23]with theUSPPs in theGBRVdatabase [15] and
the high-accuracy PAWs in the PSLIB [16]. For the latter, we gener-
ate the potentials of PSLIB version 1.0.0 with Quantum ESPRESSO
version 5.1.1.Whenwe state that a certain pseudoization has a par-
ticular convergence behavior, we refer to the properties of the PPs
in these libraries.

In the first subsection, we focus on the lattice constants and
bulk moduli of the materials in the training set. In the second
subsection, we investigate the materials in the test set. In the third
subsection, we look into materials that are not represented in the
test set to check the accuracy of the pseudopotentials. In the first
two subsections, we focus only on the trends across all materials in
the training and test set, respectively. For the results for a specific
compound, please refer to the supplementary material [29].

4.1. Training set

In Table 1, we present the results obtained for the materials
in a bcc structure. We see that the USPPs require the smallest
energy cutoff and have the best performance at 40 Ry. On the other
hand increasing the energy cutoff beyond 40 Ry hardly improves
the results. For the PAWs and the ONCV PPs, a large number of
materials are not converged at 40 Ry, but increasing the energy
cutoff improves the accuracy, so that they are able to improve on
the USPP results. For the converged calculation, the root-mean-
square (rms) error is around 0.1% for all PPs and smallest for the
ONCV PPs. We see a similar trend for the bulk moduli though the
converged results require a larger energy cutoff on average. The
average error for the converged bulk moduli is roughly 3% and the
USPPs converge with a lower energy cutoff than the PAWs and the
ONCV PPs, which have a similar convergence behavior. In Fig. 3, we
see that the converged lattice constant deviates by more than 0.2%
with the ONCV PPs only for two materials (carbon and calcium).
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Fig. 3. (Color online) Relative change δ(%) of the lattice constant in the training set for the SG15 (red circle), the GBRV (green square), and the PSLIB (blue diamond) results
as compared to the FLAPW ones for the bcc (top left), fcc (top right) and rock-salt compounds (bottom).
Table 2
Same as Table 1 for fcc structures.

GBRV PSLIB SG15

Average δalat (%) 0.03 0.03 0.03
rms average δalat (%) 0.11 0.07 0.07
% of materials with |δalat | > 0.2%1 9.38 27.08 24.64
% of materials with |δalat | > 0.2%2 9.38 6.25 5.80
% of materials with |δalat | > 0.2%3 9.38 0.00 1.45

Average δB0 (%) 0.23 0.00 0.31
rms average δB0 (%) 2.28 1.83 2.00
% of materials with |δB0 | > 5.0%1 12.50 68.75 43.48
% of materials with |δB0 | > 5.0%2 7.81 16.67 17.39
% of materials with |δB0 | > 5.0%3 3.12 4.17 5.80

Total number of materials 64 48 69
1 With an energy cutoff of 40Ry.
2 With an energy cutoff of 60Ry.
3 With an energy cutoff of 160Ry.

For both of these materials the USPP and the PAW approach show
large deviations as well.

The fcc structures presented in Table 2 follow the same trend
as the bcc structures. The USPPs require the smallest energy cutoff
but cannot be improved further by increasing the energy cutoff.
The PAWs and the ONCV PPs require an energy cutoff of 60 Ry
to converge most materials, but have fewer inaccurate elements
when increasing the energy cutoff. Overall the ONCV PPs and the
PAWs are a bit better than the USPPs, but all PPs are close to the AE
results. In Fig. 3, we see that only a single material (cadmium) is
outside the 0.2% boundary, when using the converged calculation
and theONCVPPs. TheUSPP result shows a deviation of similar size
for this material, whereas the PAW lattice constant is close to the
FLAPW result.

