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Abstract 

This paper presents a trajectory clustering method to discover spatial and temporal travel patterns in a traffic network. The study 
focuses on identifying spatially distinct traffic flow groups using trajectory clustering and investigating temporal traffic patterns 
of each spatial group. The main contribution of this paper is the development of a systematic framework for clustering and 
classifying vehicle trajectory data, which does not require a pre-processing step known as map-matching and directly applies to 
trajectory data without requiring the information on the underlying road network. The framework consists of four steps: 
similarity measurement, trajectory clustering, generation of cluster representative subsequences, and trajectory classification. 
First, we propose the use of the Longest Common Subsequence (LCS) between two vehicle trajectories as their similarity 
measure, assuming that the extent to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as 
potential interactions between these vehicles. We then extend a density-based clustering algorithm, DBSCAN, to incorporate the 
LCS-based distance in our trajectory clustering problem. The output of the proposed clustering approach is a few spatially 
distinct traffic stream clusters, which together provide an informative and succinct representation of major network traffic 
streams. Next, we introduce the notion of cluster representative subsequence (CRS), which reflects dense road segments shared 
by trajectories belonging to a given traffic stream cluster, and present the procedure of generating a set of CRSs by merging the 
pairwise LCSs via hierarchical agglomerative clustering. The CRSs are then used in the trajectory classification step to measure 
the similarity between a new trajectory and a cluster. The proposed framework is demonstrated using actual vehicle trajectory 
data collected from New York City, USA. A simple experiment was performed to illustrate the use of the proposed spatial traffic 
stream clustering in application areas such as network-level traffic flow pattern analysis and travel time reliability analysis. 
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1. Introduction 

Vehicle trajectories are traffic data obtained from tracking individual vehicles’ movements over time, where each 
trajectory is a sequence of consecutive geo-referenced coordinates and the corresponding timestamps, typically 
recorded every few seconds. Compared to traditional traffic data obtained from fixed loop detectors, vehicle 
trajectories provide much richer information—not only information on user-centric travel experiences (e.g, speed 
profile of each vehicle along its journey and travel times experienced by individual vehicles) but also system-wide 
spatial and temporal trip and traffic patterns (e.g., origin-destination pairs, routes, and bottlenecks). These are 
considered as by far the most comprehensive traffic data available in transportation systems analysis. With the 
ubiquitous use of GPS devices (e.g., smartphones and in-vehicle navigation systems) and RFID tags (e.g., electronic 
fare cards and electronic toll collection systems), trajectory data of moving objects in traffic networks are becoming 
increasingly available and this opens up new opportunities for performing more sophisticated and comprehensive 
analyses for the planning, design, and management of transportation systems. Great challenges remain, however, due 
to the massive size of such data and the complexity of dealing with both the spatial and temporal dimensions. Data 
mining has thus become an important part of transportation research and practice, calling for the in-depth 
investigation and development of domain-specific analysis methods and tools. This paper addresses these needs by 
presenting a systematic framework and detailed methods for processing, clustering, and classifying vehicle 
trajectories, with a primary application in characterizing spatial and temporal travel patterns that can be used in 
network-level traffic flow analysis and travel time reliability analysis. In particular, this study considers the problem 
of clustering trajectories as a means to discover major traffic flow groups across the network, which may then be 
used in analyzing the temporal evolution of traffic states for each region more effectively. As the main contribution 
of this paper, we present the step-by-step procedure for clustering vehicle trajectories based on their spatial 
characteristics (i.e., route similarity) and show how network space can be partitioned into and represented by a few 
major traffic stream clusters. The proposed trajectory clustering method is demonstrated using actual vehicle 
trajectory data collected from New York City, USA.  

1.1. Related Work 

Trajectory clustering has been gaining increasing interest in recent years and several clustering methods tailored 
specifically for trajectories have been proposed. Clustering analysis in general requires two essential components, 
namely, similarity measure and clustering algorithm. Trajectory clustering approaches proposed in the literature also 
largely depend on the choice of the combination of these two. Nanni and Pedreschi (2006) describes an approach to 
clustering trajectories using the average distance between objects’ positions and density-based clustering algorithm 
OPTICS (Ankerst et al., 1999). They further extend their OPTICS-based trajectory clustering approach to identify a 
specific time interval where trajectories are clustered in the most meaningful way and focus on those interesting 
time intervals to improve the quality of clustering results. Rinzivillo et al. (2008) proposed progressive clustering 
that allows successive application of several different distance functions and gradual refinement of clustering results 
obtained from the previous steps. They suggest a number of intuitive distance functions such as ‘common source’, 
‘common destination’, ‘route similarity’, and ‘time steps’. Lee at al. (2007) proposed a partition-and-group 
framework for clustering trajectories (TRACLUS), which partitions a trajectory into a set of line segments and 
discovers common sub-trajectories by grouping similar line segments.  

