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Abstract

Let us assume that A and B are non-empty subsets of a metric space. In view of the fact that a non-
self mapping T : A −→ B does not necessarily have a fixed point, it is of considerable significance to
explore the existence of an element x that is as close to T x as possible. In other words, when the fixed point
equation T x = x has no solution, then it is attempted to determine an approximate solution x such that the
error d(x, T x) is minimum. Indeed, best proximity point theorems investigate the existence of such optimal
approximate solutions, known as best proximity points, of the fixed point equation T x = x when there is
no solution. Because d(x, T x) is at least d(A, B), a best proximity point theorem ascertains an absolute
minimum of the error d(x, T x) by stipulating an approximate solution x of the fixed point equation T x = x
to satisfy the condition that d(x, T x) = d(A, B). This article establishes best proximity point theorems for
proximal contractions, thereby extending Banach’s contraction principle to the case of non-self mappings.
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The classical and well-known Banach’s contraction principle states that every contraction on
a complete metric space has a unique fixed point that is realizable as the limit of Picard iterates.
Numerous interesting extensions and variants of the aforesaid result exist in the literature.
However, the mappings involved in all these results are self-mappings. So, it is contemplated
in this paper to derive some best proximity point theorems which furnish non-self mapping
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analogues of the aforesaid Banach’s contraction principle. Consequently, the results established
in this article guarantee the existence of optimal approximate solutions for certain fixed point
equations when there is no solution.

Fixed point theory is an indispensable tool for solving the equation T x = x for a mapping
T defined on a subset of a metric space, a normed linear space or a topological vector space.
As a non-self mapping T : A −→ B does not necessarily have a fixed point, one often tries to
determine an element x which is in some sense closest to T x . Best approximation theorems and
best proximity point theorems are pertinent in this perspective. A classical best approximation
theorem, due to Fan [7], asserts that if A is a non-empty compact convex subset of a Hausdorff
locally convex topological vector space X with a semi-norm p and T : A −→ X is a continuous
mapping, then there is an element x in A satisfying the condition that dp(x, T x) = dp(T x, A).
There have been many subsequent extensions and variants of Fan’s Theorem, including those by
Prolla [11], Reich [12], Sehgal and Singh, [18,19]. Further, Vetrivel et al. [23] have furnished a
unified approach to such interesting results.

On the other hand, despite the fact that best approximation theorems assure the existence of
approximate solutions, such results need not produce optimal solutions. Best proximity point
theorems provide sufficient conditions that ensure the existence of approximate solutions which
are optimal as well. In fact, if there is no solution to the fixed point equation T x = x for a non-
self mapping T : A −→ B, then it is desirable to determine an approximate solution x such that
the error d(x, T x) is minimum. In light of the fact that d(x, T x) ≥ d(A, B), an absolute optimal
approximate solution is an element x for which the error d(x, T x) assumes the least possible
value d(A, B). As a result, a best proximity pair theorem furnishes sufficient conditions for the
existence of an optimal approximate solution x , known as a best proximity point of the mapping
T , satisfying the condition that d(x, T x) = d(A, B). Interestingly, best proximity theorems also
serve as a natural generalization of fixed point theorems. Indeed, a best proximity point becomes
a fixed point if the mapping under consideration is a self-mapping.

Analysis of several variants of contractions for the existence of a best proximity point can be
seen in [1,5,6,8,22,24]. Many best proximity point theorems for set valued mappings have been
established in [2,3,9,10,15–17,21,25–27]. Anthony Eldred et al. [4] have obtained best proximity
point theorems for relatively non-expansive mappings. A best proximity point theorem for
contractive non-self-mappings has been explored in [13]. Further, some common best proximity
point theorems have been analyzed in [14,20].

On account of the preceding discussion, it is appropriate to elicit best proximity point
theorems to facilitate the proposed generalizations of Banach’s contraction principle to the
case of non-self mappings. Indeed, this article focuses on best proximity point theorems for
proximal contractions of the first and second kind, which serve as non-self mapping analogues
of contraction self-mappings. Also, necessary and sufficient conditions are established for a non-
self contraction mapping to have a best proximity point.

