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We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation 
regime. General conditions which are required for this model to be realizable are derived in the slow-
roll approximation. We present analytic expressions for density perturbation and amplitude of tensor 
perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its 
running are obtained. We develop our model by using exponential potential, the characteristics of this 
model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous 
parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field φ and bulk 
viscous parameter is a function of matter-radiation mixture energy density ρ . The parameters of the 
model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy 
probe (WMAP9), Planck and BICEP2 data.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Big Bang model has many long-standing problems (monopole, 
horizon, flatness, etc.). These problems are solved in a framework 
of inflationary universe models [1]. Scalar field as a source of in-
flation provides a causal interpretation of the origin of the distri-
bution of Large-Scale Structure (LSS), and also observed anisotropy 
of cosmological microwave background (CMB) [2–4]. The standard 
models for inflationary universe are divided into two regimes, 
slow-roll and reheating regimes. In the slow-roll period, kinetic en-
ergy remains small compared to the potential term. In this period, 
all interactions between scalar fields (inflatons) and other fields 
are neglected and as a result the universe inflates. Subsequently, 
in reheating epoch, the kinetic energy is comparable to the poten-
tial energy that causes inflaton to begin an oscillation around the 
minimum of the potential while losing their energy to other fields 
present in the theory. After the reheating period, the universe is 
filled with radiation.

In warm inflation scenario the radiation production occurs dur-
ing inflationary period and reheating is avoided [5]. Thermal fluc-
tuations may be generated during warm inflationary epoch. These 
fluctuations could play a dominant role in producing initial fluctu-
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ations which are necessary for Large-Scale Structure (LSS) forma-
tion. In this model, density fluctuation arises from thermal rather 
than quantum fluctuation [6]. Warm inflationary period ends when 
the universe stops inflating. After this period, the universe enters 
in the radiation phase smoothly [5]. Finally, remaining inflatons 
or dominant radiation fields create matter components of the uni-
verse. Some extensions of this model are found in Ref. [7].

In the warm inflation models there has to be a continuous par-
ticle production. For this to be possible, the microscopic processes 
that produce these particles must occur at a timescale much faster 
than Hubble expansion. Thus the decay rates Γi (not to be con-
fused with the dissipative coefficient) must be bigger than H . Also 
these produced particles must thermalize. Thus the scattering pro-
cesses among these produced particles must occur at a rate bigger 
than H . These adiabatic conditions were outlined since the early 
warm inflation papers, such as Ref. [8]. More recently there has 
been considerable explicit calculation from Quantum Field Theory 
(QFT) that explicitly computes all these relevant decay and scatter-
ing rates in warm inflation models [9,10].

In warm inflation models, for simplicity, particles which are 
created by the inflaton decay are considered as massless par-
ticles (or radiation). Existence of massive particles in the infla-
tionary fluid model as a new model of inflation was studied in 
Ref. [11]. Perturbation parameters of this model were obtained in 
Ref. [12]. In this scenario the existence of massive particles alters 
the dynamic of the inflationary universe models by modification 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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of the fluid pressure. Using the random fluid hydrodynamic fluc-
tuation theory which is generalized by Landau and Lifshitz [13], 
we can describe the cosmological fluctuations in the system with 
radiation and tachyon scalar field. Decay of the massive parti-
cles within the fluid is an entropy-producing scalar phenomenon. 
In the other hand, “bulk viscous pressure” has entropy-producing 
property. Therefore, the decay of particles may be considered by a 
bulk viscous pressure Π = −3ζ H , where H is Hubble parameter 
and ζ is phenomenological coefficient of bulk viscosity [14]. This 
coefficient is positive-definite by the second law of thermodynam-
ics and in general depends on the energy density of the fluid.

