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Abstract

Partial ordering of two quantities x and y (i.e., the ability to declare that x is better than
y with respect to some decision criteria) can be stated mathematically as: x is better than
y iff x − y ∈ K, where K is an ordering convex cone, not necessarily pointed. Cones can
be very important in representing feasible domains (i.e., {Ax � b} = M + G, where M is a
bounded convex hull of a finite number of points and G is a convex cone). We consider specific
perturbations of the Cone of Feasible Directions, which lead to a better feasible solution with
respect to some decision criteria. Such cones are introduced as a tool to mitigate and analyze
the effects of input data uncertainty on the solution of a given problem. Properties of this cone
provide a basis to prove necessary and sufficient conditions for stable/unstable unboundedness
of the multi-criteria optimization problem.
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1. Notation

The majority of concepts employed in this article derive from linear algebra and
convex analysis [22,27]. Throughout the article, Rn, Rm×n denote n-dimensional
Euclidean space and the space of (m × n) real matrices respectively; Z denotes all
integers; N represents all positive integers. For sets, matrices and vectors bold fonts
are used, and scalars are shown in italics. In this work C denotes an L × n matrix
composed of rows cj , j = 1, . . . , L; A is an m × n matrix composed of rows aj ,
j = 1, . . . , m; A/C denotes the matrix formed from the rows of the matrices A and
C: (A/C)	 = (a	

1 , . . . , a	
m, c	

1 , . . . , c	
L), where the symbol “	” denotes transpose

of vector or matrix; r(C) is the rank of matrix C; C is a linear operator corresponding
to matrix C, C : x �→ y = Cx. To be consistent with the existing literature in this
area we adopt xy to represent a scalar product of two vectors x, y ∈ Rn. The vector
ep denotes p-vector of ones (1, . . . , 1)	.

For sets and subspaces: (B)L denotes the linear subspace of maximal dimension
included in the set B; L⊥ is the orthogonal complement of subspace L. For the set
X, ri X denotes its relative interior. The polyhedral cone corresponding to a system
of homogeneous linear inequalities {x ∈ Rn : Cx � 0}, where 0 is a vector of zeros,

is denoted throughout the article by K(C) and its dual cone is denoted by K�(C)
def=

{x ∈ Rn : ∑L
j=1 λj cj , λj � 0}; and the recession cone of a set M is denoted by

O+M.

2. Introduction

In this paper we are concerned with analysis of the effects of uncertainty in the
input data of optimization problems with multiple linear criteria. When uncertain-
ty is present in the input data and decisions must be made contingent upon such
uncertainty, methods are required to answer key questions, including:

• will the nominal solution change for perturbations to the input data (i.e., is the
nominal solution robust to uncertainty in the input data);

• how large must changes in the input data be before a substantial change of the nom-
inal solution results and how will these changes in solution be for given changes
in the input data (i.e., can the robustness of the nominal solution be quantified);

• where is the effort in reducing input data uncertainty most effectively spent.

This work recognizes that uncertainty may arise from a number of sources includ-
ing: time varying data, incorrect data, subjective data, incomplete data, and mea-
surement errors; and that analysis of the effects of uncertainty in the input data is
vital in a wide range of decision-making contexts, including operating policy devel-
opment, resource deployment planning, risk mitigation. In optimization problems,
small errors in the input data can lead to a solution that is significantly different from
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the nominal, uncorrupted solution. Since structured decision-making methods, such
as optimization, are often used to make high level decisions that can have substantial
economic impact, tools are needed to predict the influence of input perturbations on
the solution.

Uncertainty analysis of continuous optimization problems with scalar objective
functions is well understood and a rich literature is available (e.g. [8,9,13]). Sensitiv-
ity and stability results (i.e., effects of differential and finite changes, respectively),
for the effects of uncertainty or changes in the input data for continuous problems
take advantage of the underlying differentiability of such problems. Unfortunately,
problems with decision variables that take on discrete values do not usually possess
these differentiability properties and as a result, other analysis tools are required.
The influence of input data perturbations for mixed-integer problems is less easily
quantified but the importance of doing so can be illustrated by the following simple
example.

Example 1. Consider

F(a) = min{ax2 | x1 + ax2 � 2a, 0 � x1 � 2a, 0 � x2 � 2, x1, x2 ∈ Z},
where a � 1. If a is an integer, then the optimum is F(a) = 0 and the solution is
x�(a) = (2a, 0). For any perturbation ε > 0: F(a − ε) = a − ε and the solution is
x�(a − ε)=(a, 1). In this case

‖x�(a) − x�(a − ε)‖ =
√

a2 + 1 > a and |F(a) − F(a − ε)| = a − ε.

Thus an arbitrarily small perturbation of parameter a leads to a change of the
solution, which is proportional to the magnitude of the parameter. Moreover, as it
is shown in Fig. 1, the optimal solution of the perturbed problem is substantially
different from the optimal solution of the original problem.

Multi-objective optimization problems attempt to “balance” two or more com-
peting objectives simultaneously, and may contain continuous and/or integer vari-
ables. Such problems arise in a wide variety of situations, including: design and
optimization of engineering systems, distribution of resources, budgeting, strategic

x12a
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1

2

a

Fig. 1. Illustration to the Example 1.
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stability and other economic, military, and social decision-making situations [10,26].
Comprehensive treatments of multi-objective optimization can be found in [6,12,25,
28]. Mixed-integer optimization problems differ from the thoroughly investigated
continuous problems, since convexity and continuity, which play very important
roles in optimization, do not extend to this case [14–20]. For example, the Pareto
set of mixed-integer, linear, multi-objective programming problems can be neither
closed, nor open [15,30], which poses problems for existing solution methods.

This work will focus on the use of perturbed cones for analysis of the effects of
input data uncertainty on multiple criteria optimization problems of the form:

(C, X) : max{Cx : x ∈ X}, (1)

where X = D ∩ {x ∈ Rn : Ax � b} (D ⊆ Rn is a set of arbitrary structure) represents
the feasible set, and objective functions are represented by the rows of matrix C ∈
RL×n. Note that although we focus on the single type of decision-making problem,
the ideas presented in this work can be extended to a broad class of problems, in-
cluding: constraint satisfaction problems, semi-definite and cone optimization prob-
lems.

A key difference between scalar optimization and vector (multi-objective) opti-
mization is ordering of the feasible space. In scalar optimization there is only one
objective function and full ordering of the feasible domain with respect to the ob-
jective function is possible. If we consider any two feasible points, then we can
determine whether one is better, or if they are equal, with respect to the objective
function. In vector optimization, with two or more objective functions, two feasible
points are not as easily compared. For example, one of the points may be better with
respect to one objective, but may be worse with respect to another objective. Thus
the feasible set is not fully ordered, but is partially ordered [12].

A considerable literature has evolved regarding the existence of solutions, their
stability [5,11,31] and related questions of well-posedness in vector optimization
[23]. In this work the effects of uncertainty in the input data on the solution of
multiple criteria optimization problems are investigated in terms of cones. Cones
are an important construct in mathematics, have been widely studied [4,21,27], and
have found application in various engineering and scientific problems [2,24]. The
use of cones specifically for vector (multi-objective) optimization is discussed in
[11,28–30]. By definition [27], a subset K of Rn is called a cone, if it is closed under
positive scalar multiplication (i.e., λx ∈ K when x ∈ K and λ > 0). In other words
a cone is a union of half-lines emanating from the origin. Cones can be used for
analysis of both the feasible domain and the objective functions. Recession cones
represent infinite directions of feasible domains [4,21,27]; ordering cones are basic
in ordering the feasible domain with respect to the optimization objective(s).