2. Preliminaries

Given two non-empty subsets A and B of a metric space, the following notions and notations
are used in the sequel.

d(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}

A0 = {x ∈ A : d(x, y) = d(A, B) for some y ∈ B}

B0 = {y ∈ B : d(x, y) = d(A, B) for some x ∈ A}.
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Definition 2.1. A is said to be approximatively compact with respect to B if every sequence
{xn} of A satisfying the condition that d(y, xn) −→ d(y, A) for some y in B has a convergent
subsequence.

It is evident that every set is approximatively compact with respect to itself. If A intersects B,
then A


B is contained in both A0 and B0. Further, it can be seen that if A is compact and B is

approximatively compact with respect to A, then the sets A0 and B0 are non-empty.

Definition 2.2. A mapping T : A −→ B is said to be a proximal contraction of first kind if there
exists a non-negative number α < 1 such that, for all u1, u2, x1, x2 in A,

d(u1, T x1) = d(A, B)

d(u2, T x2) = d(A, B)


H⇒ d(u1, u2) ≤ αd(x1, x2).

It is easy to observe that a self-mapping that is a proximal contraction of the first kind reduces
to a contraction.

Definition 2.3. A mapping T : A −→ B is said to be a strong proximal contraction of the first
kind if there exists a non-negative number α < 1 such that, for all u1, u2, x1, x2 in A and for all
β ∈ [1, 2),

d(u1, T x1) ≤ βd(A, B)

d(u2, T x2) ≤ βd(A, B)


H⇒ d(u1, u2) ≤ αd(x1, x2) + (β − 1)d(A, B).

It is evident that a self-mapping that is a strong proximal contraction of the first kind reduces
to a contraction.

Definition 2.4. A non-self mapping T : A −→ B is said to be a proximal contraction of the
second kind if there exists a non-negative real number α < 1 such that

d(T u1, T u2) ≤ αd(T x1, T x2)

whenever x1, x2, u1 and u2 are elements in A satisfying the condition that

d(u1, T x1) = d(A, B) and d(u2, T x2) = d(A, B).

The requirement for a self-mapping T to be a proximal contraction of second kind is that

d(T 2x1, T 2x2) ≤ αd(T x1, T x2)

for all x1 and x2 in the domain of T . Consequently, any contraction self-mapping is a proximal
contraction of the second kind but the converse is not true. Consider R endowed with the
Euclidean metric. Let the self-mapping T : [0, 1] −→ [0, 1] be defined as

T x =


0 if x is rational
1 otherwise.

Then, T is a proximal contraction of the second kind but not a contraction. Further, the preceding
example exhibits that even a self-mapping that is a proximal contraction of second kind is not
necessarily continuous.
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Definition 2.5. Given T : A −→ B and an isometry g : A −→ A, the mapping T is said to
preserve isometric distance with respect to g if

d(T gx1, T gx2) = d(T x1, T x2)

for all x1 and x2 in A.

Definition 2.6. Given non-self mappings S : A −→ B and T : B −→ A, the pair (S, T ) is said
to satisfy min – max condition if for all x ∈ A and y ∈ B,

d(A, B) < d(x, y) H⇒ min(Sx, T y) ≠ max(Sx, T y)

where min(Sx, T y) and max(Sx, T y) are defined as

min(Sx, T y) = min{d(x, y), d(x, Sx), d(y, T y), d(Sx, T y), d(x, ST y),

d(y, T Sx), d(Sx, T Sx), d(T y, ST y), d(T Sx, ST y)}

max(Sx, T y) = max{d(x, y), d(x, Sx), d(y, T y), d(x, T y), d(y, Sx), d(Sx, T y),

d(x, T Sx), d(y, ST y), d(x, ST y), d(y, T Sx), d(Sx, T Sx),

d(T y, ST y), d(T Sx, ST y)}.