The Friedmann–Robertson–Walker (FRW) cosmological models 
in the context of string/M-theory have been related to brane–
antibrane configurations [15]. Tachyon fields, associated with un-
stable D-branes, are responsible of inflation in early time [16]. 
The tachyon inflation is a k-inflation model [17] for scalar field φ
with a positive potential V (φ). Tachyon potentials have two special 
properties, first a maximum of these potential is obtained where 
φ → 0 and second property is the minimum of these potentials is 
obtained where φ → ∞. If the tachyon field starts to roll down 
the potential, then universe, which is dominated by a new form of 
matter, will smoothly evolve from inflationary universe to an era 
which is dominated by a non-relativistic fluid [18]. So, we could 
explain the phase of acceleration expansion (inflation) in terms of 
tachyon field.

Cosmological perturbations of warm inflation model (with vis-
cous pressure) have been studied in Refs. [19,12]. Warm tachyon 
inflationary universe model has been studied in Ref. [20], also 
warm inflation on the brane (with viscous pressure) has been stud-
ied in Refs. [21,22]. To the best of our knowledge, a model in 
which warm tachyon inflation with viscous pressure has not been 
yet considered. In the present work we will study warm-tachyon 
inspired inflation with viscous pressure. The paper organized as 
follows: In the next section, we will describe warm-tachyon infla-
tionary universe model with viscous pressure and the perturbation 
parameters for our model. In Section 3, we study our model us-
ing the exponential potential in high dissipative regime. Finally in 
Section 4, we close by some concluding remarks.

2. The model

In this section, we will obtain the parameters of the warm 
tachyon inflation with viscous pressure. This model may be de-
scribed by an effective tachyon fluid and matter-radiation imper-
fect fluid. Tachyon fluid in a spatially flat Friedmann Robertson 
Walker (FRW) is recognized by these parameters [18,22]

T ν
μ = diag(−ρφ, Pφ, Pφ, Pφ) (1)

Pφ = −V (φ)

√
1 − φ̇2,

ρφ = V (φ)√
1 − φ̇2

.

Important characteristics of the potential are dV
dφ

< 0, and V (φ →
∞) → 0 [23]. The imperfect fluid is a mixture of matter and radi-
ation of adiabatic index γ which has energy density ρ = T s(φ, T )

(T is temperature and s is entropy density of the imperfect fluid) 
and pressure P + Π where, P = (γ − 1)ρ . Π = −3ζ H is bulk 
viscous pressure [14], where ζ is phenomenological coefficient of 
bulk viscosity. The dynamic of the model in background level is 
given by the Friedmann equation,

3H2 = ρT = V (φ)√ ˙2
+ ρ, (2)
1 − φ
the conservation equations of tachyon field and imperfect fluid

ρ̇φ + 3H(Pφ + ρφ) = −Γ φ̇2

⇒ φ̈

1 − φ̇2
+ 3Hφ̇ + V ′

V
= −Γ

V

√
1 − φ̇2φ̇, (3)

and

ρ̇ + 3H(ρ + P + Π) = ρ̇ + 3H(γρ + Π) = Γ φ̇2, (4)

where we have used the natural units (c = h̄ = 1) and 8π
m2

p
= 1. Γ is 

the dissipative coefficient with the dimension m5
p . Dissipation term 

denotes the inflaton decay into the imperfect fluid in the inflation-
ary epoch. In the above equations dots “.” mean derivative with 
respect to cosmic time, prime denotes derivative with respect to 
the tachyon field φ. The energy density of radiation and the en-
tropy density increase by the bulk viscosity pressure Π (see Fig. 1
and Fig. 2) [22].

During slow-roll inflation epoch the energy density (1) is the 
order of potential, i.e. ρφ ∼ V , and dominates over the imperfect 
fluid energy density, i.e. ρφ > ρ . Using slow-roll approximation 
when φ̇ � 1, and φ̈ � (3H + Γ

V ) [5] the dynamic equations (2)
and (3) are reduced to

3H2 = V ,

3H(1 + r)φ̇ = − V ′

V
, (5)

where r = Γ
3H V . From above equations and Eq. (4), when the 

decay of the tachyon field to imperfect fluid is quasi-stable, i.e. 
ρ̇ � 3H(γρ + Π), and ρ̇ � Γ φ̇2, ρ may be written as