Earlier studies in trajectory clustering mainly considered trajectories of general moving objects, which can move 
freely in Euclidean space. Recognizing that in the case of vehicles the movements are actually constrained by the 
underlying road networks, another line of studies have emerged focusing on the clustering of network-constrained 
trajectory data. Kharrat et al. (2008) proposed a two-step clustering algorithm (NETSCAN), where the first step 
clusters road segments into a set of dense paths and the second step groups trajectories according to their similarity 
to each dense path. Roh and Hwang (2010) proposed a distance measure that reflects road-network proximity, 
computed using the shortest path calculation, and applied in their trajectory clustering algorithm (NNCluster). Han 
et al.(2012) proposed a road network aware approach for clustering trajectories (NEAT) and Mahrsi and Rossi 
(2013) proposed a graph-based approach to clustering network-constrained trajectory data. 
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While it is attractive to consider the network constraint and take advantage of the underlying network 
representation, it requires a pre-processing step for mapping each point in a trajectory to a road network, known as 
map-matching, and that process itself requires non-trivial effort. Above all, it is highly desirable to work purely on 
the available vehicle trajectory data, without having to prepare the associated network topology. In this paper, we 
focus on the clustering approach that does not require the information on the underlying road network. Although we 
do not attempt to map trajectories to known road segments, we take into account the fact that vehicle movements are 
constrained by the road network in defining a similarity measure. We consider the fact that trajectories on the same 
route are completely overlapping (at a macroscopic scale) due to the network constraint and this allows us to use the 
algorithm for finding the Longest Common Subsequence (LCS) between two sequences. We measure how much 
two trajectories overlap each other to define their level of closeness, relatedness, and connectivity. Conceptually, 
this LCS-based similarity measure lies between the Euclidean distance that is used for free moving objects and the 
graph-based distance (e.g., shortest path) that is used for fully network-mapped objects. Below, we describe a 
number of characteristics for vehicle trajectory data that are assumed in this study. 

1.2. Vehicle Trajectory Data 

A vehicle trajectory, denoted by Tr, is a time-ordered sequence or time-series of 3-tuples (x, y, t) representing the 
x and y (longitude and latitude) coordinates of a vehicle at time t. Let ),,,( 21

i
N

ii
i pppTr  denote the trajectory of 

vehicle i, where i
n

i
n tyxp ),,(  is the nth point of the sequence ( Nn ,,1 ). Given two vehicle trajectories 

),,,( 21
i
N

ii
i pppTr  and ),,,( 21

j
M

jj
j pppTr  with size N and M, respectively, the trajectory data addressed 

in this study have the following characteristics. 

 Different lengths: trajectories may have different lengths in terms of the number of data points within each 
trajectory (e.g., N and M can be different for ),,,( 21

i
N

ii
i pppTr  and ),,,( 21

j
M

jj
j pppTr ). 

 Different and uneven sampling rates: data sampling rates are not necessarily identical across trajectories (e.g., 
i
N

ii ppp ,,, 21  are recorded every 1 second while j
M

jj ppp ,,, 21  are recorded every 2 seconds). Moreover, the 
time interval between two consecutive points within the same trajectory can also vary (e.g., 1 second between 

ip1  and ip2  while 2 seconds between ip2  and ip3 ). In this paper, we assume that data points in a vehicle 
trajectory are recorded at sufficiently short time intervals (e.g., recorded at every 2 to 3 seconds) such that the 
distance between two consecutive points can be reasonably approximated by a straight line connecting the two 
points. 

 Different directions and regions: In the context of vehicle movement, the direction and space region of each 
trajectory are important conditions for similarity of trajectories. For instance, two trajectories moving in opposite 
directions should be considered as different trajectories despite their close proximity to each other. Also, 
trajectories showing similar movements in different regions (e.g., left-turning vehicles at different intersections) 
should be considered as different objects despite their similar shapes. 