We illustrate the value of the recession cone for stability analysis in the simplest
case of polyhedral feasible set. A polyhedral set

X = {x ∈ Rn : Ax � b}
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can be represented as a sum of a convex hull M of a finite number of points and a
recession polyhedral cone G = O+X = {x ∈ Rn : Ax � 0} [1,3,4]:

{x ∈ Rn : Ax � b} = M + G.

If the matrix A does not change, the recession cone G remains unchanged. Changes
in the right-hand side vector b do not change the boundedness of the feasible domain:
if the feasible domain is unbounded, it remains unbounded (or becomes empty); if
it is bounded, it remains bounded (or becomes empty). Changes in matrix A perturb
the recession cone. Under certain conditions arbitrarily small changes in matrix A
can lead to large changes in the problem’s structure.

Partial ordering of the feasible domain with respect to the optimization objec-
tive(s) can be interpreted in terms of a cone as well. From the mathematical point of
view, x is better than y if and only if x − y ∈ K, where K is a cone (the so-called
ordering cone) [12,28]. In this paper ordering cones are defined as K ={x ∈ Rn :
Cx � 0}. Although perturbations of ordering cones were considered in [17,29,30],
there was no comprehensive study of specific perturbations of ordering cones. Such
a comprehensive study of specific cone perturbations is a central contribution of our
work. Further, the introduced perturbations are important in stability and uncertainty
analysis of mixed-integer optimization problems, for which there are very few results
in the current literature.

In the next section we represent particular perturbations, which are an extension
of the work presented in [29], of the ordering cone K as a tool to analyze and predict
changes in the solutions of multi-objective optimization problems with integer and/or
continuous variables due to input data changes. In the fourth section we formulate
and prove the properties of these cones, which can be used to:

• develop stability theory for multi-criteria optimization problems;
• formulate and prove necessary and sufficient conditions for different cases of sta-

bility;
• find equivalence conditions for different cases of stability;
• establish stability domains;
• estimate stability radii;
• develop regularization methods for ill-posed problems;
• estimate the measure of an ill-posed problem’s initial data in the space of alterna-

tives.

The preliminary applications of the proposed cone perturbation technique to sta-
bility analysis and regularization are introduced in the fifth section of the article.
Necessary and sufficient conditions for the problem to be stable solvable/unbounded
are provided. In particular, it is shown, that under certain conditions (e.g., r(A/C) =
n) for any unstable problem there exists infinitely small perturbation of the original
input data which defines a stable solvable problem. Under the same conditions there
also exists infinitely small perturbation of the original input data, which defines a
stable unbounded problem.
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3. Preliminaries

In this section, the main characteristics of problem (1) are described in terms of
cones. Specific cone perturbations are introduced as a framework to discuss
uncertainty. Although the perturbations presented here are in terms of ordering cones,
they apply equally well to the recession cone G.

According to [28], the solution of problem (1) is a subset of one of the following
sets: the set �(C, X) of all Pareto-optimal (efficient) solutions, the set P(C, X) of
all semi-efficient solutions, or the set S(C, X) of all strictly efficient solutions. The
point x∗ ∈ X is efficient (or Pareto-optimal) if there is no x ∈ X such that Cx � Cx∗
and Cx /= Cx∗. Further, the point x∗ ∈ X is semi-efficient (weakly efficient, Slater-
efficient) if there is no x ∈ X such that Cx > Cx∗. Finally, the point x∗ is strictly
efficient if there is no x ∈ X : x /= x∗, such that Cx � Cx∗. The relationship between
these sets can be expressed as

S(C, X) ⊆ �(C, X) ⊆ P(C, X).

Cones can be used to define semi-efficient, efficient and strictly efficient solutions,
both as a language and framework to discuss uncertainty. Consider the convex cone
K = K(C) = {x ∈ Rn : Cx � 0}, which can be represented as the union of sets:

K = K0 ∪ K1 ∪ K2,

where K0 = K0(C) = {x ∈ Rn : Cx = 0}; K1 = K1(C) = {x ∈ Rn : Cx > 0};
K2 = K2(C) = K \ (K0 ∪ K1). Then,

x∗ ∈ �(C, X) ⇔ (x∗ + K1 ∪ K2) ∩ X ⊆ {x∗}; (2)

x∗ ∈ P(C, X) ⇔ (x∗ + K1) ∩ X ⊆ {x∗}; (3)

x∗ ∈ S(C, X) ⇔ (x∗ + K) ∩ X = {x∗}. (4)

Define s ∈ K as feasible directions in the decision variable space. Consider that the
point x ∈ X lies on a line passing through any point x′ such that Cx′ � Cx, where
x′ = x + s, with s ∈ K. Directions s ∈ K0 may be called directions of equilibrium,
since Cx′ = Cx (the solutions x and x′ may be called equivalent); elements s ∈ K1
may be called proper directions, since all the objective functions are improved (i.e.,
Cx′ > Cx).

We can define the dual cone to K as

K∗ =
{

x ∈ Rn : x =
L∑

k=1

λkck, λk � 0, k = 1, . . . , L

}
,

which will prove more useful for our purposes, but is equivalent to the more conven-
tional definition

K∗ = {y ∈ Rn : 〈x, y〉 � 0, ∀x ∈ K},
for polyhedral cones. The equivalence of these two definitions follows from the Min-
kowski–Farkas Theorem [4,27].
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Note that this definition of the dual cone differs from the notion of a polar cone,
given in some of the literature, due to the sign of inequality (i.e., the inequality
“�” used in defining polar cones is replaced with “�” for dual cone). Note that
an important property of both type of cones is (K�)� = K. The relative interior of
the set K∗ can be defined as

ri K∗ =
{

x ∈ Rn : x =
L∑

k=1

λkck, λk > 0, k = 1, . . . , L

}
.

Remark 1. If r(C) = n then the cone K is pointed [27]. Recall that K0 = {0} ⇔
r(C) = n [22]. If 0 ∈ ri K∗, then K∗ is some subspace of the space Rn and the dual
cone K is also a subspace of the space Rn , K = K0, K∗ = K⊥

0 . Then dim K∗ = r(C)

and dim K = n − r(C).

Proposition 1 provides the basic framework for defining the structure of the prob-
lem (1) in terms of ordering cones.

Proposition 1. The qualitative properties of efficient solutions of problem (1) can
be describes as follows:

(i) If r(C) = n, then �(C, X) = S(C, X);
(ii) If 0 ∈ ri K∗, then �(C, X) = X;
(iii) If K1 = ∅, then P(C, X) = X;
(iv) If ∃ λi ∈ R, λi � 0, i = 1, . . . , L such that

∑L
k=1 λkck = 0 and

∑L
k=1 λk > 0,

then P(C, X) = X;
(v) If K2 = ∅, then �(C, X) = P(C, X).

Proof. For item (i) above, if r(C) = n, from Remark 1 K0 = {0} and it follows from
(2) and (4), that �(C, X) = S(C, X).

For item (ii) above, if 0 ∈ ri (K)∗, it follows from Remark 1 that K = K0 and
K1 ∪ K2 = ∅. Then ∀x ∈ X, x + {0} ∪ K1 ∪ K2 = x and using (2), we have X ⊆
�(C, X).

