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a b s t r a c t

This work investigated colloidal properties such as the zeta-potential, the electrophoretic mobilities and
the wetting behaviour of alumina dispersed in non-aqueous media. Non-aqueous dispersions of alumina
were prepared in the solvent N-methyl-2-pyrrolidinone (NMP). The wetting behaviour of alumina in NMP
was characterized by the powder contact angle method and the Wilhemy plate method. The behaviour
of the dispersion should provide information for the development of a substrate-induced coagulation
(SIC) coating process of nano-sized alumina in non-aqeous media. SIC is a dip-coating process that coats
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pretreated but chemically different surfaces with nano-sized particles. It was found that the anionic
surfactant dioctyl sulfosuccinate (AOT) had no stabilizing effect on alumina dispersed in NMP.

© 2010 Elsevier B.V. Open access under CC BY-NC-ND license. 
eta potential

. Introduction

Substrate-induced coagulation (SIC) is a particularly attractive
ip-coating method for depositing metal nanoparticles on differ-
nt surfaces because of the high density of particles that can be
chieved and the flexibility in the types of particles (such as met-
ls, semiconductors or dielectric materials) that can be deposited.
sing SIC offers the possibility to cover chemically different sur-

aces with finely dispersed nano-sized solids. Recently, aqueous as
ell as non-aqueous titania dispersions were investigated for the
se in a SIC process [1]. SIC can also be performed in non-aqueous
edia to coat materials that are sensitive to hydrolysis [2–4]. In

he past it has also been used to, e.g. prepare core-shell materials
s cathode materials for Li-ion batteries [5–7]. As other examples
IC was used to coat printed wiring boards with a conducting car-
on black layer [8,9] and to coat non-conductive surfaces such

s teflon (PTFE) with conducting particles such as highly conduc-
ive carbon black [10]. Aqueous SIC was also used for the layer by
ayer preparation of electrodes or composite supercapacitors with
efined thickness by multiple use of the coating process [11].
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ustria. Tel.: +43 6641773316.
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Aim of this work was to investigate alumina in non-aqueous
media to find conditions for an SIC process. The experiments were
planned with an special emphasis for the future use of the SIC
process for Li-ion battery materials.

In the past the presence of trace polar impurities such as water
were found to have a critical enhancement on the suspension sta-
bility dispersing alumina (stabilized by hydrophobic polymers) in
non-polar media such as cyclohexane [12]. Higher concentrations
of water lead to a rapid flocculation of the alumina dispersions.
It has been found that the electrostatic contribution could be tai-
lored by changing the organic-liquid media—if the aciditiy of the
solvent increases the electrostatic charge on the alumina particles
increased, which contributes to the stability of the alumina parti-
cles (size 0.65 �m) in the media [13]. In later work the same group
investigated the stability of BaTiO3 suspended in organic solvents
(ethyl alcohol, acetone and toluene) using menhaden fish oil and
phosphate esters as dispersants. Here – because of the low dielec-
tric constants – steric stabilisation dominates this system [14].
A hydrophobically modified polymer stabilisizes alumina in both
water and toluene – while in the aqueous system the stabilization
is caused by both electrostatic repulsion and steric hindrance, the

steric hindrance by the absorbed polymer is responsible for the sta-
bilization in toluene [15]. Alumina was dispersed in the azeotropic
mixture of methyl ethyl ketone and ethanol where polyvinyl
butyral was found to be the most effective dispersant—alumina
powders were found to have positive surface charge [16]. In this

https://core.ac.uk/display/81934609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.colsurfa.2010.10.026
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Table 1
Zeta-potential using the Hückel equation of Al2O3 (diluted) and AOT in NMP.

Sample AOT
(mmol 1−1)

Electrophoretic mobility
(10−9m2V−1s−1)

Zeta-potential
(mV)

2 25 Failed Failed
3 10 −0.84 ± 0.18 −7.5 ± 1.6
4 5 −1.34 ± 0.14 −11.8 ± 1.3
5 2 −1.44 ± 0.20 −12.7 ± 1.8
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6 1 −2.08 ± 0.78 −18.3 ± 6.9
7 0.5 −2.49 ± 0.25 −21.9 ± 2.2
0 0 −2.84 ± 0.58 −24.9 ± 5.1

ork none of the anionic dispersants (e.g. phosphate ester and
anhaden fish oil) used were efficient in dispersing the suspen-

ion. On the other hand alumina deposited by electrophoresis from
n ethanolic suspension stabilized with polyacrylic acid showed a
egative zeta potential strongly dependend on the polyacrylic acid
oncentration [17].