ρ = 1

γ

(
rV φ̇2 − Π

) = 1

γ

(
r

3(1 + r)2

(
V ′

V

)2

− Π

)
. (6)

In the present work, we will restrict our analysis in high dis-
sipative regime, i.e. r 	 1, where the dissipation coefficient Γ is 
much greater than 3H V [22]. Dissipation parameter Γ may be a 
constant parameter or a positive function of inflaton φ by the sec-
ond law of thermodynamics. There are some specific forms for the 
dissipative coefficient, with the most common which are found in 
the literatures being the Γ ∼ T 3 form [24–26,9]. In some works 
Γ and potential of the inflaton have the same form [20,22]. In 
Ref. [12], perturbation parameters for warm inflationary model 
with viscous pressure have been obtained where Γ = Γ (φ) = V (φ)

and Γ = Γ0 = const. In this work we will study the warm-tachyon 
inflationary universe model with viscous pressure in this two 
cases.

The slow-roll parameters of the model are presented by

ε = − Ḣ

H2

 1

2(1 + r)V

(
V ′

V

)2

,

η = − Ḧ

H Ḣ

 1

(1 + r)V

(
V ′′

V
− 1

2

(
V ′

V

)2)
. (7)

From Eqs. (6) and (7) we find

ρ = 1

γ

(
2

3

r

1 + r
ερφ − Π

)
. (8)

The condition of slow-roll is ε < 1, therefore from above equation, 
warm-tachyon inflation with viscous pressure could take place 
when

ρφ >
3(1 + r) [γρ + Π ]. (9)
2r
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Inflation period ends when ε 
 1 which implies

ρφ 
 3(1 + r)

2r
[γρ + Π ],

[ V ′
f

V f

]2 1

V f

 2(1 + r f ),

where the subscript f denotes the end of inflation. The number of 
e-folds is given by

N =
φ f∫

φ∗

Hdt =
φ f∫

φ∗

H

φ̇
dφ = −

φ f∫
φ∗

V 2

V ′ (1 + r)dφ. (10)

where the subscript ∗ denotes the epoch when the cosmological 
scale exits the horizon.

We will study inhomogeneous perturbations of the FRW back-
ground by using the linear perturbation equation of warm inflation 
scenario [13]. These scalar perturbations in the longitudinal gauge, 
may be described by the perturbed FRW metric

ds2 = (1 + 2Φ)dt2 − a2(t)(1 − 2Ψ )δi jdxidx j, (11)

where Φ and Ψ are gauge-invariant metric perturbation variables 
[27]. All perturbed quantities have a spatial sector of the form eikx , 
where k is the wave number. Following Ref. [13], we introduce the 
stress–energy tensor as

Tab = (ρ + P )nanb + P gab + naqb + nbqb + Πab (12)

where the trace-free tensor Πab and qa are orthogonal to the unit 
vector na (na is the unit normal to the constant-time surface [13]). 
For the linear perturbation theory ρ and P are replaced by ρ + δρ
and P + δP respectively. We also define the perturbation parame-
ters

qi = (ρ + P )∇iδV δΠi j = ∇i∇ jδΠ − 1

3
gij∇2δΠ (13)

So, the perturbed Einstein field equation of motion in momen-
tum space have these forms

Φ = Ψ,

Φ̇ + HΦ = 1

2

[
− (γρ + Π)av

k
+ V φ̇√

1 − φ̇2
δφ

]
, (14)

¨δφ
1 − φ̇2

+
[

3H + Γ

V

]
˙δφ +

[
k2

a2
+ (ln V )′′ + φ̇

(
Γ

V

)′]
δφ

−
[

1

1 − φ̇2
+ 3

]
φ̇Φ̇ −

[
φ̇

Γ

V
− 2(ln V )′

]
Φ = 0. (15)

The fluid equations obtain from the stress-energy tensor [13].

( ˙δρ) + 3γ Hδρ + ka(γρ + Π)v + 3(γρ + Π)Φ̇

− φ̇2Γ ′δφ − Γ φ̇
[
2( ˙δφ) + φ̇Φ

] = 0, (16)

v̇ + 4H v + k

a

[
Φ + δP

ρ + P
+ Γ φ̇

ρ + P
δφ

]
= 0. (17)

where

δP = (γ − 1)δρ + δΠ, δΠ = Π

[
ζ,ρ

ζ
δρ + Φ + Φ̇

H

]
.