When combining two materials to form rock-salt compounds,
we obtain the results depicted in Table 3. In comparison to the
metallic (bcc and fcc) system, the accuracy for the ionic compounds
is a bit higher in particular for the bulk modulus. With a large
energy cutoff the ONCV PPs essentially reproduce the AE results
and the accuracy at 60 Ry for the lattice constant is very good.
For the bulk modulus, about 10% of the materials require a larger
energy cutoff. The USPPs have a slightly larger mismatch for
the lattice constants, but converge both lattice constants and
bulk moduli with 40 Ry. The PAW potentials provide a similar
convergence behavior as the ONCV potentials; they deviate a bit
more for the lattice constants, but provide slightly better bulk
moduli.

In Fig. 4, we show a histogram of the relative error of the lattice
constant for all the examined PPs (with the converged cutoff of
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Table 3
Same as Table 1 for rocksalt structures.

GBRV PSLIB SG15

Average δalat (%) 0.01 0.02 −0.02
rms average δalat (%) 0.11 0.09 0.06
% of materials with |δalat | > 0.2%1 6.13 35.95 30.67
% of materials with |δalat | > 0.2%2 6.13 6.54 1.23
% of materials with |δalat | > 0.2%3 6.13 3.92 0.00

Average δB0 (%) −0.02 −0.03 −0.48
rms average δB0 (%) 1.67 1.29 1.34
% of materials with |δB0 | > 5.0%1 1.84 53.59 55.83
% of materials with |δB0 | > 5.0%2 1.84 5.23 10.43
% of materials with |δB0 | > 5.0%3 1.84 0.00 0.61

Total number of materials 163 153 163
1 With an energy cutoff of 40Ry.
2 With an energy cutoff of 60Ry.
3 With an energy cutoff of 160Ry.

Fig. 4. (Color online) Histogram of the relative error of the lattice constant
compared to the all-electron result. We show the results for all materials in the
training set for the SG15 (red solid line), the GBRV (green dotted line), and the PSLIB
(blue dashed line) calculations.

160 Ry). The histogram confirms the conclusions we drew from
Table 1 to 3: All PPs show a very good agreement with the all-
electron results and the USPPs have a slightly lower accuracy. The
tails with large errors are very flat indicating that there are only a
few outliers.

4.2. Test set

In the sc structure (see Table 4), the performance of the ONCV
potentials is comparable to the training set for the lattice constants
and slightly worse for the bulk moduli. We observe the same
trend also for the USPP and the PAW calculations. With an overall
deviation of about 0.1% for the lattice constant and 4% for the
bulk moduli, all PPs show a good agreement with the AE reference
data. The convergence with respect to the energy cutoff is best in
the GBRV database, which does not change significantly for the
lattice constants above 40 Ry. Most of the ONCV lattice constants
converge at 60 Rywhereas the PAWones occasionally need a larger
cutoff. For the bulk moduli, all PPs show a similar convergence
behavior. However, we observe that as compared to the other
structures a larger fraction of > 10% is not accurate even with
an energy cutoff of 160 Ry. In Fig. 5, we see that the ONCV PPs
reproduce the lattice constant within the 0.2% boundary for all
materials except calcium and lanthanum.While the ONCV PP gives
similar results to the other PPs for calcium, we find that the lattice
constant in lanthanum is underestimated by the ONCV PP and
Table 4
Same as Table 1 for sc structures.

GBRV PSLIB SG15

Average δalat (%) 0.02 0.03 0.02
rms average δalat (%) 0.12 0.09 0.09
% of materials with |δalat | > 0.2%1 6.25 46.30 27.54
% of materials with |δalat | > 0.2%2 6.25 16.67 5.80
% of materials with |δalat | > 0.2%3 6.25 3.70 2.90

Average δB0 (%) 0.32 0.31 −0.01
rms average δB0 (%) 3.79 3.96 4.47
% of materials with |δB0 | > 5.0%1 40.62 74.07 62.32
% of materials with |δB0 | > 5.0%2 20.31 27.78 21.74
% of materials with |δB0 | > 5.0%3 12.50 12.96 11.59

Total number of materials 64 54 69
1 With an energy cutoff of 40Ry.
2 With an energy cutoff of 60Ry.
3 With an energy cutoff of 160Ry.