. Experimental

.1. Chemicals

Commercially available aluminium oxide (AEROXIDE Alu C,
vonik, Frankfurt, Germany) with an particle size of 13 nm and a
ET surface area of 100 m2 g−1 was used. N-methyl-pyrrolidone
NMP) is an a-protic organic solvent. It has a high boiling point,
02 ◦C, and a freezing point of −24.4 ◦C. It has a density similar
o that of water, 1.026 g/cm3, and a viscosity of 1.67 cP. The rela-
ive permittivity (or dielectric constant, ε) is 32.2 and the refractive
ndex 1.4700. The solvent was chosen in respect to their later use
f SIC in Li-ion batteries. Aerosol OT is the name commonly given
o the compound dioctyl sulfosuccinate or bis-2-ethylhexyl sodium
ulfosuccinate, which has the chemical formula C20H32O7SNa. It is
n anionic surfactant with two doubly branched hydrophobic tails
nd is soluble both in water and in most common non-aqueous
olvents [18,19]. The adsorption of AOT on alumina particles from
exane and cyclohexane was desribed in [20].

.2. Dispersions

Alumina was dried in vacuum overnight and was added to NMP
olutions with different AOT concentrations (see Tables 1–2). All
ispersions contained 1 wt.% alumina and were stirred for 5 min,
ltrasonicated for 15 min and stirred with a homogenizer for 10 min
t >15,000 rpm.

.3. Powder contact angle method

The powder contact angle method was used to investigate the

etting abilities of alumina. The alumina powder was put into the
easuring cylinder of the tensiometer KRÜSS K12, GmbH, Ham-

urg. After the cylinder with the powder sample was put into
ontact with the liquid phase, the sample mass change as a func-

able 2
eta-potential using the Smoluchowski equation of Al2O3 (diluted) and AOT in NMP.

Sample AOT
(mmol l−1)

Electrophoretic mobility
(�/s)/(V/cm)

Zeta-potential
(mV)

2 25 0.10 9.60
3 10 0.48 43.33
4 5 0.47 43.43
5 2 0.59 54.60
6 1 0.48 44.32
7 0.5 0.49 45.12
0 0 0.45 41.60
sicochem. Eng. Aspects 374 (2011) 9–12

tion of time was measured. The evaluation of the measured data is
based on modifications of the Washburn equation for a single cap-
illary [21], which arises from the combination of the expression for
the Laplace pressure and the Hagen–Poiseuille equation for steady
flow conditions [22]. A more detailed description of the method is
given in our earlier work [1].

2.4. The Wilhelmy plate method

The Wilhelmy plate method (KRÜSS K12 Users Manual (1996))
using the equilibrium technique, was applied, for determining
the surface tension and their polar and dispersive components of
the liquid sample NMP. A standard Pt plate (for surface tension
determination of the liquid) and a standard PTFE plate (for the
determination of dispersive components of surface tension of the
liquid) were used.

The equilibrium technique was applied for determining the sur-
face tension of the solvent. As a standard, a platinum plate was
applied (contact angle � = 0◦ for the majority of liquids). The exam-
ined liquid was brought into contact with the lower edge of the
platinum plate. The contact angles between solid (PTFE) and liq-
uid phase (NMP) were determined, using the dynamic technique.
During measurement, the sample plate was immersed in a liquid,
and pulled out afterwards, which enabled determination of the
advancing and receding contact angles. The force onto the plate
was measured depending on the immersion depth. A more detailed
description of the method is given in our earlier work [1].

2.5. Turbidity measurements

In this study used concentration of 1 wt.% of alumina was too
high to use common spectroscopic method for turbidity determi-
nation. Therefore the turbidity of dispersions was estimated by
appearance.

2.6. Phase analysis light scattering (PALS) and dynamic and
electrophoretic light scattering (DLS, ELS)

Phase analysis light scattering (PALS) detects the light scattered
by particles moving relative to an interference fringe pattern, which
is generated by the intersection of two laser beams. The beams
are crossed and one is offset in frequency relative to the other by
a couple of kilohertz. The time-domain phase information within
the scattered signal is analysed to determine the electrophoretic
mobilities of particles down to about 10−11 m2s−1V−1. The PALS
system and the analysis software were constructed in-house (Laser
Light Scattering Science Group, Prof. John Thomas, University of
South Australia, Adelaide, Australia). The measurements were done
using a He–Ne Laser (632.8 nm) with a lock-in frequency of 2000 Hz.
A voltage of 5 V, modulated at 30 Hz, was applied between palla-
dium electrodes separated by 2.22 mm, giving an applied field of
22.5 V/cm.