The above equations are obtained for Fourier components eikx , 
where the subscript k is omitted. v in the above set of equa-
tions is given by the decomposition of the velocity field (δu j =
− iak J
k veikx, j = 1, 2, 3) [21]. Warm inflation model may be con-

sidered as a hybrid-like inflationary model where the inflaton field 
interacts with imperfect fluid [19,28]. Entropy perturbation may be 
related to dissipation term [29]. In slow-roll approximation the set 
of perturbed equations are reduced to [22]

Φ 
 1

2H

[
−4(γρ + Π)av

k
+ V φ̇δφ

]
, (18)

[
3H + Γ

V

]
˙δφ +

[
(ln V )′′ + φ̇

(
Γ

V

)′]
δφ 


[
φ̇

Γ

V
− 2(ln V )′

]
Φ,

(19)

δρ 
 φ̇2

3γ H

[
Γ ′δφ + Γ Φ

]
, (20)

and

v 
 − k

4aH

(
Φ + (γ − 1)δρ + δΠ

γρ + Π
+ Γ φ̇

γρ + Π
δφ

)
. (21)

Using Eqs. (18), (20) and (21), perturbation variable Φ is deter-
mined

Φ 
 φ̇V

2H

δφ

G(φ)

[
1 + Γ

4H V
+

(
[γ − 1] + Π

ζ,ρ

ζ

)
φ̇Γ ′

12γ H2 V

]
, (22)

where

G(φ) = 1 − 1

8H2

[
2γρ + 3Π + γρ + Π

γ

(
Π

ζ,ρ

ζ
− 1

)]
.

In Eq. (22), for Π → 0 and γ = 4
3 case, we may obtain the pertur-

bation variable Φ of warm tachyon inflation model without viscous 
pressure effect [20]. (In this case, we find G(φ) → 1 because of the 
inequality ρ

V � 1.) Using Eq. (5), we find(
3H + Γ

V

)
d

dt
=

(
3H + Γ

V

)
φ̇

d

dφ
= − V ′

V

d

dφ
. (23)

From above equation, Eq. (19) and Eq. (22), the expression (δφ)′
δφ

is 
obtained

(δφ)′

δφ
= 1

(ln V )′

[
(ln V )′′ + φ̇

(
Γ

V

)′
+

(
2(ln V )′ − φ̇

Γ

V

)(
V φ̇

2G H

)

×
(

1 + Γ

4H V
+

[
(γ − 1) + Π

ζ,ρ

ζ

]
φ̇Γ ′

12γ H2 V

)]
. (24)

We will return to the above relation soon. Following Refs. [20–22]
and [29], we introduce auxiliary function χ as

χ = δφ

(ln V )′
exp

[∫
1

3H + Γ
V

(
Γ

V

)′
dφ

]
. (25)

From above definition we have

χ ′

χ
= (δφ)′

δφ
− (ln V )′′

(ln V )′
+ (Γ

V )′

3H + Γ
V

. (26)

Using above equation, Eqs. (24) and (5)

χ ′

χ
= − 9

8G

2H + Γ
V

(3H + Γ
V )2

[
Γ + 4H V −

(
[γ − 1] + Π

ζ,ρ

ζ

)

× Γ ′(ln V )′

3γ H(3H + Γ )

]
(ln V )′

V
. (27)
V
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A solution for the above equation is

χ(φ) = C exp

(
−

∫ {
− 9

8G

2H + Γ
V

(3H + Γ
V )2

×
[
Γ + 4H V −

(
[γ − 1] + Π

ζ,ρ

ζ

)
Γ ′(ln V )′

3γ H(3H + Γ
V )

]

× (ln V )′

V

}
dφ

)
, (28)

where C is integration constant. From above equation and Eq. (26)
we find small change of variable δφ