 Road network constraint: Unlike trajectories of free moving objects in Euclidean space such as animals and 
hurricanes (Lee et al., 2007), vehicle trajectories are constrained by the underlying road network. This suggests 
that data points can appear only in the space along the roads and attempting to use similarity measures designed 
for general line segments or vectors (e.g., Euclidean distance and angle distance) may be inefficient. 

2. Methodology 

2.1. Framework 

This study proposes a systemic framework and detailed implementation methods for clustering and classifying 
vehicle trajectory data. Fig. 1 shows the overall framework for analyzing trajectories addressed in this paper.  
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Fig. 1. Proposed framework for clustering and classifying vehicle trajectories. 

 
The procedure follows four steps: Similarity Measurement, Trajectory Clustering, Cluster Representative 

Subsequence Generation, and Trajectory Classification. A brief description for each step is provided as follows: 

 Similarity Measurement: Given the initial trajectory dataset, the first step is to measure similarities of trajectories. 
This paper proposes the use of the Longest Common Subsequence (LCS) as a similarity measure, assuming that 
the extent to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as potential 
interactions between these vehicles. Time is relaxed in this study. The output of this step of a distance matrix, 
denoted by D, containing pairwise trajectory distances. 

 Trajectory Clustering: In this step, trajectories are grouped into similar traffic flow groups based on the LCS-
based distance measure mentioned above, which captures (time-relaxed) spatial similarity. The goal of this 
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clustering is to identify time-invariant major traffic streams in the network, which will then be used for 
subsequent temporal analyses. For instance, instead of looking at temporal evolution of traffic states at thousands 
of detector points, we can focus on a small number of major traffic streams and their associated routes—it could 
be a few road segments or the entire stretch of a highway depending on the shape of the flow cluster. For the 
clustering method, we use DBSCAN, a density-based clustering algorithm. The output of this step is a set of 
traffic stream clusters, denoted by C. 

 Cluster Representative Subsequence Generation: this step is responsible for defining cluster representatives that 
will be used for the trajectory classification step. In order to effectively represent a large number of trajectories in 
a given cluster, we define the notion of cluster-representative subsequences (CRS), which can be viewed as the 
union of all pairwise LCSs of the trajectories within the cluster. Given the LCS of each trajectory pair, which is 
available from the first step, we merge a large number of overlapping LCSs using a hierarchical (agglomerative) 
clustering method to identify a small number of distinct common subsequences that are shared by member 
trajectories of the given cluster. The output of this step is a set of cluster-specific CRS collections, denoted by 
CR. 

 Trajectory Classification: Whenever a new trajectory is obtained, we can classify it to one of the existing clusters 
by evaluating the similarity between the trajectory and a cluster. Given the set of CRSs for each cluster, we check 
if the trajectory shares any of these CRSs and assign to the cluster if it has a significant portion that is 
overlapping those CRSs. The output of this step is the assignment results (cluster labels) for tested trajectories, 
denoted by O. 

Next, we present detailed implementation methods for each step. 

2.2. Similarity Measure for Vehicle Trajectories 

In the context of traffic analysis, the similarity of vehicle trajectories can be defined in various ways (e.g., origin-
based, destination-based, OD pair-based, route-based, etc. (Rinzivillo et al., 2008)). In this study, we focus on route 
similarity. We measure the similarity of two trajectories by investigating their spatial road use patterns such as 
whether these two vehicles have travelled similar routes and used similar road segments regardless of their departure 
times or travel speeds. One way to identify this is to check if there is an overlap between two trajectories. Since 
vehicle movements are constrained by the road network, portions of trajectories will be completely overlapping (at a 
macroscopic scale) if they travelled the same road section. To find overlapping portions of trajectories, we use the 
Longest Common Subsequence (LCS) algorithm. The LCS is an algorithm for finding the longest common 
subsequence of two sequences and originates in the field of string matching, where two strings with different lengths 
are given to find a set of characters that appear left-to-right, not necessarily consecutively, in both strings (Bergroth 
et al., 2000). The LCS has been widely used in time-series clustering as an alternative to traditional Euclidean 
distance to deal with time series with different lengths as well as to allow distortions in the time axis—the LCS 
model can “match two sequences by allowing them to stretch, without rearranging the sequence of the elements but 
allowing some elements to be unmatched” (Vlachos et al., 2002). Several studies have also adapted the LCS method 
to the context of trajectory clustering (Hermes et al., 2009; Vlachos et al., 2002). In these applications, the similarity 
between two time series (or trajectories) is expressed as the number of matched elements between two sequences. 
Both the size of the longest common subsequence and the subsequence itself can be obtained using a dynamic 