Table 5
Same as Table 1 for diamond structures.

GBRV PSLIB SG15

Average δalat (%) 0.03 0.02 0.01
rms average δalat (%) 0.16 0.10 0.12
% of materials with |δalat | > 0.2%1 7.81 49.12 34.78
% of materials with |δalat | > 0.2%2 7.81 22.81 11.59
% of materials with |δalat | > 0.2%3 7.81 7.02 8.70

Average δB0 (%) 0.45 1.30 −0.24
rms average δB0 (%) 4.49 6.54 3.06
% of materials with |δB0 | > 5.0%1 31.25 71.93 53.62
% of materials with |δB0 | > 5.0%2 18.75 31.58 14.49
% of materials with |δB0 | > 5.0%3 9.38 7.02 7.25

Total number of materials 64 57 69
1 With an energy cutoff of 40Ry.
2 With an energy cutoff of 60Ry.
3 With an energy cutoff of 160Ry.

overestimated by the USPP. For this material, the PAW calculation
did not converge.

In Table 5, we present our results for the materials in the
diamond structure. These are the structures which exhibit overall
the largest deviation from the all-electron result. The lattice
constants of the USPPs are converged well with the energy cutoff
of 40 Ry, whereas the PAWs and the ONCV PPs frequently require
a cutoff of 60 Ry. For the bulk moduli, we find that the ONCV
PPs provide the best agreement with the AE results. The quality
of the USPPs is similar, but the PAW potentials show an average
error larger than the desired 5% tolerance. However the fraction of
materials that are well described with the PP calculation is similar
for all methods. This indicates that a few specific materials show a
particular large deviation, whereas the rest is accurately described.
For the ONCV PPs the lattice constants of boron, chlorine,
scandium, nickel, rubidium, and yttriumdeviate bymore than 0.2%
from the FLAPW results. In Fig. 5, we observe that the deviations
between the different pseudoizations are larger than for the other
structures. A possible explanation is that the diamond structure is
an extreme case formanymaterials, because of its low space filling.

For the zincblende compounds (cf. Table 6), we observe results
similar to for the rock-salt compounds.We find that theUSPPs con-
verge for most materials with an energy cutoff of 40 Ry, whereas a
third of the materials with the ONCV PPs and half of the materials
with the PAWs need an energy cutoff of 60 Ry to converge. Overall
the accuracy of the ONCV PPs is slightly better than the alterna-
tives, but all pseudoizations are on average well below the target
of 0.2%. For the bulk moduli a larger energy cutoff is necessary, but
when converged the deviation from the AE results is around 1%.
In Fig. 5, we identify that only for BeO the deviation between the
ONCV calculation and the AE result is larger than 0.2%.

In Fig. 6, the histogram of the relative error of the lattice con-
stant for the test set confirms the conclusionswedrew fromTable 4
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Fig. 5. (Color online) Relative change δ(%) of the lattice constant in the test set for the SG15 (red circle), the GBRV (green square), and the PSLIB (blue diamond) results as
compared to the FLAPW ones for the sc (top left), diamond (top right) and zincblende compounds (bottom).
Fig. 6. (Color online) Histogram of the relative error of the lattice constant
compared to the all-electron result. We show the results for all materials in the
test set for the SG15 (red solid line), the GBRV (green dotted line), and the PSLIB
(blue dashed line) calculations.
Table 6
Same as Table 1 for zincblende structures.