Item (iii) above follows immediately from (3).
For item (iv) above, since item (iii) above is true, it is sufficient to show that

if ∃ λi ∈ R, λi � 0, i = 1, . . . , L such that
∑L

k=1 λkck = 0 and
∑L

k=1 λk > 0, then
K1 = ∅. Assuming that ∃x ∈ K1, then cix > 0, i = 1, . . . , L and therefore,
(
∑L

k=1 λkck)x = ∑L
k=1 λk(ckx) > 0. This contradicts the assumption that

∑L
k=1 ×

λkck = 0.
Item (v) follows immediately from (2) and (3). �

Consider the family of problems {(Cτ , X)}, that are based on problem (1) and
where each row cτ

j of the matrix Cτ has the form cτ
j = cj − τu, where u ∈ ri K∗,

i.e.,
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u =
L∑

k=1

µkck, µk > 0, k = 1, . . . , L. (5)

Without loss of generality, we take
∑L

k=1 µk = 1 and u /= 0.
We also consider the cones Kτ = K(Cτ ) = {x ∈ Rn : Cτ x � 0}, which can be

represented as the union of sets

Kτ = Kτ
0 ∪ Kτ

1 ∪ Kτ
2,

where

Kτ
0 = K0(Cτ ) = {x ∈ Rn : Cτ x = 0};

Kτ
1 = K1(Cτ ) = {x ∈ Rn : Cτ x > 0};

Kτ
2 = K2(Cτ ) = Kτ \ (Kτ

0 ∪ Kτ
1).

Remark 2. Similar perturbations are introduced in [7]: each row cτ
j of the matrix

Cτ has the form cτ
j = cj − τuj , were uj ∈ ri K∗, i.e.,

uj =
L∑

k=1

µ
j
kck, µ

j
k > 0, k = 1, . . . , L, j = 1, . . . , L. (6)

Without loss of generality we assume
∑L

k=1 µ
j
k = 1, j = 1, . . . , L. Below we

show (Section 4.1), that this generalization provides similar perturbations to those
proposed in (5). Unfortunately, the monotonicity property, important in many ap-
plications, does not hold in case (6). This distinction and other properties of the
generalized type of perturbations will be discussed in Section 4.2.

4. Properties of perturbed cones

In this section the properties defining the structure of perturbed ordering cones are
developed. These properties permit the development of a regularization technique,
which changes the partial ordering in the solution space such that efficient solutions
of a perturbed problem will also be feasible and efficient solutions for the original
problem and vice versa. The properties developed here are the building blocks for
the regularization technique. Note that the developments in Sections 4.1 and 4.2 are
in terms of ordering cones; however, they apply equally to the recession cones of
feasible domains defined by systems of linear inequalities.

The properties of basic perturbations (5) and importance of their applications to
the problem (1) are summarized below.

(1) Any feasible direction of the original problem (1) remains feasible for the per-
turbed problem, where the perturbation vector is defined by (5) and τ � 0, since

∀τ � 0 : K ⊆ Kτ .
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This influences the perturbed problem in that every efficient solution remains
efficient for the original problem. This property is a key to the development of
the regularization technique, since solving the problem with a slightly enlarged
ordering cone, which contains the original cone, leads to robust solutions of the
original problem.

(2) Any feasible direction of the perturbed problem where τ ∈ [0, 1) is feasible for
the original problem, since

∀τ ∈ [0, 1): Kτ ⊆ K

(i.e., the Pareto set of the perturbed problem with τ ∈ [0, 1) covers the Pareto set
of the original problem).

(3) The size of the cone Kτ changes monotonically with τ . In the case where τ < 1,
a cone corresponding to a smaller value τ contains a cone corresponding to larger
value τ :

τ ′ < τ ′′ < 1 : Kτ ′′ ⊆ Kτ ′ ⊆ K−∞ = {x ∈ Rn : ux � 0};
τ ′ < τ ′′ < 1 : Kτ ′′

i ⊆ Kτ ′
i ⊆ K−∞

i = {x ∈ Rn : ux > 0}, i = 1, 2.

A strictly (weakly) efficient solution of a perturbed problem, with the perturba-
tion constructed as given in (5) and τ ′ < 1, will be strictly (weakly) efficient for
the perturbed problem, with same perturbation constructed as given in (5) and
τ ′′′ such that τ ′ < τ ′′ < 1.

The cone corresponding to τ = −∞ is the half-space and fully orders the
feasible domain. The vector optimization problem is then reduced to an equiv-
alent scalar optimization problem. This property provides the generalization of
the well known result on convolution of objective functions (i.e., any solution of
a scalar optimization problem with objective function ux and the original fea-
sible domain provides efficient solutions of the original and perturbed vector
optimization problems where τ < 1).

In the case where τ > 1, monotonicity changes its direction: a cone corre-
sponding to a value of bigger τ > 1 contains a cone corresponding to a value
of smaller τ > 1. The value of τ = +∞ defines the opposite sequence of in-
clusions. A strictly (weakly) efficient solution of a perturbed problem, with the
perturbation constructed as given in (5) and τ ′′ > 1, will be strictly (weakly)
efficient for the perturbed problem, with same perturbation constructed as given
in (5) and τ ′ such that 1 < τ ′ < τ ′′:

1 < τ ′ < τ ′′ : Kτ ′ ⊆ Kτ ′′ ⊆ K∞ = {x ∈ Rn : ux � 0};
1 < τ ′ < τ ′′ : Kτ ′

i ⊆ Kτ ′′
i ⊆ K∞

i = {x ∈ Rn : ux < 0}, i = 1, 2.

(4) For perturbations of the cone where τ < 0, weakly efficient solutions of the per-
turbed problem will be efficient for the original problem, since

∀τ < 0 : K1 ∪ K2 ⊆ Kτ
1 .

If a weakly efficient solution of the perturbed problem is unique (i.e., there is
no other feasible point with the same values of objective functions), then it is a
strictly efficient solution of the original problem, since
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∀τ < 0 : K ⊆ Kτ
0 ∪ Kτ

1 .

(5) If the direction s is feasible for both the original and perturbed problems with
τ > 0, then either this direction is the direction of equilibrium for the original
problem or is a proper direction for the original problem, since

∀τ > 0 : Kτ ∩ K ⊆ K0 ∪ K1.

(6) Equivalent solutions for the original and perturbed problems coincide in case
τ /= 1. A strictly efficient solution of the original problem remains strictly effi-
cient for the perturbed problem, with the perturbation constructed as given in (5)
and τ /= 1, if it is still efficient under this perturbation, since

∀τ ∈ R : K0 ⊆ Kτ
0;

∀τ ∈ R \ {1} : K0 = Kτ
0 ⊆ {x ∈ Rn : ux = 0};

∀τ ∈ R \ {1} : Kτ
0 = Kτ ∩ {x ∈ Rn : ux = 0}.

In case τ = 1 all the solutions are equivalent, since

τ = 1 ⇒ Kτ= Kτ
0 .

(7) If ∃τ ′ < 1 such that every feasible direction of the perturbed problem is the di-
rection of equilibrium, then every feasible solution of the problem is efficient
∀τ ∈ [τ ′, 1):

∃τ ′ < 1 : Kτ ′
0 = Kτ ′ ⇒ ∀τ ∈ [τ ′, 1) : Kτ

0= Kτ .

(8) If ∃τ ′ > 1 such that every feasible direction of the perturbed problem is the di-
rection of equilibrium, then every feasible solution of the problem is efficient
∀τ ∈ (1, τ ′]:

∃τ ′ > 1 : Kτ ′
0 = Kτ ′ ⇒ ∀τ ∈ (1, τ ′] : Kτ

0 = Kτ .

A comprehensive description of basic perturbations is provided in Section 4.1.
The main distinctions between the basic case and generalized perturbations defined
by (6) are discussed in Section 4.2.

4.1. Basic perturbations

In this section we consider perturbations defined by Eq. (5). We start with the
simple case, since several properties hold that do not necessarily hold in general
case, including: the principle of complementary inclusion and monotonicity. As we
will show in Section 5, these properties are rather important in applications, such as:
in the proof of necessary and sufficient condition for stability, and for development
of a regularization technique. In the general case, loss of the monotonicity property
may render the proposed regularization technique ineffective.