programming algorithm in )( 2nO  time (Bergroth et al., 2000). 
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The first step to define the LCS-based similarity measure for vehicle trajectories is to determine a rule for 

matching points in two sequences. Given two points i
n

i
n tyxp ),,(  and j

m
j

m tyxp ),,( , one could determine 

whether these two are matched or not in a number of different ways. One way is to consider spatial proximity only 
and another way is to consider both spatial and temporal proximity. In this paper, we will focus on the first case, 
where two points are considered to match (overlap) if their spatial similarity obtained by the following function 
simPnt is greater than zero: 

otherwise
),(

1

 ),( if0
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In Eq. (1), ),( j
m

i
n ppdist  represents the spatial distance between i

np  and j
mp , which can be defined as Great-

circle distance between two geographic latitude and longitude coordinates, and  is a parameter specifying the 

maximum allowable distance for two points to match. The function ),( j
m

i
n ppsimPnt  returns a normalized 

measure of similarity between two points i
np  and j

mp  and takes a value between 0 and 1, where the value becomes 

zero when ),( j
m

i
n ppdist  is greater than or equal to . Using simPnt, we identify matched elements in two sequences.  

Next, we present a dynamic programing model to compute the LCS alignment between two trajectories 
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The function ),( )()( mjni TrTrscoreLCS  returns the similarity score of the best alignment between iTr  and jTr  

up to their nth and mth points, respectively, and represents the sum of all the simPnt values for the matched elements 

under the best alignment. After recursively computing ),( )()( mjni TrTrscoreLCS  for all Nn ,,1  and 

Mm ,,1 , we can find the LCS alignment between full trajectories iTr  and jTr  by identifying point matches 

),( j
m

i
n pp  that have contributed to the final cumulative score ),( )()( MjNi TrTrscoreLCS  through 

),( j
m

i
n ppsimPnt  in ),( )()( mjni TrTrscoreLCS ),(),( )1()1(

j
m

i
nmjni ppsimPntTrTrscoreLCS  in Eq. (2).  

The LCS model defined in Eq. (2) can be viewed as a modified version of the existing models (Hermes et al., 
2009; Vlachos et al., 2002) in that it not only finds the longest common subsequence in terms of the number of 

matches but also maximizes the similarity score of the matched points. For a given point i
np  in trajectory i, there 
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could be multiple matches in trajectory j that satisfy matching thresholds. For instance, we may have j
mp  that is a 

match with i
np  producing 0),( j

m
i
n ppsimPnt , but we may have another point j

mp 1  that is also a match with 
i
np  producing 0),( 1

j
m

i
n ppsimPnt . In such cases, the existing models do not further search for a better match 

once a match is found. It is, however, necessary to find the closest pair among all valid matches to ensure that the 
final LCS can reflect the overlapping route between two trajectories as closely as possible. Fig. 2 illustrates this 
situation. The connection lines between points (both solid grey and dotted green) represent the valid matches, which 
produce simPnt > 0, and the numbers on the lines show the estimated simPnt values for the corresponding matches. 

In Fig.2 (a), iP2  in Tri is matched with both jP2  and jP3  in Trj, but the most similar one (simPnt=0.8) is chosen as 

its final match, represented by thick dotted connection line. Similarly iP3  is matched with jP4  (simPnt=0.9) among 

three valid matches, jP3 , jP4 , and jP5 . Let us consider the case where the similarity between iP3  and jP4  is 0.5 

instead of 0.9 as shown in Fig.2 (b). Now, the second matching point changes from ),( 43
ji PP  to ),( 53

ji PP  as the 

largest similarity measure is found between iP3  and jP5  (simPnt=0.6). The proposed LCS model in Eq. (2) takes 

into account such a difference, illustrated in Fig.2 (a) and (b), in finding the final LCS. 
 

 

Fig. 2. Modified LCS model that consider the quality of the matches in the LCS; the clostest point match is selected as the element of LCS by 
measuring the similarity between each pair of valid point matches. 