GBRV PSLIB SG15

Average δalat (%) 0.04 0.04 0.00
rms average δalat (%) 0.10 0.09 0.07
% of materials with |δalat | > 0.2%1 5.52 37.50 33.74
% of materials with |δalat | > 0.2%2 4.91 6.58 2.45
% of materials with |δalat | > 0.2%3 3.07 3.29 0.61

Average δB0 (%) 0.24 0.14 −0.27
rms average δB0 (%) 1.26 0.96 1.03
% of materials with |δB0 | > 5.0%1 4.29 55.26 55.21
% of materials with |δB0 | > 5.0%2 1.84 4.61 9.20
% of materials with |δB0 | > 5.0%3 0.61 0.00 0.00

Total number of materials 163 152 163
1 With an energy cutoff of 40Ry.
2 With an energy cutoff of 60Ry.
3 With an energy cutoff of 160Ry.

to 6: The deviation from the all electron results is very small for all
PPs. The USPPs show a slightly larger deviation than the PAWs and
the ONCV PPs. The histogram reveals that this is partly due to some
outliers, for which the lattice constant is overestimated by more
than 0.4%. Overall, we notice that the accuracy of the ONCV PPs for
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the test set ofmaterials is not significantlyworse than for the train-
ing set. Hence, we are confident that these PPs are transferable to
other materials as well.

4.3. Dimers and ternary compounds

Our training and test set are limited to mono- and diatomic
crystals, hence one may wonder if the constructed ONCV PPs work
outside this scope. To test this we investigated diatomic molecules
and ternary compounds. For the compounds, we use the same
computational setup as for the materials in the training and in the
test set. For the molecules, we optimize the bond length inside a
boxwith dimensions 15 Å×15 Å×30 Åwith the long side parallel
to the axis of the molecule.

In Table 7, we show the bond lengths and the lattice constants
of the investigated materials. Depending on the pseudoization,
some diatomicmolecules show large deviations from the reference
data from the CCCB DataBase [30]. Overall, the ONCV PPs exhibit
the smallest deviations. The relative error is larger than 0.2% only
for the O2 (0.25%) and the F2 (0.35%) dimer. For the USPPs, all
diatomic molecules are outside of the desired relative accuracy of
0.2%, except for the Br2 dimer. In PAW, the only molecule with
the desired accuracy is the H2 dimer. The other molecules show
deviations of similar magnitude to the USPPs and the Br2 dimer
did not converge.

Perovskites are accurately described by all pseudoizations; we
frequently find a relative agreement of better than 0.1% in the
lattice constant with the FLAPW result. The worst case for the
ONCV PPs is LaAlO3, which deviates by −0.13%. The USPPs and the
PAWs both overestimate the lattice constant of BaTiO3 by 0.25%
and 0.27%, respectively. The PAW potentials also feature a larger
deviation than the other two pseudoizations for SrTiO3.

Finally, we consider the half-Heusler compounds. All materials
are within the desired accuracy with all pseudoizations. The ONCV
PPs show slightly larger deviations than the USPPs and the PAWs
for GeAlCu and NMgLi. For NiScSb, the ONCV PPs and PAWs
overestimate the lattice constant more than the USPPs. The lattice
constant of BScSb and PdZrSn are essentially the samewith FLAPW
and in anypseudoizationused. In PZNa, all PPs produce very similar
results and a slightly larger lattice constant than the FLAPW result.

5. Conclusion

We have presented an algorithm to optimize the input parame-
ters of a pseudopotential (PP) construction.We demonstrated it by
developing the SG15 dataset [23] of ONCVpseudopotentials, which
exhibits a similar accuracy as the ultrasoft PP database GBRV [15]
and the PAW library PSLIB [16]. The idea of the algorithm is to
map a PP onto a single numeric value so that standard optimiza-
tion techniques can be employed. For this, we developed a quality
function that considers the accuracy of the lattice constant of a PP
calculation and compares it with a high accuracy FLAPW one. In
addition, the quality function takes into account the energy cutoff
necessary to converge the calculation. Hence, the optimization of
the PPs with respect to the quality function yields accurate and ef-
ficient potentials. In order to ensure that the constructed PPs are
of a high accuracy, we systematically chose a set of approximately
600 materials and evaluate their properties with FLAPW. We split
this set in two parts, a training set used for the optimization of the
PPs and a test set to analyze the performance of the PPs. When a
PP does not produce our desired accuracy after optimizing on the
training set, we can improve the quality of this PP by extending the
training set by more materials.