δφ = C(ln V )′ exp
(�(φ)

)
, (29)

where

�(φ) = −
∫ [

(Γ
V )′

3H + Γ
V

+ 9

8G

2H + Γ
V

(3H + Γ
V )2

×
[
Γ + 4H V −

(
[γ − 1] + Π

ζ,ρ

ζ

)
Γ ′(ln V )′

3γ H(3H + Γ
V )

]

× (ln V )′

V

]
dφ (30)

Finally the density perturbation is given by [30]

δH = 16π

5

exp(−�(φ))

(ln V )′
δφ = 16π

15

exp(−�(φ))

Hrφ̇
δφ. (31)

By inserting Γ = 0 and ξ = 0, the above equation reduces to 
δH 
 H

φ̇
δφ which agrees with the density perturbation in cool in-

flation model [1]. In warm inflation model the fluctuations of the 
scalar field in high dissipative regime (r 	 1) may be generated by 
thermal fluctuation instead of quantum fluctuations [31] as

(δφ)2 
 kF Tr

2π2
, (32)

where in this limit freeze-out wave number kF =
√

Γ H
V =

H
√

3r ≥ H corresponds to the freeze-out scale at the point when, 
dissipation damps out to thermally excited fluctuations ( V ′′

V ′ < Γ H
V ) 

[31]. With the help of the above equation and Eq. (31) in high 
dissipative regime (r 	 1) we find

δ2
H = 64

225
√

3

exp(−2�(φ))

r
1
2 ε̃

Tr

H
, (33)

where

�̃(φ) = −
∫ [

1

3Hr

(
Γ

V

)′
+ 9

8G

(
1 −

[
(γ − 1) + Π

ζ,ρ

ζ

]

× (ln Γ )′(ln V )′

9γ rH2

)
(ln V )′

]
dφ, (34)

and

ε̃ = 1

2r

V ′2

V 3
. (35)

An important perturbation parameter is scalar index ns which in 
high dissipative regime is given by

ns = 1 + d ln δ2
H

d ln k
≈ 1 − 5

2
ε̃ − 3

2
η̃ + ε̃

(
2V

V ′

)(
r′

4r
− 2�̃(φ)′

)
, (36)

where
η̃ = 1

rV

[
V ′′

V
− 1

2

(
V ′

V

)2]
. (37)

In Eq. (36) we have used a relation between small change of the 
number of e-folds and interval in wave number (dN = −d ln k). The 
Planck measurement constraints the spectral index as [3]:

ns = 0.96 ± 0.0073 (38)

Running of the scalar spectral index may be found as

αs = dns

d ln k
= −dns

dN
= − dφ

dN

dns

dφ
= 1

rV

(
V ′

V

)
n′

s. (39)

This parameter is one of the interesting cosmological perturbation 
parameters which is approximately −0.0134 ± 0.0090, by using 
Planck observational results [3].

During inflation epoch, there are two independent components 
of gravitational waves (h×+) with action of massless scalar field 
are produced by the generation of tensor perturbations. The am-
plitude of tensor perturbation is given by

A2
g = 2

(
H

2π

)2

coth

[
k

2T

]
= V 2

6π2
coth

[
k

2T

]
, (40)

where, the temperature T in extra factor coth[ k
2T ] denotes the 

temperature of the thermal background of gravitational wave [32]. 
Spectral index ng may be found as

ng = d

d ln k

(
ln

[
A2

g

coth( k
2T )

])

 −2ε̃, (41)

where Ag ∝ kng coth[ k
2T ] [32]. Using Eqs. (33) and (40) we write 

the tensor–scalar ratio in high dissipative regime

R(k) = A2
g

P R
|k=k0 = 54

√
3

5

r
1
2 ε̃H3

Tr
exp

(
2�(φ)

)
coth

[
k

2T

]∣∣∣∣
k=k0

,

(42)

where k0 is referred to pivot point [32] and P R = 25
4 δ2

H . An upper 
bound for this parameter is obtained by using Planck data, R <
0.11 [2]. Non-Gaussianity of the warm-tachyon inflation model is 
presented in Ref. [20] as

f N L = −5

3

φ̇

H

[
1

H
ln

(
kF

H

)(
V ′′′ + 2k2

F V ′

Γ

)]
. (43)

In high dissipative regime (r 	 1), f N L parameter has the following 
form

f N L = 5

9

(
V ′

V

)2( ln r

r

)
. (44)

In the above equation, we have used Eq. (5) and definition kF =√
Γ H

V = H
√

3r.