 

Fig. 3. Different similarity situations that produce the same LCS size: the size of the LCS between Tri and Trj is 3 for both (a) and (b), but the 
actual length covered by the LCS is different. 
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Once the LCS is identified, the next step is to define a LCS-based similarity measure suitable for vehicle 
trajectories. In the previous studies, LCS-based similarity measures are expressed in terms of the ratio of the size of 
a LCS (i.e., the number of matched elements) to the sizes of its original sequences  (Hermes et al., 2009; Vlachos et 
al., 2002). The problem with determining the similarity measure based on the size of a LCS arises when trajectories 
have different and uneven sampling rates. In such cases, LCSs with the same size can have different similarity 
indications. Fig. 3 illustrates this situation using a simple example. Suppose that we wish to express the similarity 

between two trajectories ),,,,( 54321
iiiii

i pppppTr  and ),,,,,( 654321
jjjjjj

j ppppppTr  using their LCS. Given 

three matched point pairs ),( 22
ji pp , ),( 33

ji pp , and ),( 54
ji pp , the size of the LCS is 3 in both (a) and (b) in Fig.3 

with the resulting LCSs of ),,( 432
iii ppp  for Tri and ),,( 532

jjj ppp  for Trj, respectively. When it comes to the 

extent to which two trajectories overlap, however, the trajectories in Fig.3 (a) share their routes much more strongly 
than those in Fig.3 (b), suggesting that two trajectories in Fig.3 (a) should be considered to be more similar to each 
other than those in Fig.3 (b). 

A reasonable approach to incorporating this aspect is to use the actual length (travel distance) of the LCS, instead 

of its size, in expressing the similarity. Let ),,( 1, Hji qqL  be the identified LCS between Tri and Trj, where 

Hqq ,,1  represent the matched data points and H is the number of matches, ),min( MNH . Since point 

matches are not exact but rather approximate (based on distance threshold ), ),,( 1, Hji qqL  are not uniquely 

determined; in fact, the points in jiL ,  can be from either Tri or Trj. To preserve consistency across Hqq ,,1  and 

ensure that jiL ,  is also a valid trajectory, we only consider two cases where Hqq ,,1  are taken either entirely from 

Tri or entirely from Trj. We use superscript notations )(
,
i
jiL  and )(

,
j
jiL  when it is necessary to indicate which trajectory 

the LCS components are taken from. For instance, the LCS shown in Fig. 3 can be represented as either 

),,( 432
)(

,,
iiii

jiji pppLL  or ),,( 532
)(

,,
jjjj

jiji pppLL . 

Defining a function )(XlenSeq  that calculates the length (travel distance) of trajectory X, the actual length of 

the LCS is obtained by summing all the distance measures between consecutive data points in jiL ,  as follows: 

1

1
1, ),()(

H

h
hhji qqdistLlenSeq   (3) 

Given the measured length of the LCS, we now define the similarity measure between two trajectories Tri and Trj 
using the following formula: 

otherwise
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where  is a parameter describing the minimum length for the LCS between two trajectories to be a valid LCS. The 
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similarity function simSeq takes a value between 0 and 1, where the similarity becomes zero if the length of the LCS 

—either )(
,
i
jiL  or )(

,
j
jiL —is shorter than the minimum LCS length ( ). Eq.(4) indicates that the similarity between two 

trajectories is expressed as the portion of the shorter trajectory covered by the LCS. If one trajectory is completely 
contained in the other trajectory, the LCS length between two is equal to the length of the shorter trajectory and their 
similarity measure becomes one. 

Given the similarity measure defined above, the distance between two trajectories Tri and Trj can be obtained by: 

),(1),( jiji TrTrsimSeqTrTrdistSeq   (5) 

As an example, if we set =300m and obtain 6.0),( ji TrTrdistSeq , it means that two trajectories overlap for a 

route longer than 300m and the overlapping portion covers 40% of the total travel distance of the shorter trajectory, 

i.e., 4.0),( ji TrTrsimSeq . 

 

2.3. Clustering Vehicle Trajectories 

This section describes the second step of the framework in Fig. 1. Given a set of vehicle trajectory data TR and 
the distance matrix D containing the pairwise distance distSeq(Tri, Trj) for all pairs of trajectories in TR, this step 
groups similar trajectories into a cluster to form a few distinct trajectory clusters. We use  DBSCAN (Density Based 
Spatial Clustering of Applications with Noise) (Ester et al., 1996) as the main clustering algorithm. DBSCAN relies 
on a density-based notion of clusters—a cluster is a maximal set of density-connected points—and the number of 
clusters are determined based on the data provided depending on two input parameters: Eps and MinPts, where the 
former specifies the maximum radius of the neighborhood and the latter represents the minimum number of 
neighbors for a point to be a core point, distinguished from a noise (Ester et al., 1996). In order to apply this concept 
to clustering trajectories, we extend the notations and definitions for points to the case of vehicle trajectories as 
follows.  
 