The following principle of complementary inclusion introduces τ = 1 as a thresh-
old, where the vector of the perturbations u dramatically changes the characteristics



L. Kozeratska et al. / Linear Algebra and its Applications 378 (2004) 203–229 213

of perturbed problem. It will be shown below, how the sign of (1 − τ) influences the
monotonicity of the proposed basic perturbations.

Theorem 1. ∀τ ∈ R : (1 − τ)u ∈ (Kτ )∗.

Proof. Let u ∈ K∗ be defined as in (5). Then

(1 − τ)u =
L∑

k=1

µkck − τ

L∑
k=1

µkck =
L∑

k=1

µk(ck − τu) (7)

which by definition requires (1 − τ)u ∈ (Kτ )∗. �

This “complementary inclusion” defines the supporting hyperplane {x ∈ Rn :
ux = 0 }, which separates cones Kτ , τ < 1, from those with τ > 1.

Corollary 1. If τ < 1, then Kτ ⊆ {x ∈ Rn : ux � 0}. If τ > 1, then Kτ ⊆ {x ∈
Rn : ux � 0}.

Proof. Since (1 − τ)u ∈ (Kτ )∗, from the definition of the dual cone we have ∀x ∈
Kτ : (1 − τ)ux � 0. �

Corollary 1 immediately implies that each feasible direction of the original prob-
lem is feasible for perturbed problem ∀τ � 0. This is a key property of the proposed
perturbations. It will be shown in Section 4.2 that it holds in general case as well.

Theorem 2. ∀τ � 0 : K ⊆ Kτ .

Proof. Consider the arbitrary point x ∈ K. Since cix � 0, i = 1, . . . , L, using Cor-
ollary 1, we obtain

ux � 0 ⇒ ∀τ � 0 : cτ
i x = cix − τux � 0, i = 1, . . . , L ⇒ x ∈ Kτ . �

The result of Theorem 2 can be strengthened.

Theorem 3. ∀τ < 0 : K ⊆ Kτ
0 ∪ Kτ

1 .

Proof. The inclusion x ∈ K implies, as we have shown in Corollary 1, that ux � 0.
Two cases are possible:

(1) If ux = 0, then ∀τ ∈ R : Cx = 0 and Cτ x = 0.
(2) If ux > 0, then ∀τ < 0 : −τux > 0 and Cτ x > 0. �

The following theorem proves that directions of equilibrium, with the property
Cx = Cy, remain equilibrium directions for any τ . Equilibrium directions
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belong to the supporting hyperplane {x ∈ Rn : ux = 0} when τ /= 1. When τ = 1,
each feasible direction of the perturbed problem is a direction of equilibrium.

Theorem 4. ∀τ ∈ R : K0 ⊆ Kτ
0 and ∀τ ∈ R \ {1} : K0 = Kτ

0 ⊆ {x ∈ Rn : ux = 0}
then τ = 1 ⇒ K1

0 = K1.

Proof. For τ ∈ R,

x ∈ K and ux = 0⇔x ∈ K0

⇒cτ
i x = cix − τux = 0, i = 1, . . . , L

⇒x ∈ Kτ
0 .

Since (7) holds,

∀τ ∈ R : x ∈ Kτ
0 ⇒ (1 − τ)ux = 0. (8)

∴ for τ /= 1, we have ux = 0 ⇒ ∀i = 1, . . . , L : cix = 0 ⇒ Kτ
0 ⊆ K0 and since

∀τ ∈ R \ {1} : K0 ⊆ Kτ
0, we obtain K0 = Kτ

0.
In the case where τ = 1, we have x ∈ Kτ ⇒ cτ

i x � 0, i = 1, . . . , L. Since (7)

holds,
∑L

i=1 µicτ
i x = 0. Hence, cτ

i x = 0, i = 1, . . . , L and K1
0 = K1. �

Remark 3. In the case where τ = 1, the equality K0 = Kτ
0 does not necessarily

hold.

Example 2. Consider K = K(C), were C =
(

1 1 1
1 1 −1

)
. Then

K0 = {x ∈ R3 : x1 + x2 + x3 = 0, x1 + x2 − x3 = 0}.
In other words,

K0 = {x ∈ R3 : x1 = −x2, x3 = 0}.
We determine the perturbation vector u according to (5), where µ1 = 2

3 , µ2 = 1
3 . In

this case u = 2
3 c1 + 1

3 c2 = (1, 1, + 1
3 ). For τ = 1,

C1 = C −
(

u
u

)
=
(

0 0 2
3

0 0 − 4
3

)
.

Then K1
0 = {x ∈ R3 : x3 = 0}, K1

0 /= K0.

Corollary 2. K0 = ⋂
τ∈R Kτ .

Corollary 3. ∀τ ∈ R \ {1} : Kτ
0 = Kτ ∩ {x ∈ Rn : ux = 0}.

Proof. The inclusion Kτ
0 ⊆ Kτ ∩ {x ∈ Rn : ux = 0} follows from (8). Let ∀x ∈

Kτ ∩ {x ∈ Rn : ux = 0}. Then, since (7) holds, ∀i = 1, . . . , L : cτ
i x � 0 and ux =

0 ⇒ x ∈ K0. Thus, according to Theorem 4, we conclude x ∈ Kτ
0. �
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The following theorem further strengthens Theorem 2 and shows that each feasi-
ble direction, which improves at least one of the objectives of the original problem,
is proper for the perturbed problem with τ < 0 (i.e., it improves all the objectives of
the perturbed problem).

Theorem 5. ∀τ < 0 : K1 ∪ K2 ⊆ Kτ
1 .

Proof. Let x ∈ K1 ∪ K2. In this case, as we have shown above, ∀τ < 0 : −τux >

0 ⇒ x ∈ Kτ
1. �

The following theorem, which is important in applications, shows that each fea-
sible direction of the perturbed problem with τ ∈ [0, 1) is feasible for the original
problem. It will be shown in the next section that it also holds in the general case.

Theorem 6. ∀τ ∈ [0, 1) : Kτ ⊆ K.

Proof. Given ∀x ∈ Kτ , show that x ∈ K. From Corollary 1 it follows that ux � 0.
Since x ∈ Kτ , τ > 0, and ux � 0,

(ci − τu)x � 0, i = 1, . . . , L ⇒ cix � τux � 0, i = 1, . . . , L. �

The next four theorems describe the monotonicity principle of basic perturbations.
In the next section, we will show that they do not necessarily hold in the general case.

Theorem 7. 1 < τ ′ < τ ′′ : Kτ ′ ⊆ Kτ ′′ ⊆ K∞{x ∈ Rn : ux � 0}.
Proof. ∀x ∈ Kτ ′

, 1 < τ ′ ⇒ ∀i = 1, . . . , L : cτ ′
i x � 0. Then, using Corollary 1 and

the inequalities ux � 0, and −τ ′′ux � −τ ′ux � 0, we have x ∈ Kτ ′′
. �

Theorem 8. τ ′ < τ ′′ < 1 : Kτ ′′ ⊆ Kτ ′ ⊆ K−∞ = {x ∈ Rn : ux � 0}.
Proof. ∀x ∈ Kτ ′′

, τ ′′ < 1 ⇒ ∀i = 1, . . . , L : cτ ′′
i x � 0 . Then, using Corollary 1

and the inequalities ux � 0 and τ ′′ux � τ ′ux � 0, we have x ∈ Kτ ′
. �

Theorem 9. τ ′ < τ ′′ < 1 : Kτ ′′
i ⊆ Kτ ′

i ⊆ K−∞
i = {x ∈ Rn : ux > 0}, i = 1, 2.