We note that, the �(φ) factor (30) which is found in pertur-
bation parameters (33), (36), (39) and (42) in high energy limit 
(V 	 λ), for tachyonic warm-viscous inflation model has an im-
portant difference with the same factor which was obtained for 
non-viscous tachyonic warm inflation model [20]

�(φ) = −
∫ [

(Γ
V )′

3H + Γ
V

+ 9

8G

2H + Γ
V

(3H + Γ
V )2

×
[
Γ + 4H V − Γ ′(ln V )′

36H(3H + Γ )

]
(ln V )′

V

]
dφ.
V
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The bulk viscous pressure effect leads to this difference. There-
fore, the perturbation parameters P R , R , ns and αs which may be 
found by WMAP and Planck observational data, for our model with 
viscous pressure, are modified due to the effect of this additional 
pressure.

3. Exponential potential

In this section we consider our model with the tachyonic effec-
tive potential

V (φ) = V 0 exp(−αφ), (45)

where parameter α > 0 (with unit mp ) is related to mass of the 
tachyon field [33]. The exponential form of potential have char-
acteristics of tachyon field ( dV

dφ
< 0, and V (φ → 0) → Vmax). We 

develop our model in high dissipative regime, i.e. r 	 1, for two 
cases: 1. Γ and ζ are constant parameters, 2. Γ as a function of 
tachyon field φ and ζ as a function of energy density ρ of imper-
fect fluid.

3.1. Γ = Γ0 , ζ = ζ0 case

From Eq. (35), the slow-roll parameter ε̃ in the present case has 
the form

ε̃ =
√

3

2

α2√V 0

Γ0
exp

(
−α

φ

2

)
. (46)

Dissipation parameter r = Γ
3H V in this case is given by

r = Γ0
√

3V
3
2

0

exp

(
3

2
αφ

)
	 1. (47)

We find the evolution of tachyon field with the help of Eq. (5)

φ(t) = 1

α
ln

[
α2 V 0

Γ0
t + eαφi

]
, (48)

where φi = φ(t = 0). Hubble parameter for our model has the form

H =
√

V 0

3
exp

(
−αφ

2

)
. (49)

At the end of inflation (ε̃ 
 1) the tachyon field becomes

φ f = 2

α
ln

[√
3V 0α

2

2Γ0

]
, (50)

so, by using the above equation and Eq. (48) we may find time at 
which inflation ends

t f = 3

4

α2

Γ0
− Γ0

α2 V 0
eαφi . (51)

Using Eqs. (8) and (46), the energy density of the radiation-matter 
fluid in high dissipative limit becomes

ρ =
√

V 0

3γ 2
exp

(
−αφ

2

)[
α2

Γ0
V 0 exp(−αφ) + 3ζ0

]
, (52)

and, in terms of tachyon field energy density ρφ becomes

ρ = ρ
1
2
φ√
3γ

(
α2

Γ0
ρφ + 3ζ0

)
. (53)

For this example, the entropy density in terms of energy density 
of inflaton may be obtained from above equation
Fig. 1. We plot the entropy density s in terms of energy density of tachyon field 
ρφ where, Π = 0 (dashed curve) and Π = −3ζ0 H (blue curve) (T = 5.47 × 10−5, 
Γ = Γ0 = 7.9 × 103, ζ0 = 4.21 × 10−5, α = 1, γ = 4

3 ). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

T s = ρ
1
2
φ√
3γ

(
α2

Γ0
ρφ + 3ζ0

)
. (54)