It can be observed that the min–max condition is satisfied by several classes of mappings.

Definition 2.7. Given non-self mappings S : A −→ B and T : B −→ A, the pair (S, T ) is said
to be

(a) a cyclic contractive pair if d(A, B) < d(x, y) H⇒ d(Sx, T y) < d(x, y)

(b) a cyclic expansive pair if d(A, B) < d(x, y) H⇒ d(Sx, T y) > d(x, y)

(c) a cyclic inequality pair if d(A, B) < d(x, y) H⇒ d(Sx, T y) ≠ d(x, y)

for all x ∈ A and y ∈ B.

It is apparent that cyclic contractive pairs, cyclic expansive pairs and cyclic inequality pairs
satisfy the min–max condition.

Definition 2.8. Given mappings S : A −→ B and T : B −→ A, the pair (S, T ) is said to form
a cyclic contraction if there exists a non-negative number α < 1 such that

d(Sx, T y) ≤ αd(x, y) + (1 − α)d(A, B)

for all x ∈ A and y ∈ B.

It is easy to see that every cyclic contraction pair is cyclic contractive and hence satisfies the
min–max condition.

3. Proximal contractions

The following best proximity point theorem extends Banach’s contraction principle to the case
of non-self mappings.

Theorem 3.1. Let X be a complete metric space. Let A and B be non-empty, closed subsets of
X such that A is approximatively compact with respect to B. Further, suppose that A0 and B0
are non-empty. Let T : A −→ B and g : A −→ A satisfy the following conditions.
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(a) T is a continuous proximal contraction of second kind.
(b) g is an isometry.
(c) T (A0) is contained in B0.
(d) A0 is contained in g(A0).
(e) T preserves isometric distance with respect to g.

Then, there exists an element x in A such that

d(gx, T x) = d(A, B).

Moreover, if x∗ is another element for which the preceding conclusion holds, then T x and T x∗

are identical.

Proof. Let x0 be a fixed element in A0. Since T (A0) is contained in B0 and A0 is contained in
g(A0), there exists an element x1 in A0 such that

d(gx1, T x0) = d(A, B).

Again, since T x1 is an element of T (A0) which is contained in B0, and A0 is contained in g(A0),
it follows that there is an element x2 in A0 such that

d(gx2, T x1) = d(A, B).

This process can be continued. Having chosen xn in A0, it is possible to find xn+1 in A0 such that

d(gxn+1, T xn) = d(A, B)

for every positive integer n because of the fact that T (A0) is contained in B0 and A0 is contained
in g(A0). As T is a proximal contraction of the second kind,

d(T gxn+1, T gxn) ≤ αd(T xn, T xn−1).

Since T preserves isometric distance with respect to g,

d(T xn+1, T xn) ≤ αd(T xn, T xn−1).

So, it follows that {T xn} is a Cauchy sequence and hence it converges to some element y in B.
Further,

d(y, A) ≤ d(y, gxn) ≤ d(y, T xn−1) + d(T xn−1, gxn)

= d(y, T xn−1) + d(A, B)

≤ d(y, T xn−1) + d(y, A).

Therefore, d(y, gxn) −→ d(y, A). In view of the fact that A is approximatively compact with
respect to B, {gxn} has a subsequence {gxnk } converging to some z in A. Therefore, it can be
concluded that

d(z, y) = lim
k→∞

d(gxnk , T xnk−1) = d(A, B).

Eventually, z is a member of A0. Since A0 is contained in g(A0), z = gx for some x in A0. As
g(xnk ) −→ g(x) and g is an isometry, xnk −→ x . Since the mapping T is continuous, it follows
that T xnk −→ T x . Consequently, y and T x are identical. Thus, it follows that

d(gx, T x) = lim
n→∞

d(gxnk , T xnk−1) = d(A, B).
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Suppose that there is another element x∗ such that

d(gx∗, T x∗) = d(A, B).