Proof. Let τ ′ < τ ′′ < 1 . Then x ∈ Kτ ′′
i ⇒ ∃ l = 1, . . . , L: clx > τ ′′ux. By Corol-

laries 1 and 3 we conclude ux > 0. As τ ′ < τ ′′ implies τ ′ux < τ ′′ux, we have

x ∈ Kτ ′′
i ⊆ Kτ ′

i ⊆ K−∞
i . �

Theorem 10. 1 < τ ′ < τ ′′ : Kτ ′
i ⊆ Kτ ′′

i ⊆ K∞
i = {x ∈ Rn : ux < 0}, i = 1, 2.

Proof. Analogous to the proof of Theorem 9. �
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The next theorem implies that a direction, feasible for both the original and per-
turbed problem, with τ > 0, is either a direction of equilibrium or proper direction
of the original problem.

Theorem 11. ∀τ > 0 : Kτ ∩ K ⊆ K0 ∪ K1.

Proof (by contradiction). Assume ∃τ > 0, x′ ∈ Kτ ∩ K, l′ ∈ {1, . . . , L}, ∃l′′ ∈
{1, . . . , L}, cl′ x′ = 0 and cl′′x′ > 0. Then, using the inclusion x′ ∈ K, we obtain

cτ
l′x

′ = (cl′ − τu)x′ = cl′x
′ − τ

L∑
k=1

µkckx′ < 0

and ∴ x′ /∈ Kτ , a contradiction. �

In the case τ > 1, we can be more explicit: a direction, which is feasible for both
the original and perturbed problems, is a direction of equilibrium for the original
problem.

Theorem 12. ∀τ > 1 : Kτ ∩ K = K0.

Proof. According to Corollary 2, K0 ⊆ Kτ ∩ K. Let x ∈ Kτ ∩ K, then Corollary 1
asserts that ux � 0 (since x ∈ K) and ux � 0 (since x ∈ Kτ ). Therefore, ux = 0 and
according to Corollary 3 Kτ ∩ K ⊆ K0. �

The following theorem describes the structure of the perturbed cone in the case
where τ = 1 and shows that the hyperplane {x ∈ Rn : ux = 0} is not supporting for
this case.

Theorem 13. ∀τ < 1 : K1 ∩ {x ∈ Rn : ux � 0} ⊆ Kτ ; ∀τ > 1 : K1 ∩ {x ∈ Rn :
ux � 0} ⊆ Kτ .

Proof. Consider ∀x ∈ K1 ∩ {x ∈ Rn : ux � 0}, τ < 1. Then ∀i = 1, . . . , L: cix �
ux � τux ⇒ cix − τux � 0 ⇒ x ∈ Kτ . Consider ∀x ∈ K1 ∩ {x ∈ Rn : ux � 0},
τ > 1. Then ∀i = 1, . . . , L : cix � ux � τux ⇒: ∀i = 1, . . . , L : cix − τux �
0 ⇒ x ∈ Kτ . �

The following theorem shows that if ∃τ ′ < 1 such that every feasible direction of
the perturbed problem is an equilibrium direction, then all feasible directions remain
equilibrium directions ∀τ ∈ [τ ′, 1).

Theorem 14. If ∃τ ′ < 1 : Kτ ′
0 = Kτ ′

, then ∀τ ∈ [τ ′, 1) : Kτ
0 = Kτ . If ∃τ ′ > 1 :

Kτ ′
0 = Kτ ′

, then ∀τ ∈ (1, τ ′] : Kτ
0 = Kτ .
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Proof. Immediately follows from Theorems 4, 7 and 8. If τ ∈ [τ ′, 1), then Kτ
0 =

Kτ ′
0 = Kτ ′ ⊇ Kτ ⇒ Kτ

0 = Kτ . If τ ∈ (1, τ ′], then Kτ
0 = Kτ ′

0 = Kτ ′ ⊆ Kτ ⇒ Kτ
0 =

Kτ . �

Note that similar property holds for τ > 0: if ∃τ ′ > 1 such that every feasible
direction of the perturbed problem is the direction of equilibrium, then all feasible
directions remain equilibrium directions ∀τ ∈ (1, τ ′].
4.2. General perturbations

In this section we will provide a comparative analysis of the cone perturbations
defined by (5) and cone perturbations defined by (6). In the case defined by (5),
all the rows of matrix C are perturbed by u ∈ ri K�. In the general case (6), row j

of matrix C is perturbed by a different uj ∈ ri K�, j = 1, . . . , L. Perturbations are
different for different rows. In what follows, the cone defined by (6) will be denoted
by Kτ (u1, . . . , uL); and the cone, defined by (5), will be denoted by Kτ (u).

Results for the general perturbation case cover basic perturbations; however, the
monotonicity property does not hold for general perturbations. In what follows, we
consider the general perturbation

Cτ = C − τU, where U ∈ RL×n, U =


u1
u2
...

uL

 .

In terms of matrices U = MC, where the L × L matrix M consists of entries µ
j
i ,

defined as in Remark 2:

M =


µ1

1 · · · µ1
L

µ2
1 · · · µ2

L· · ·
µL

1 · · · µL
L

 .

The matrix M is positive stochastic. Let � = {λ ∈ R : det(λI − M) = 0}. Since
� /= ∅, According to [4,22], the dominant eigenvalue λ(M) = 1 and max{λ : λ ∈ �,

λ > 0} = 1. Moreover, it follows from the Perron–Frobenius theorem, that matrix
ρI − M has a nonnegative inverse iff ρ > λ(M) = 1.

Therefore, in the case, where τ > 0, the matrix I − τM has nonnegative inverse
iff τ < 1/λ(M) = 1, i.e.,

(C − τU)x � 0 ⇒ M(C − τU)x � 0⇔(U − τMU)x � 0
⇔(I − τM)Ux � 0
⇔Ux � 0.

Therefore, for τ ∈ [0, 1):

Kτ (u1, . . . , uL) ⊆ K(U)
def= {x ∈ Rn : Ux � 0} ⇒ Kτ (u1, . . . , uL) ⊆ K.
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If the matrix M has a nonnegative inverse, then for τ ∈ [0, 1):

Kτ (u1, . . . , uL) = K(U).

As mentioned in Remark 2, Theorem 6 can be generalized as follows.

Theorem 15. ∀τ ∈ [0, 1) : Kτ (u1, . . . , uL) ⊆ K.

The following proof to this theorem is straightforward.

Proof. Let y ∈ Kτ (u1, . . . , uL), then (ci − τui )y � 0, i = 1, . . . , L. We will show
that y ∈ K. Let

ui0 = min{uiy : i = 1, . . . , L}, ui0 =
L∑

i=1

µ
i0
i ci .

Then for
L∑

k=1

µ
i0
k = 1, µ

i0
k > 0, k = 1, . . . , L, τ > 0 ⇒ −τµ

i0
k ui0 y � −τµ

i0
k uky.

If we add µ
i0
k cky to both sides of these equations, we obtain

µ
i0
k cky − τµ

i0
k ui0 y � µ

i0
k cky − τµ

i0
k uky = µ

i0
k (ck − τuk)y � 0

or

µ
i0
k cky − τµ

i0
k ui0 y � 0.

Then
L∑

k=1

µ
i0
k cky − τ

L∑
k=1

µ
i0
k ui0y � 0.

Since

L∑
k=1

µ
i0
k cky − τ

L∑
k=1

µ
i0
k ui0y=

(
L∑

k=1

µ
i0
k ck

)
y − τ

(
L∑

k=1

µ
i0
k

)
ui0 y

=ui0 y − τui0 y = (1 − τ)ui0 y � 0,

then ui0y � 0, uky � 0 and cky � τuky � 0. Therefore cky � 0 and y ∈ K. �

Theorem 2 can be further generalized as well.

Theorem 16. ∀τ � 0 : K ⊆ Kτ (u1, . . . , uL).