The zeta-potentials were also determined by DLS and ELS using
a Brookhaven Instruments ZetaPlus zeta-potential Analyzer at a
wavelength of 674 nm. The samples were diluted with the non-
solvent to a concentration of 0.01% w/v. The zeta-potential here
was obtained (by the instrument) by the Smoluchowski model.
The standard in NMP showed a zeta-potential of −51.97 mV at a
temperature of 25 ◦C. The solvents viscosity 1.67 cP, the refrac-
tive index 1.4700 and the dielectric constant 32.2 were fed into
the instrument.
2.7. Zeta potentials

The particle velocity � is proportional to the applied field
strength E. For spherical particles this relationship takes the form:
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compareable to water and the predominant stabilization mecha-
nism would be explained by electrostatic forces [15]. Paik et al.
found that the electrostatic contribution could be tailored by chang-
ing the organic-liquid media, they suggest that a suitable dispersant
for alumina particles should be acidic like linolenic acid [13].
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= �EE (1)

here �E is called the electrophoretic mobility of the particle.
wo different models can be used to calculate the zeta-potential
rom electrophoretic mobility. The solution given by Smoluchowski
1921) is for the thin double layer (�˛ � 1) case, and leads to:

E = [ε�/�] (2)

here � = liquid viscosity/Pa s, ε = permittivity and 	 = zeta-
otential/mV.

Hückel (1924) solved the electrophoresis problem for the oppo-
ite extreme of a very thick double layer (where the Debye length
˛ � 1).

E = [2ε�/3�](1 + �˛) ≈ 2ε�/3� (3)

With the small (21 nm) particles and low electrolyte concen-
rations (<0.04 mol/l) used here, it is appropriate to use Eq. (3) to
alculate zeta-potentials from measured mobilities optained from
lectrophoresis [1].

. Results and discussion

.1. Wetting characteristics of alumina and NMP

The sorption characteristics of solid alumina and NMP were
tudied using the powder contact angle method. Using N-heptane
ith its excellent wetting abilities the contact angle is close to zero

nd cosϕ can be estimated to be 1. The constant c can be calculated
irectly to be 7.8054 × 10−6 (mean value of 7 measurements). NMPs
urface tension �L was calculated to be 41.34 mN m−1 (3 measure-
ents). The contact angle ϕ of alumina and NMP was calculated

rom the capillary velocity using the Washburn Equation and was
ound to be −89.88 ± 0.09◦ (4 measurements). The high contact
ngle of the powder lead to the decision to use dispersing agent for
urther experiments. A high contact angle between solid an liquid
auses a low dispersibility. The surface between the two phases
ends to minimize in such liquid which results in agglomeration
f the dispersed solid phase. Aerosol OT (AOT) (bis-2-ethylhexyl
odium sulfosuccinate) was chosen as a solute as it has been used
n aqueous SIC and is a very common surfactant in non-aqueous
olvents [18,19]. NMPs disperse and polar components, the surface
ension and the contact angle is published in [1]

.2. Stability of alumina dispersions in NMP

In previous work carbon black [2] and titania suspensions [1] in
MP were invesitigated using the same conditions as in this work.
he alumina dispersions were less stable than carbon black and tita-
ia dispersed in the same media, but stable enough to be handled

n the lab and in a SIC process.

.2.1. Stability of alumina dispersions in water
Alumina (1 wt.%) was added to a 2.7 mmol l−1 AOT and

0 mmol l−1 LiCl in an elongated beaker, possible conditions used
or aqueous SIC of titania [23]. The dispersion was stirred for 5 min,
ltrasonicated for 15 min and stirred with a homogenizer for 10 min
t >15,000 rpm. The alumina particles flotated, so the experiment
as stopped at this point.