Since T is a proximal contraction of the second kind,

d(T gx, T gx∗) ≤ αd(T x, T x∗).

As T preserves isometric distance with respect to g, we have

d(T x, T x∗) ≤ αd(T x, T x∗)

which implies that T x = T x∗. This completes the proof of the theorem. �

If g is the identity mapping, then the preceding theorem yields the following corollary.

Corollary 3.2. Let A and B be non-empty, closed subsets of a complete metric space such that
A is approximatively compact with respect to B. Further, suppose that A0 and B0 are non-empty.
Let T : A −→ B satisfy the following conditions.

(a) T is a continuous proximal contraction of the second kind.
(b) T (A0) is contained in B0.

Then, there exists an element x in A such that

d(x, T x) = d(A, B).

Moreover, if x∗ is another best proximity point of T , then T x and T x∗ are identical.

The following result provides another generalization of Banach’s contraction principle to the
case of non-self mappings.

Theorem 3.3. Let X be a complete metric space. Let A and B be non-empty, closed subsets of
X. Further, suppose that A0 and B0 are non-empty. Let T : A −→ B and g : A −→ A satisfy
the following conditions.

(a) T is a continuous proximal contraction of the first kind.
(b) g is an isometry.
(c) T (A0) is contained in B0.
(d) A0 is contained in g(A0).

Then, there exists a unique element x in A such that

d(gx, T x) = d(A, B).

Proof. Proceeding as in Theorem 3.1, there exists a sequence {xn} in A satisfying the following
condition.

d(gxn+1, T xn) = d(A, B).

Since T is a proximal contraction of the first kind, we have

d(gxn+1, gxn) ≤ αd(xn, xn−1).

Since g is an isometry, it follows that

d(xn+1, xn) ≤ αd(xn, xn−1).



1778 S. Sadiq Basha / Journal of Approximation Theory 163 (2011) 1772–1781

Therefore, {xn} is a Cauchy sequence and hence converges to some x in A. Since g and T are
continuous, we have

d(gx, T x) = lim
n→∞

d(gxn+1, T xn) = d(A, B).

Suppose that there is another element x∗ such that

d(gx∗, T x∗) = d(A, B).

Since T is a proximal contraction of the first kind and g is an isometry, we have

d(x, x∗) = d(gx, gx∗) ≤ αd(x, x∗)

which implies that x and x∗ are identical. This completes the proof of the theorem. �

If g is the identity mapping, then the preceding theorem yields the following best proximity
point theorem.

Corollary 3.4. Let X be a complete metric space. Let A and B be non-empty, closed subsets
of X. Further, suppose that A0 and B0 are non-empty. Let T : A −→ B satisfy the following
conditions.

(a) T is a continuous proximal contraction of the first kind.
(b) T (A0) is contained in B0.

Then, there exists a unique element x in A such that

d(x, T x) = d(A, B).

The following result furnishes another generalization of Banach’s contraction principle to the
case of non-self mappings.

Theorem 3.5. Let A and B be non-empty, closed subsets of a complete metric space such that
d(A, B) > 0. Let g : A −→ A and T : A −→ B satisfy the following conditions.

(a) There is a sequence {xn} in A such that d(gxn, T xn) −→ d(A, B).
(b) T is a continuous, strong proximal contraction of the first kind.
(c) g is an isometry.

Then, there exists a unique element x0 in A such that

d(gx0, T x0) = d(A, B).

Further, there exists a subsequence {xnk } of {xn} converging to the element x0.

Proof. For each positive integer k, let us define

Ak = {x ∈ A : d(gx, T x) ≤ (1 + 1/k)d(A, B)}.

Since d(gxn, T xn) −→ d(A, B), there exists a member xnk of the sequence {xn} such that

d(gxnk , T xnk ) ≤ (1 + 1/k)d(A, B).