Proof. Consider the arbitrary point x ∈ K. Since ∀x ∈ K ⇒ ukx � 0 and −τ >

0, we have −τcux � 0, k = 1, . . . , L � 0. Since ckx � 0, k = 1, . . . , L, we obtain
(ck − τuk)x � 0, k = 1, . . . , L. This means, that x ∈ Kτ (u1, . . . , uL). �
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Theorem 3 can be generalized as follows:

Theorem 17. ∀τ < 0 : K ⊆ Kτ
0(u1, . . . , uL) ∪ Kτ

1(u1, . . . , uL).

Proof. The inclusion x ∈ K0 implies, that ukx = 0 for k = 1, . . . , L and Cτ x = 0
for any τ , hence, x ∈ Kτ

0(u1, . . . , uL). If x ∈ K \ K0, then ukx > 0 for k = 1, . . . , L,
and ∀τ < 0 : −τux > 0 and Cτ x > 0, hence, x ∈ Kτ

1(u1, . . . , uL). �

The generalization of Theorem 4 is less straightforward, but is possible.

Theorem 18. ∀τ ∈ Rn : K0 ⊆ Kτ
0(u1, . . . , uL).

Proof

Cx = 0 ⇒ MCx = 0 ⇒ (C − τU)x = 0.

Therefore, for τ ∈ R:

K0 ⊆ K0(U)
def= {x ∈ Rn : Ux = 0};

K0 ⊆ Kτ
0(u1, . . . , uL). �

Corollary 4

K0 ⊆ K0(U);
If matrix M is invertible, then

K0 = K0(U).

Corollary 5. K0 = Kτ
0(u1, . . . , uL) iff 1

τ
∈ R \ �.

In particular, it follows from the Perron–Frobenius theorem, that max{|λ| : λ ∈
�} � 1. Therefore, the following corollary is also true.

Corollary 6. ∀τ ∈ (−1, 1) : Kτ
0(u1, . . . , uL) = K0.

Remark 4. As mentioned previously, the size of the cone Kτ (u) monotonically
changes with changes in τ . Thus a cone with the smaller τ contains the cone with
bigger τ . This property of perturbed cones does not hold for the cone Kτ (u1, . . . , uL)

if τ < 0.

Example 3. Let C =
(

1 0
0 1

)
, M =

(
0.1 0.9
0.9 0.1

)
. Then M = U and

x̄ = (−0.9; 1.1) ∈ K−1(u1, . . . , uL);
K−1(u1, . . . , uL) = {x ∈ Rn : 1.1x1 + 0.9x2 � 0, 0.9x1 + 1.1x2 � 0 };
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Nevertheless, x̄ does not belong to K−2(u1, . . . , uL) = {x ∈ Rn : 1.2x1 + 1.8x2 �
0, 1.8x1 + 1.2x2 � 0}.

5. Unboundedness

The purpose of this section is to provide a preliminary stability analysis for prob-
lem (1) where the feasible domain is defined as:

X = X(A, b) = {x ∈ Rn : Ax � b}.
Henceforth, we will refer to this linear, multi-objective optimization problem as
problem (C, X). We will consider changes in the input data triple (C, A, b). In this
section, we assume {x ∈ Rn : Ax < b} /= ∅. Otherwise infinitely small changes in
the right-hand side vector b can lead to an empty feasible set. Results from convex
analysis and theory of linear inequalities which are used in this section, are provided
in Appendix A.

Definition 1. The problem (C, X) is unbounded iff

∀x ∈ X ∃x̄ ∈ X : Cx̄ � Cx & Cx̄ /= Cx.

Otherwise the problem is solvable, where solvable is taken to mean that at least one
optimum exists.

Remark 5. The problem is unbounded if �(C, X) = ∅ and X /= ∅. If ∃x ∈ X : �x̄ ∈
X : Cx̄ � Cx & Cx̄ /= Cx, then x ∈ �(C, X) /= ∅.

5.1. Necessary and sufficient conditions of unboundedness

As before, let G be the recession cone of the feasible set X, G = O+X [27], and
K be the ordering cone of the problem. The following theorem provides a necessary
and sufficient unboundedness condition.

Theorem 19 (Unboundedness condition). The problem (C, X) is unbounded iff

(K1 ∪ K2) ∩ G /= ∅.

Proof. (Necessity) Assume that the problem is unbounded, i.e.,

∀x ∈ X ∃x ∈ X : Cx � Cx & Cx /= Cx.

By contradiction, let (K1 ∪ K2) ∩ G = ∅, i.e. K ∩ G = K0 ∩ G. We will show that
the set R(y) = {z ∈ C(X) : z � y} is bounded for every y ∈ Y = C(X). According
to Theorem A.4 (see Appendix A), the set R(y) is bounded if and only if O+R(y) =
{0}. Since R(y) = Y ∩ {z ∈ Rn : z � y}, we have O+R(y) = O+Y ∩ O+{z ∈ Rn :
z � y}.
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According to Theorem A.3 (see Appendix A),

O+C−1(Y) = C−1(O+Y).

Hence, O+Y = C(O+X) = C(G) and

O+R(y)=C(G) ∩ O+{z ∈ Rn : z � y}
={z = C(g) : g ∈ G, z � 0}
=C(K ∩ G) = C(K0 ∩ G) = {0} .

We have, thus, shown, that R(y) is bounded and therefore �(C, X) /= ∅.
(Sufficiency) Let (K1 ∪ K2) ∩ G /= ∅ and x ∈ X . Then

((x + (K1 ∪ K2)) ∩ X) \ {x}=((x + (K1 ∪ K2)) ∩ (M + G)) \ {x}
⊇((x + (K1 ∪ K2)) ∩ (x + G)) \ {x}
=(x + (K1 ∪ K2) ∩ G) \ {x} /= ∅.

Since x ∈ �(C, X) ⇔ (x + (K1 ∪ K2) ∩ G) \ {x} = ∅, we have �(C, X) = ∅. �

Remark 6. The following theorem is proved in [25] for linear vector problems:
�(C, X) /= ∅ ⇔ ri K∗ ∩ (−G)∗ /= ∅. If Theorem 19 is true, then

ri K∗ ∩ (−G)∗ /= ∅ ⇔ K ∩ G = K0 ∩ G.

5.2. Stable and unstable solvability

Recall that one definition of the term stability refers to continuity of the problem’s
solution with respect to changes in the input data. Then, the term stable solvability
is taken to mean that the original problem is solvable and for sufficiently small per-
turbations in the input data, the problem remains solvable. If the original problem is
solvable, but there exist infinitely small perturbations in the input data for which the
problem is no longer solvable, then the problem is called unstable solvable.

The following definition of stable solvability is analogous to the definition of
stable solvability in the scalar case given by [1].

Definition 2. We say that problem (C, X) is stable solvable, if it is solvable and
∃δ > 0 ∀C(δ) : ‖C(δ) − C‖ < δ, ∀A(δ) : ‖A(δ) − A‖ < δ, ∀b(δ) : ‖b(δ) − b‖ < δ

problem (C(δ), X(δ)) is solvable.

Theorem 20. If K ∩ G = {0}, then the problem (C, X) is stable solvable.

Proof. Since K ∩ G = {0}, we have (K ∩ G)∗ = Rn. According to Lemma A.1 (see
Appendix A) (K(δ) ∩ G(δ))∗ = Rn, and thus K(δ) ∩ G(δ) = {0}. Hence,
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(K1(δ) ∪ K2(δ)) ∩ G(δ) = ∅. According to the above Theorem 19 the problem
(C(δ), A(δ)) is solvable. �

Remark 7. If K ∩ G = {0}, then r(A/C) = n. The condition r(A/C) = n does not
necessarily lead to K ∩ G = {0}.