In Table 8, we collect the results of all materials in test and
training set. Compared to the PPs from the GBRV database [15]
and PSLIB [16], the PPs in the SG15 set have the lowest root-
Table 7
Bond length of diatomic molecules and lattice constant of perovskites and half-
Heusler compounds investigated with different methods. For the half-Heusler
compounds, the first element is in Wyckoff position c. All values are given in Å.

Material ref.1 GBRV PSLIB SG15

H2 0.750 0.757 0.750 0.749
N2 1.102 1.108 1.110 1.101
O2 1.218 1.224 1.230 1.221
F2 1.412 1.424 1.419 1.417
Cl2 2.012 2.004 2.006 2.015
Br2 2.311 2.311 2.314

AsNCa3 4.764 4.765 4.764 4.764
BaTiO3 4.018 4.028 4.029 4.020
KMgCl3 5.024 5.023 5.025 5.023
LaAlO3 3.814 3.817 3.815 3.809
PNCa3 4.720 4.720 4.720 4.719
SrTiO3 3.937 3.939 3.942 3.938

BScBe 5.318 5.319 5.316 5.317
GeAlCu 5.910 5.914 5.913 5.920
NiScSb 6.118 6.120 6.123 6.123
NMgLi 5.004 5.006 5.006 5.010
PdZrSn 6.392 6.392 6.394 6.394
PZnNa 6.141 6.149 6.148 6.148
1 We evaluate the lattice constant perovskites and half Heusler with FLAPW and

take the bond length of the dimers from the CCCB DataBase [30].

Table 8
Summary of the results depicted in Table 1 to 6 with same notation as Table 1.

GBRV PSLIB SG15

Average δalat (%) 0.03 0.03 0.01
rms average δalat (%) 0.12 0.09 0.08
% of materials with |δalat | > 0.2%1 7.04 38.51 30.07
% of materials with |δalat | > 0.2%2 6.70 10.22 4.65
% of materials with |δalat | > 0.2%3 6.19 3.73 1.99

Average δB0 (%) 0.21 0.18 −0.14
rms average δB0 (%) 2.61 2.85 2.40
% of materials with |δB0 | > 5.0%1 13.75 60.51 54.49
% of materials with |δB0 | > 5.0%2 7.73 13.36 13.62
% of materials with |δB0 | > 5.0%3 4.47 3.34 3.82

Total number of materials 582 509 602
1 With an energy cutoff of 40Ry.
2 With an energy cutoff of 60Ry.
3 With an energy cutoff of 160Ry.

mean-square deviation from the FLAPW results for the lattice
constant. With an energy cutoff of 60 Ry, the ONCV PPs feature
the least number of materials with an inaccurate lattice constant
(deviation larger than 0.2% from FLAPW results). The advantage
of the ultrasoft PPs is that they offer a similar accuracy with an
energy cutoff of 40 Ry. For the bulk moduli larger energy cutoffs
are necessary for all pseudoization methods. The ONCV PPs have
the smallest root-mean-square deviation for the tested materials.
The fraction of materials that can be accurately described with
the ONCV PPs at a certain energy cutoff is very similar to the
performance of the PAWs. The ultrasoft PPs exhibit a similar
accuracy at a moderately lower energy cutoff. For materials that
go beyond the training and test set, we find that the ONCV
PPs provides the best description of diatomic molecules. All
pseudopotentials are very accurate for perovskite and half-Heusler
compounds.

We encourage the community to use the algorithm presented
in this work to optimize pseudopotentials for different functionals
and with different construction methods. With only a modest
increase in the energy cutoff, the proposed SG15 library of norm-
conserving pseudopotentials provides a competitive alternative
to the libraries using USPP and PAW. As these pseudopotentials
are less complex than the alternatives, this results in a great
simplification in the development and implementation of new
algorithms.
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