In Fig. 1, we plot the entropy density in terms of inflaton energy 
density. It may be seen that the entropy density increases by the 
bulk viscous effect [24]. From Eq. (10), the number of e-folds at 
the end of inflation, by using the potential (45), for our inflation 
model is given by

Ntotal = 2Γ0

α2
√

3V 0

[
exp

(
αφ f

2

)
− exp

(
αφi

2

)]
. (55)

where φ f > φi . Using Eqs. (33) and (42), we could find the scalar 
spectrum and scalar–tensor ratio

δ2
H = 128

√
Γ0

225 4
√

3α2

[
V 2(φ0)

(
√

V (φ0) + A)
9
2

]
Tr

4
√

V (φ0)
, (56)

where A = 3
√

3ζ0
8 (−3 + 5

γ ), and

R = 9 4
√

3

5
√

Γ0

(
√

V (φ0) + A)
9
2

V 2(φ0)

V (φ0)
5
4

Tr
coth

[
k

2T

]
, (57)

respectively, where the subscript 0 denotes the time, when the 
perturbation was leaving the horizon. In the above equation we 
have used Eq. (34) where

�̃(φ) = ln

( [√V (φ0) + A] 9
4

V (φ0)

)
. (58)

These parameters may be restricted by WMAP9 and Planck data 
[2,3]. Based on these data, an upper bound for V (φ0) may be found

V (φ0) < 2.28 × 10−4.

In the above equation we have used these data: R < 0.11, P R =
2.28 × 10−9 [2,3]. From Eqs. (44) and (47), non-Gaussianity for our 
model is presented as

f N L = 5
√

3

9

α2 V
3
2

0

Γ0

ln(
Γ0

√
3V

3
2

0

) + 3
2αφ(tF )

exp( 3
2αφ(tF ))

, (59)

where the freeze-out time tF is the time when the last three wave-
vectors k thermalize [20].
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Fig. 2. We plot the entropy density s in terms of scalar field energy density ρφ

where, Π = 0 (dashed line) and Π = −3ζ1ρH (blue curve) (T = 5.47 ×10−5, γ = 4
3 , 

α1 = 1.38 × 104, ζ1 = 0.76, α = 1). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

3.2. Γ = Γ (φ), ζ = ζ(ρ) case

Now we assume ζ = ζ(ρ) = ζ1ρ , and Γ = Γ (φ) = α1 V (φ) =
α1 V 0 exp(−αφ), where α1 and ζ1 are positive constants. By us-
ing exponential potential (45), Hubble parameter, r parameter and 
slow-roll parameter ε̃ we have these forms

H(φ) =
√

V 0

3
exp

(
−αφ

2

)
, r = α1√

3V 0
exp

(
α

φ

2

)
,

ε̃ =
√

3

V 0

α2

2α1
exp

(
α

φ

2

)
, (60)

respectively. Using Eq. (5), we find the scalar field φ in terms of 
cosmic time

φ(t) = − α

α1
t + φi . (61)

The energy density of imperfect fluid ρ in terms of the inflaton 
energy density ρφ , is given by the expression

ρ = α2

α1

ρ
1
2
φ√
3

(
γ − √

3ξ1ρ
1
2
φ

)−1
. (62)

We can find the entropy density s in terms of energy density ρφ

T s = α2

α1

ρ
1
2
φ√
3

(
γ − √

3ξ1ρ
1
2
φ

)−1
. (63)

The entropy density and matter-radiation energy density of our 
model in this case increase by the bulk viscosity effect (see Fig. 2).

From Eq. (61) the scalar field and effective potential at the end 
of inflation where ε̃ 
 1, become

φ f = 1

α
ln

[
V 0

3

(
2α1

α2

)2]
, V f = 3

4

α4

α2
1

. (64)

By using the above equation and Eq. (61) we may find time at 
which inflation ends

t f = 3 α2

− Γ0
2

eαφi . (65)

4 Γ0 α V 0
Fig. 3. In this graph we plot the Hubble parameter H in term of the temperature Tr . 
We can find the minimum amount of temperature Tr = 5.47 ×10−5 in order to have 
the necessary condition for warm inflation model (Tr > H).