Definition 3. We say that problem (C, X) is unstable solvable, if it is solvable and
∀δ > 0 ∃C(δ) : ‖C(δ) − C‖ < δ, ∃A(δ) : ‖A(δ) − A‖ < δ, ∃ b(δ) : ‖b(δ) − b‖ < δ

problem (C(δ), X(δ)) is unsolvable.

Theorem 21. If K ∩ G ⊆ K0 and (K ∩ G) \ {0} /= ∅, then the problem (C, X) is
unstable solvable.

Proof. Since K ∩ G ⊆ K0, we have (K1 ∪ K2) ∩ G = ∅ and as a result of Theo-
rem 19, the problem (C, X) is solvable. Since (K ∩ G) \ {0} /= ∅, consider x̃ ∈ (K ∩
G) \ {0}. Then Ãx = 0, Cx̃ = 0 and x̃ /= 0. Consider

C(δ) : ci (δ) = ci + δ̃x, i = 1, . . . , l;

A(δ) : ai (δ) = ai − δ̃x, i = 1, . . . , l.

Then C(δ)̃x > 0, A(δ)̃x < 0. Hence, x̃ ∈ (K1(δ) ∪ K2(δ)) ∩ G(δ) /= ∅ and as a re-
sult of Theorem 19, problem (C(δ), X(δ)) is unbounded. �

The following corollary provides us with necessary and sufficient condition of
stable solvability.

Corollary 7 (Condition of stable solvability). The problem (C, X) is stable solvable
iff K ∩ G = {0}.

Proof. According to Theorem 20, if K ∩ G = {0}, then the problem is stable solv-
able.

Consider the case (C, X) is stable solvable and K ∩ G /= {0}. According to The-
orem 19 we have (K1 ∪ K2) ∩ G = ∅. Therefore K ∩ G = K0 ∩ G and (K0 ∩ G) \
{0} /= ∅, then, according to the Theorem 21 the problem (C, X) is unstable solvable.
This contradicts the assumption. �

We can also provide necessary and sufficient condition of unstable solvability.

Corollary 8 (Condition of unstable solvability). The problem is unstable solvable iff
K ∩ G ⊆ K0 and K0 ∩ G /= {0}.

Proof. If the problem is solvable, then (K1 ∪ K2) ∩ G = ∅. There are two possibil-
ities:
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(a) K0 ∩ G = {0};
(b) (K0 ∩ G) \ {0} /= ∅.

In the first case, according to the Corollary 7 (C, X) is stable solvable. Thus, case
(b) is valid. �

Theorem 22. Let 0 ∈ ri(K ∩ G)∗. If r(A/C) = n, then the problem (C, X) is stable
solvable. If r(A/C) < n, then the problem (C, X) is unstable solvable.

Proof. Since 0 ∈ ri(K ∩ G)∗, (K ∩ G)∗ is some subspace of the space Rn and its
dimension is dim (K ∩ G)∗ = r(A/C). Then, the dual cone K ∩ G is also a subspace
of the space Rn and its dimension is dim K ∩ G = n − r(A/C). If r(A/C) = n, then
K ∩ G = {0}. In this case the problem is stable solvable (Corollary 7). If r(A/C) <

n, then K ∩ G = (K ∩ G)L. In this case the problem is unstable solvable (Corollary
8). �

5.3. Stable and unstable unboundedness

Definition 4. We say that the problem (C, X) is stable unbounded, if ∃δ > 0 ∀C(δ) :
‖C(δ) − C‖ < δ, ∀A(δ) : ‖A(δ) − A‖ < δ, ∀b(δ) : ‖b(δ) − b‖ < δ and the prob-
lem (C(δ), X(δ)) is unbounded.

Definition 5. We say that problem (C, X) is unstable unbounded, if it is unbound-
ed and ∀δ > 0 ∃C(δ) : ‖C(δ) − C‖ < δ, ∃A(δ) : ‖A(δ) − A‖ < δ, ∃b(δ) : ‖b(δ) −
b‖ < δ and the problem (C(δ), X(δ)) is solvable.

Theorem 23. If K1 ∩ G = ∅ and K2 ∩ G /= ∅, then the problem (C, X) is unstable
unbounded.

Proof. By assumption (K1 ∪ K2) ∩ G /= ∅, and, therefore, the problem (C, X) is
unbounded. Consider the perturbed problem (C(δ), X), where C(δ) = Cτ is con-
structed as in (5) and

0 < τ <
δ

‖Ū‖ , Ū = eLu, u =
L∑

k=1

µkck, µk > 0, k = 1, . . . , L. (9)

Here and elsewhere, ep = (1, . . . , 1)	 ∈ Rp. According to the properties of per-
turbed cones given in Theorem 6

∀τ ∈ [0, 1) : Kτ ⊆ K

and in Theorem 11

∀τ > 0 : Kτ ∩ K ⊆ K0 ∪ K1,
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it follows that:

Kτ ⊆ K0 ∪ K1.

According to the properties of perturbed cones (Theorem 4) ∀τ ∈ R : K0 ⊆ Kτ
0.

Therefore Kτ ⊆ Kτ
0 ∪ K1. Hence Kτ

1 ⊆ Kτ
0 ∪ K1 and Kτ

2 ⊆ Kτ
0 ∪ K1. Then Kτ

1 ⊆
K1 and Kτ

2 ⊆ K1. Thus,

(Kτ
1 ∪ Kτ

2) ∩ G = ∅.

The problem (C(δ), X(δ)), where C(δ) = Cτ is constructed by analogy with (5),
0 < τ < δ

‖Ū‖ and X(δ) = X, is solvable. �

The following results provide a necessary and sufficient condition of stable un-
boundedness.

Theorem 24 (Condition of stable unboundedness). The problem (C, X) is stable
unbounded iff K1 ∩ G1 /= ∅.

Proof. (Necessity) (by contradiction) Suppose problem (C, X) is stable unbounded,
but K1 ∩ G1 = ∅. Then, according to the proof of Theorem 23,

∀τ ∈ [0, 1) : (Kτ
1 ∪ Kτ

2) ∩ G1 = ∅.

Therefore, since the problem is stable unbounded, ∃τ 0 ∈ [0, 1) : ∀τ ∈ [0, τ 0) the
following inclusion holds:

∅ /= (Kτ
1 ∪ Kτ

2) ∩ G ⊆ (Kτ
1 ∪ Kτ

2) ∩ (G0 ∪ G2),

i.e.,

∀x ∈ Kτ
1 ∪ Kτ

2 ∃i = 1, . . . , m : aix � 0.

Moreover, according to Theorems 4 and 9,

∀x ∈ Kτ
1 ∪ Kτ

2 : ux > 0.

Therefore, ∀x ∈ (Kτ
1 ∪ Kτ

2) : ∃ i = 1, . . . , m : (ai + τu)x > 0 i.e. (Kτ
1 ∪ Kτ

2) ∩
Gτ = ∅. Here Gτ = K(−(A + τ Ū)). The problem (Cτ , Xτ ) with input data (Cτ ,

Aτ , b) is solvable for τ ∈ (0, τ 0). This is a contradiction with the assumption.
(Sufficiency) Since K1 ∩ G1 /= ∅, then ∃g ∈ K1 ∩ G1 : Cg > 0, Ag < 0 (here G1

denotes −K1(A)).
Let δ1

0 = min δ1
i , i = 1, . . . , L, where δ1

i = cig > 0; δ2
0 = min δ2

i , i = 1, . . . , m,

where δ2
i = −aig > 0; δ0 = min{δ1

0, δ2
0}; 0 < δ <

δ0‖g‖ . Consider arbitrary C(δ) and
A(δ) such that

‖C(δ) − C‖ < δ and ‖A(δ) − A‖ < δ.