Therefore, Ak is non-empty for every k. Because of the fact that g and T are continuous, each
Ak is closed. Also, it is evident that Ak+1 is contained in Ak . If x, x∗ are any two elements in
Ak , then, as T is a strong proximal contraction of the first kind, we have

d(gx, gx∗) ≤ αd(x, x∗) + (1/k)d(A, B)
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for some α ∈ [0, 1). Since g is an isometry, it follows that

d(x, x∗) ≤
1

(1 − α)k
d(A, B).

Thus, diam(Ak) −→ 0. Since X is a complete metric space,


Ak contains just a single point, say
x0, which satisfies the condition that d(gx0, T x0) = d(A, B). Moreover, since g is an isometry
and T is a strong proximal contraction of the first kind, it follows that

d(xnk , x0) = d(gxnk , gx0) ≤ αd(xnk , x0) + (1/k)d(A, B).

Therefore, d(xnk , x0) ≤
1

(1−α)k d(A, B). Hence, the subsequence {xnk } converges to the element
x0. This completes the proof of the theorem. �

The following result furnishes necessary and sufficient conditions for a contraction to have a
best proximity point.

Theorem 3.6. Let A and B be non-empty, closed subsets of a complete metric space. Let
S : A −→ B be a contraction.

Then, S : A −→ B has a best proximity point if and only if there is a non-expansive mapping
T : B −→ A such that the pair (S, T ) satisfies the min–max condition.

Moreover, d(x⋆, x⋆⋆) ≤


2

1−α


d(A, B) for any two best proximity points x⋆ and x⋆⋆ of the

mapping S.

Proof. Let S have a best proximity point x∗. Let T : B −→ A be defined as T y = x∗ for all y
in B. Then, T is a non-expansive mapping. Further, it follows from the definition of T that

d(T y, ST y) = d(x∗, Sx∗) = d(A, B)

for all y in B. Consequently, min(Sx, T y) = d(A, B) for all x in A and y in B.
Then, if x ∈ A and y ∈ B are such that d(A, B) < d(x, y), then it is evident that

min(Sx, T y) = d(A, B) < d(x, y) ≤ max(Sx, T y).

Thus, the pair (S, T ) satisfies the min–max condition. Conversely, let us assume that there exists
a non-expansive mapping T such that the pair (S, T ) satisfies the min–max condition. Let x0 be
a fixed element in A. We can define a sequence {xn} as follows:

x2n+1 = Sx2n

x2n+2 = T x2n+1.

Since S is a contraction mapping and T is a non-expansive mapping, it can be shown by induction
that

d(x2n, x2n+2) ≤ αnd(x0, x2)

d(x2n+1, x2n+3) ≤ αn+1d(x0, x2).

Eventually, it can be ascertained that the sequences {x2n} and {x2n+1} are Cauchy sequences.
Since the space is complete, {x2n} converges to some element x∗

∈ A and {x2n+1} converges
to some element y∗

∈ B. Since S is a continuous mapping, {Sx2n} converges to Sx∗, which
signifies that {x2n+1} converges to Sx∗. Therefore, Sx∗

= y∗. A similar argument asserts that
T y∗

= x∗. Subsequently, T Sx∗
= T y∗

= x∗. Furthermore, ST y∗
= Sx∗

= y∗. Therefore, it is
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easy to see that

min(Sx∗, T y∗) = d(x∗, y∗) = max(Sx∗, T y∗)

which mandates that d(x∗, y∗) = d(A, B), as the pair (S, T ) satisfies the min–max condition.
Hence,

d(x∗, Sx∗) = d(x∗, y∗) = d(A, B).

d(y∗, T y∗) = d(x∗, y∗) = d(A, B).

If S has two best proximity points x∗ and x∗∗, then

d(x∗, x∗∗) ≤ d(x∗, Sx∗) + d(Sx∗, Sx∗∗) + d(Sx∗∗, x∗∗)

≤ αd(x∗, x∗∗) + 2d(A, B).

Therefore, d(x∗, x∗∗) ≤


2

1−α


d(A, B). This completes the proof of the theorem. �
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