Definition 1: ( -neighbourhood of a trajectory) The -neighbourhood of a trajectory Tri, denoted by N (Tri), is 
defined by }),(|{)( jiji TrTrdistSeqTrTrN TR , 10 . 
Definition 2 (directly density-reachable): A trajectory Trj is directly density-reachable from a trajectory Tri with 
respect to  and MinTrs if 

1) )( ij TrNTr  and 

2) MinTrsTrN i |)(|  (core trajectory condition) 
Definition 3 (density-reachable): A trajectory Trj is density-reachable from a trajectory Tri with respect to  and 
MinTrs if there is a chain of trajectories jnni TrTrTrTr ,,,,, 1  such that 1nTr  is directly density-reachable from 

nTr  (so all trajectories on the chain must be core trajectories, with the possible exception of Trj) . 
Definition 4 (density-connected): A trajectory Trj is density-connected to a trajectory Trk with respect to  and 
MinTrs if there is a trajectory Tri such that both Trj and Trk are density-reachable from Tri with respect to  and 
MinTrs. 
 

Given these definitions, DBSCAN produces trajectory clusters, where a cluster is defined as a maximal set of 
density-connected trajectories with respect to density-reachability. There are three types of trajectories: core, edge, 
and noise. If a trajectory Tri has at least MinTrs trajectories in its -neighborhood, N (Tri), then it becomes a core 
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trajectory and forms a cluster together with all trajectories in N (Tri). If another member of N (Tri), )( ij TrNTr , 

has a sufficient number of its -neighborhood trajectories such that MinTrsTrN j |)(| , then Trj itself becomes a 
core trajectory and expands the cluster further by adding its -neighborhood to the cluster. If Trj is not a core, then it 
is classified as an edge and does not add any other trajectories but itself. Thus, all trajectories in a cluster are either 
cores or edges. A trajectory that is neither a core nor an edge is classified as a noise and does not belong to any 
cluster. 

With the proposed LCS-based distance measure, the following implications can be drawn from the clustering 
results. 

 All trajectories in a cluster share a significant portion of their routes with at least one other trajectory in that 
cluster, where the length of any given LCS is longer than  and its coverage is greater than (1- )*100% of the 
shorter of the associated two trajectories.  

 A core trajectory in a cluster shares its route with at least MinTrs other trajectories in that cluster (either core or 
edge) with respect to the LCS-based distance distSeq   (or simSeq  1- ). Each cluster contains at least one such 
core trajectory. 

 An edge trajectory in a cluster shares its route with less than MinTrs other trajectories in that cluster with respect 
to the LCS-based distance distSeq   (or simSeq  1- ), but is connected to at least one core trajectory. 

 All trajectories within a cluster are connected through a chain of LCSs. 
 Any two vehicles associated with the trajectories in a cluster could possibly affect each other—even if they do 

not directly share their routes—either through forward shockwave propagation or through backward shockwave 
propagation, assuming that a vehicle could travel its route again any time during the day. 

Fig. 4 shows the algorithm used in performing trajectory clustering in this study. The algorithm is based on the 
version described in (Lee et al., 2007), but only adopting the basic DBSCAN part. The output of this procedure is a 
set of trajectory clusters },,{ 1 KCCC , where },,{ ||1 kCk TrTrC . It is noted that not all trajectories are 
assigned to a cluster and trajectories that do not belong to any cluster are classified as a noise group. 
 
 
Trajectory Clustering using DBSCAN 

Input 
A set of vehicle trajectories },,{ ||1 TRTR TrTr  

Distance matrix D 
DBSCAN parameters  and MinTrs 

Output A set of trajectory clusters },,{ 1 KCCC , where },,{ ||1 kCk TrTrC  

Procedure  
1 Set ClusterID = 0; 
2 mark all trajectories in TR as unvisited; 
3 for each trajectory Tri in TR, 
4 if Tri is not visited, 
5 mark Tri as visited; 
6 get )( iTrN  using D; 

7 if MinTrsTrN i |)(| , 
8 mark Tri as noise; 
9 else, 
10 set ClusterID = ClusterID + 1; 
11 assign clusterID to all trajectories in )( iTrN ; 

12 insert }{)( ii TrTrN  into queue Q; 
13 call expandCluster(ClusterID, Q, D, , MinTrs); 
14 return C. 
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15 expandCluster(ClusterID, Q, D, , MinTrs): 
16 while queue Q is not empty, do: 
17 remove Trj from the front of queue Q; 
18 get )( jTrN  using D; 

19 if MinTrsTrN j |)(| , 

20 for each Trk in )( jTrN , 

21 if Trk is not visited or noise, 
22 assign ClusterID to Trk; 
23 if Trk is not visited, 
24 
 

Insert Trk into queue Q; 
 

Fig. 4. DBSCAN algorithm applied for clustering vehicle trajectories. 