Let �i = ci (δ) − ci , i = 1, . . . , L; �̄i = ai (δ̄) − ai , i = 1, . . . , m. Then ∀i ∈
{1, . . . , L}, ci (δ)g = cig + �ig � cig − |�ig| � cig − ‖ci (δ) − ci‖ × ‖g‖ > δi −
δ > δi − δ0 > 0.
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Similarly ∀i ∈ {1, . . . , m}, ai (δ)g = aig + �̄ig � aig + |�̄ig| � aig + ‖ai (δ̄) −
ai‖ × ‖g‖ < −δi + δ < −δi + δ0 < 0.

Thus, K1(δ) ∩ G1(δ) /= ∅.
Then, according to Theorem 19 the problem (C(δ), X) is unbounded and the prob-

lem (C, X) is stable unbounded. �

Corollary 9 (Condition of unstable unboundedness). A problem is unstable un-
bounded iff K1 ∩ G1 = ∅ and (K1 ∪ K2) ∩ G /= ∅.

Corollary 10. If the problem is unstable unbounded, then ∃τ 0 : ∀τ ∈ (0, τ 0) the
problem (Cτ , Xτ ), where

Cτ = C − τ Ū, Aτ = A + τ Ū, b = b

is solvable.

Proof. Analogous to the proof of necessity for Theorem 24. �

5.4. Regularization approach for unbounded problems

We consider set of input data � ⊆ RL×n × Rm×n × Rm of all (C, A, b) ∈ RL×n ×
Rm×n × Rm such that (C, A, b) defines a problem with {x ∈ Rn : Ax < b} /= ∅. The
following theorems show that under certain conditions (r(A/C) = n), the set of all
input data that define stable solvable/unbounded problems is dense everywhere in
the set of input data � (i.e., for any unstable problem there exists an infinitely small
perturbation of input data which defines a stable problem).

Theorem 25. For any input data (C, A, b) of an unstable unbounded problem and
∀ε > 0 ∃τ < 0 |τ | < ε/‖Ū‖:

‖C − Cτ‖ < ε, ‖A − Aτ‖ < ε; (10)

Cτ = C − τ Ū, Aτ = A + τ Ū, bτ = b; (11)

the problem (Cτ , Xτ ) is stable unbounded.
If r(C) = n, then ∀ε > 0 ∃τ > 0, τ < min{1, ε/‖Ū‖}, such that Cτ , Aτ , bτ are

defined by (11), then the problem (Cτ , Xτ ) is stable solvable. If r(A/C) = n and
r(C) /= n, then ∀ε > 0 ∃τ > 0, τ < min{1, ε/‖W‖}, such that Aτ /Cτ = (A/C) +
τW, W = em+L(em+L)T(A/ −C), bτ = b + τem, then the problem (Cτ , Xτ ) is
also stable solvable. Note that in the latter case, we perturb the cone K(C/ −A).

An analogous theorem can be proven for unstable solvable problem in case
r(A/C) = n.

Theorem 26. For the input data (C, A, b) of an unstable solvable problem and

∀ε > 0 ∃τ < 0, |τ | < ε/‖W‖
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there exists stable unbounded problem with the input data defined as in Theorem 25.
Further, for the same problem, there exists τ ,

min{1, ε/‖W‖, ε} > τ > 0,

such that problem (Cτ , Xτ ) is stable solvable.

The developments of this section can be used to formulate a method for analyzing
a linear, multi-objective optimization problem to determine whether the problem is
ill-formed and if so, to identify the source of ill-posedness (i.e., the input data is
of poor quality or the optimization problem is poorly structured). The approach we
propose is:

(1) formulate the linear, multi-objective optimization problem and determine the
input data values,

(2) define the input perturbation using (9) and Theorem 25.
(3) perform the following tests:

(a) test for solvability:
(i) if for any arbitrarily chosen value of τ < 0 a solution exists for the per-

turbed problem, then the original problem is solvable; next, determine
whether the problem, as posed, is stable solvable by checking r(A/C)

(see Theorem 25).
(A) if r(A/C) = n the problem is stable.
(B) if r(A/C) < n the problem may be unstable and the structure of

optimization problem should be modified.
(ii) otherwise, the original problem may be unbounded and a further test is

required.
(b) test for unboundedness:

(i) if for any arbitrarily chosen value of τ ∈ [0, 1) a solution does not exist
for the perturbed problem, then the original problem is stable unbounded
and substantial changes to the input data of the original problem are
required;

(ii) otherwise, the original problem is unstable and minor changes are re-
quired in the input data of the original problem.

To illustrate the proposed regularization procedure, consider the following example.

Example 4. Let

A =
 1 0

−1 0
−1 −1

 , b =
 2

−1
−1

 , C =
[

1 0
0 1

]
.

Then

{x ∈ Rn : Ax � b}
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is unbounded and the solution of the problem

max {Cx : Ax � b}
does not exist. Note that this problem is also unstable. Since r(A/C) = 2 and per-
turbing the problem with u = 0.5c1 + 0.5c2 = (0.5, 0.5) and τ = −10−2,

Aτ=
 0.95 −0.05

−1.05 −0.05
−0.95 −0.95

 , Cτ =
[

1.05 0.05
0.05 1.05

]
,

we find that no solution exists for the perturbed problem. Then, using τ = 10−2,

Aτ =
 1.05 0.05

−0.95 0.05
−0.95 −0.95

 , Cτ =
[

0.95 −0.05
−0.05 0.95

]
,

we find that the the feasible domain becomes bounded and the perturbed problem
becomes stable solvable. Then, it is clear for the original problem, that small changes
to the input data will render it stable solvable.

6. Conclusions

We have developed a comprehensive theory of perturbed cones, required for de-
veloping a stability theory for mixed-integer, multiple criteria optimization prob-
lems. Basic and general perturbations have been treated separately, since additional
properties can be proven for basic perturbations, including: principles of comple-
mentary inclusion and monotonicity. Further, it has been shown that Pareto set of the
perturbed problem covers only robustly efficient solutions of the original problem
and under the assumption τ ∈ [0, 1), the theory covers the Pareto set of the original
problem. Although in the latter case, the Pareto set of the perturbed problem may
contain inefficient solutions of the original problem. These two properties do not
necessarily hold in general case. As examples of application of basic perturbations:
necessary and sufficient conditions for stable solvability (unboundedness) of linear
vector optimization problems have been proven; density of the the input data of stable
solvable/unsolvable problems has been discussed; and a regularization approach has
been developed for analyzing unstable unbounded problems.

Appendix A

Recall some basic theorems from [27] used in the proof of Theorem 19.

Theorem A.1. If S is nonempty convex set, then O+S is convex cone, which con-
tains 0 element, and
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O+S = {v ∈ Rn : S + v ⊆ S}.

Theorem A.2. Let S be nonempty closed convex set and v /= 0. If there exists at
least one element x such that {x + λv : ∀λ � 0} ⊆ S, then v ∈ O+S.

Theorem A.3. If A is a linear mapping from Rn into Rm and D is closed convex
set from Rm, such that A−1D /= ∅, then

O+A−1(D) = A−1(O+D).

Theorem A.4. Nonempty closed convex set S is bounded if and only if O+S = {0}.

The following Lemma A.1 [1] is used in the proof of Theorem 20.

Lemma A.1. If cone S = con(g1, g2, . . . , gr ) and S = Rn, then there exists δ0 > 0,

such that for every δ, 0 < δ � δ0, the perturbed cone S(δ) = con(g1(δ), g2(δ), . . . ,

gr (δ)) = Rn, where gi (δ) : ‖gi (δ) − gi‖ < δ.
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