Number of e-folds in this case is related to V i and V f by using 
Eq. (10)

V i = (2N − 1)2 V f . (66)

At the beginning of the inflation r parameter is given by

r = ri = 2

3

α2
1

(2N − 1)α2
. (67)

High dissipative condition (r 	 1), leads to α1 	 α(N − 1)
1
2 which 

is agree with the warm-tachyon inflation model without viscous 
pressure [20]. From Eqs. (44) and (60), the non-Gaussianity for our 
model in this case (Γ = Γ (φ), ξ = ξ(ρ)) is given by

f N L = 5
√

3

9

α2√V 0

α1

ln( α√
3V 0

) + αφ
2

exp(
αφ
2 )

. (68)

By using Eqs. (33) and (42) scalar power spectrum and tensor–
scalar ratio result to be

δ2
H = 128

√
α1

225 4
√

3α2

[√
V (φ0) + B

]− 9
2 (1+ ζ1α2

γ α1
)

× exp

(
9

8
[γ − 1] α2

√
3γ α1

V (φ0)
1
2

)
4
√

V (φ0)Tr, (69)

and
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R = 9 4
√

3α2

5
√

α1

[√
V (φ0) + B

] 9
2 (1+ ζ1α2

γ α1
)

× exp

(
−9

8
[γ − 1] α2

√
3γ α1

V (φ0)
1
2

)
V (φ0)

3
4

Tr
, (70)

respectively, where B = 3
√

3ζ 2
1 V 0α

2

8γα1
. In the above equations we have 

used Eq. (34) where

�̃(φ0) = 9

16
(1 − γ )

(
α2

√
3γ α1

)
V − 1

2 (φ0)

+ 9

4

[
1 + ζ1α

2

γ α1

]
ln

(
V

1
2 (φ0) + B

)
. (71)

These parameters may be restricted, using WMAP9, Planck and BI-
CEP2 data [2–4]. Using WMAP9 (BICEP2) data, P R(k0) = 25

4 δ2
H 


2.28 × 10−9, R(k0) 
 0.11 (R(k0) 
 0.22) and the characteristic of 
warm inflation, T > H [5], we may restrict the values of temper-
ature Tr > 5.47 × 10−5 (Tr > 7.73 × 10−5), using Eqs. (33), (42), 
or the corresponding equations (56), (57), (69), (70), in our cou-
pled examples (see Fig. 3). We have chosen k0 = 0.002 Mpc−1 and 
T 
 Tr . Using BICEP2 data, we have found the new minimum of Tr

(see for example [34]).

4. Conclusion

Warm-tachyon inflation model with viscous pressure, using 
overlasting form of potential V (φ) = V 0 exp(−αφ), which agrees 
with the tachyon potential properties, has been studied. The main 
problem of the inflation theory is how to attach the universe to 
the end of the inflation period. One of the solutions of this prob-
lem is the study of inflationary epoch in the context of warm 
inflation scenario [5]. In this model radiation is produced dur-
ing inflation period where its energy density is kept nearly con-
stant. This is phenomenologically fulfilled by introducing the dis-
sipation term Γ . Warm inflation model with viscous pressure is 
an extension of warm inflation model where instead of radiation 
field we have radiation-matter fluid. The study of warm inflation 
model with viscous pressure as a mechanism that gives an end for 
tachyon inflation are motivated us to consider the warm tachyon 
inflation model with viscous pressure. In the slow-roll approxi-
mation the general relation between energy density of radiation-
matter fluid and energy density of tachyon field is found. In lon-
gitudinal gauge and slow-roll limit the explicit expressions for the 
tensor–scalar ratio R scalar spectrum P R index, ns and its running 
αs have been obtained. We have developed our specific model by 
exponential potential for two cases: 1. Constant dissipation coeffi-
cient Γ0 and constant bulk viscous pressure coefficient ζ0. 2. Γ as 
a function of tachyon field φ and ζ as a function of imperfect 
fluid energy density ρ . In these two cases we have found perturba-
tion parameters and constrained these parameters by WMAP9 and 
Planck data.
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