 

2.4. Generating Cluster Representative Subsequences  

This section describes the third step of the framework in Fig. 1. Once trajectory clusters are obtained, the next 
step is to define certain representative features for each cluster so that a new trajectory can be evaluated and 
classified. For a given cluster, a certain representative trajectory could be constructed based on the trajectories in the 
given cluster (Lee et al., 2007) or the underlying road segments could be used if trajectories are mapped to the 
underlying road networks (Han et al., 2012; Kharrat et al., 2008; Roh and Hwang, 2010). In this paper, we propose 
another approach based on the LCS between trajectories that were obtained in the first step of the framework. Since 
we use the LCS as the distance measure for clustering trajectories, each of trajectories in a cluster is involved in at 
least one LCS with another trajectory in that cluster. We observe that a lot of these pairwise LCSs are actually 
heavily overlapping and their overall coverage can be represented by a few representative subsequences. As such, 
we introduce the notion of cluster-representative subsequence (CRS), which can be viewed as the union of all 
overlapping pairwise LCSs from a given cluster, to define a set of subsequences that effectively represent its 
member trajectories. Each cluster may have multiple CRSs, and these CRSs will be used for calculating the 
similarity between a new trajectory and the cluster in the trajectory classification step. In particular, we compute the 
LCS between a CRS and the new trajectory to measure its similarity using Eq. (4) and assign it to the cluster if the 
new trajectory shares its route with the given CRS (i.e., simSeq > 0, discussed in the next section). Since CRS is 
used in calculating the LCS, a CRS itself should be a valid trajectory, which neither diverges nor converges. Let us 
define the operator ~  such that YX

~  returns the LCS between two sequences X and Y such that 

jiji TrTrL
~

, . Similar to ~ , we define the operator ~  to express the procedure of merging two sequences. 

Given two sequences X and Y, YX
~  returns a merged sequence that represents the union of X and Y in terms of 

their coverage. Fig. 5 illustrates the process of generating a CRS from a set of LCSs. Suppose that three trajectories 
Tri, Trj, and Trk are in the same cluster. We have three LCS from each of three trajectory pairs, jiji TrTrL

~
, , 

kjkj TrTrL
~

, , and ikik TrTrL
~

, , respectively, as shown in Fig.5 (a). We observe that these LCSs are 
overlapping at segment BC as shown in Fig.5 (b) and can be represented as one long sequence covering segment AD 
as shown in Fig.5 (c).  

Our goal in this step is therefore to convert a large number of redundant short LCSs to a small number of longer 
CRSs such that all the road segments covered by the LCSs can be fully covered by the set of CRSs. To generate 
CRSs, we use hierarchical agglomerative clustering, which merges two closest LCSs into one sequence one at a time 
and produces a set of merged CRSs. When merging two LCSs, the distance between these two is set to be very large 
if these are diverging or converging, in order to prevent them from merging and ensure the generated CRSs are valid 
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trajectories. Let CRk denote a set of CRSs for the kth cluster, Ck, and Si denote the ith CRS for cluster Ck. Fig. 6 
presents the hierarchical clustering algorithm used in producing a set of CRSs, },,{ 1 KCRCRCR , where 

},,{ ||1 kCRk SSCR , for all clusters },,{ 1 KCCC . 
 
 
 
 
 

 

Fig. 5. Process of merging pairwise LCSs and creating cluster-represntative subsequence (CRS). 
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LCS Merging using Hierarchical Agglomerative Clustering 

Input Trajectory clusters },,{ 1 KCCC , where },,{ ||1 kCk TrTrC  

LCS database L 

Output A set of cluster representative subsequences },,{ 1 KCRCRCR , where },,{ ||1 kCRk SSCR  

Procedure  
1 Set {}CR ; 

2 for each cluster CkC , 

3 set {}kCR ; 

4 for each pair of trajectories ),( ji TrTr  in kC , 

5 find the associated LCS jiji TrTrL
~

,  from L and add to kCR ; 

6 call mergeLCSs( kCR ); 

7 add kCR  to CR ; 
8 
 

return CR . 
 