.3. Zeta-potential of alumina dispersed in NMP
Alumina in NMP had a zeta-potential of −25.0 mV. Adding AOT
ecreases the magnitude of the zeta-potential (see Fig. 1 and
able 1). Solution 0, because it had the highest zeta-potential and
tability was chosen for further non-aqueous SIC experiments. A
ispersion of 1 wt.% showed a stability of over 2 h, while all the
Fig. 1. Mobility continuous line, (×, dotted line, right-hand scale) and zeta poten-
tial (�, left-hand scale) measured using PALS for 1% alumina samples that have
been diluted (for transparency) in solutions of AOT in NMP, plotted against the final
solution concentrations of AOT.

other dispersions were stable for just a few minutes. LiCl was added
to investigate its destabilisation on the dispersion, but the experi-
ments failed because the electrolyte concentration was too high.

The experimets were redone using ELS and diluting the dis-
persions to a concentration of 0.001 mol/l alumina. The results
are presented in Fig. 2 and Table 2. Alumina in NMP showed
a zeta-potential of 41.60 mV, increasing the AOT concentration
to 2 mmol l−1 lead to an increase of the magnitude of the zeta-
potential. However, an AOT concentration of 25 mmol l−1 lead to
a stong decrease in the magnitude of zeta-potential, which could
also be observed in a shorter stability of the dispersions in the lab.
LiCl (0.005 mol/l and 0.001 mol/l) were added to NMP. Again these
experimens failed, because the electrolyte concentration was too
high.

3.4. Discussion of charging mechanisms of alumina/AOT in NMP

Most literature of alumina dispersed in organic media with low
dielectric constant describes steric hindrance as a the predomi-
nant stabilisation mechanism [14,12]. However, NMPs dielectric
constant is 32.2 so steric hindrance and electrostatic repulsion are
AOT concentration/ mmol/L 

Fig. 2. Mobility continuous line, (×, dotted line, right-hand scale) and zeta poten-
tial (�, left-hand scale) measured using ELS for 1% alumina samples that have been
diluted (for transparency) in solutions of AOT in NMP, plotted against the final
solution concentrations of AOT.
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In earlier work on carbon black dispersed in NMP, AOT had the
ffect of a simple electrolyte. Higher concentration lead to a higher
estabilisation of the dispersions [2]. When titania is dispersed in a
edium that does not accept protons easily, such as NMP, the mate-

ial is unable to donate them and may be even forced to accept them
hich results in positively charged titania particles [1]. In this work

lumina showed first a negative zeta-potential (see Table 1 and
ig. 1). Alumina in NMP without any additive showed the highest
tability. The anionic surfactant AOT in NMP had a destabilisizing
ffect on the alumina dispersion.

Mukherjee et al. reported no stabilizing influence of anionic
urfactants in their solution on alumina—an azeotropic mixture of
ethyl-ethyl-ketone and ethanol (0.1% moisture). In the believe of

he authors alumina contains soda and form an ion pair with the
nionic functional head of the dispersants [16].

Fowkes et al. suggested that the charging of alumina parti-
les goes back to acid–base interactions [24,25]. The zeta-potential
f alumina in water is positive—for metal oxides in water the
eta-potential is dependent on the pH of the solution, the crys-
al structure and is positive below the isoelectric point [26]. This
trongly supports the presence of traces of water in the experiments
isted in Table 2 and plotted in Fig. 2. Traces of water are belived
o stabilize alumina in non-polar media. For example found Soma-
undaran et al. that alumina dispersed in non-polar media solvents
re stabilized significantly by the presence of water [12]. So traces
f water would also explain the increase in stability with increasing
OT concentration (from 0.5 to 2 mmol l−1). It was proven in ear-

ier work that AOT at these concentrations does not form micelles
n dry NMP [27]. On the other hand, physical adsorbed water forms

polar environment and benefits to the adsorption of AOT [20].
he critical micelle concentration (cmc) of AOT is 2.23 mmol l−1

n water (at 303 K) [18]. As the surfactant is soluble in both NMP
nd water it is possible that at higher AOT-concentrations (from
to 25 mmol l−1) the surfactant forms micelles in water. At these

oncentrations a further decrease in the stability of the alumina
ispersion was observed.

.5. Conclusions

The anionic surfactant AOT does not, but trace water does
mprove the magnitude of zeta-potential of alumina dispersed in
he a-protic, polar, organic solvent NMP. Alumina dispersed in dry
or slightly moist) NMP shows the best colloidal behaviour to be fur-
her used in non-aqueous SIC experiments. A dispersion of 1 wt.%
howed a stability of over 2 h.
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