9 mergeLCSs( kCR ): 
10 set MinDist = 0; 
11 while MinDist < 1, do: 

12 for each pair of sequences ),( ji SS  in kCR , compute their distance: 

13 if iS  and jS  are on the same line (neither converging nor diverging), 

14 
))(),(min(

)
~

(
1),(

ji

ji
ji SlenSeqSlenSeq

SSlenSeq
SSdistSeq ; 

15 else, 
16 1),( ji SSdistSeq ; 

17 find the closest pair of sequences, i.e., let ),( mn SS  be the closest pair; 

18 set MinDist = ),( mn SSdistSeq ; 

19 merge nS  and mS  into a single long sequence and update nS , i.e., mnn SSS
~

; 

20 
 

remove mS  from kCR ; 
 

Fig. 6. Hierarchical agglomertiave clustering algorithm applied for generating cluster-representstive subsequences (CRSs). 

 

2.5. Classifying Vehicle Trajectories 

This section describes the last step of the framework in Fig. 1. Consider that we have a new trajectory, denoted 
by newTr , that was not in the initial trajectory dataset TR. Given the identified traffic stream clusters, 

},,{ 1 KCCC , and the associated cluster representatives, },,{ 1 KCRCRCR , we assign newTr  to a cluster by 
applying the following rule. 
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Rule 1: (Trajectory classification) Trajectory newTr  is assigned to cluster Ck if there exists ki CRS  such that 

0),( inew STrsimSeq .  
 

This rule indicates that we assign a trajectory to a cluster if the trajectory overlaps with any of the CRSs. The 
CRSs for a given cluster represent dense road segments shared by the member trajectories—shared by at least two 
trajectories but in many cases more than two—and thus Rule 1 effectively captures spatial route similarity between 
the new trajectory and the existing cluster, which is the basis for forming the initial clusters, thereby ensuring 
within-cluster consistency and preserving cluster characteristics. 

3. Experiment 

3.1. Data 

In this section, we test the proposed clustering and classification approaches using actual vehicle trajectory data.  
The data are from the Strategic Highway Research Program 2 (SHRP2) project L04 (Mahmassani et al., 2013) and 
were collected by vehicles equipped with TomTom GPS devices during a two-week period in May 2010 (May 2 – 
May 17) in New York City, USA. We sampled 1000 vehicle trajectories from May 4 between 6 AM and 8 PM to 
generate initial clusters. 

3.2. Discovering Spatial Clustering Patterns 

Similarity Measurement: For spatial clustering, we use simPnt in Eq. (1) to determine point matches and find the 
LCS. In Eq. (1), time information of trajectory data is ignored and only spatial proximity is considered. We set  = 
20m as a matching threshold, i.e., the maximum allowable distance for two points to match. The minimum required 
length for the LCS, , was set to =300m. Fig. 7 shows examples of the LCS-based similarity measures. Blue and 
red lines represent two trajectories, respectively, and the green portion represents their LCS. The start-points of two 
trajectories are marked as circle and triangle, respectively. Subfigures (a-e) show different situations that yield 
different similarity values, denoted by s: (a) diverging (s=0.63), (b) merging (s=0.30), (c) fully overlapping (s=0.99), 
(d) merging and diverging (s=0.29), and (e) branching (s=0.12). In (f), the similarity is zero because there is no LCS 
found due to their opposite directions. 

Trajectory Clustering and CRS Generation: The DBSCAN clustering algorithm in Fig. 4 requires two parameters: 
 (the maximum neighborhood distance) and MinTrs (the minimum number of required trajectories in a cluster). 

These parameters need to be specified by a user and there is no specific rule for finding optimal parameter values. 
Since the underlying clustering structure of data is inherently unknown and we use the cluster analysis to discover it, 
there is no formal procedure for calibrating the parameters and validating the clustering results, which is the case in 
many unsupervised learning problems. The choice of the DBSCAN parameters is not completely arbitrary, however, 
because each of the two parameters has a clear meaning and its role in the clustering process can be intuitively 
understood. As such, the user can choose the parameters based on domain knowledge and some experiment. Given 
the LCS-based distance measure distSeq (= 1-simSeq), the parameter  controls the required length of the LCS that 
connects trajectories, specifying how loosely or tightly member trajectories are connected in a cluster. For instance, 
roughly speaking, =0.7 means that trajectories should be overlapped with others for at least 30% of their total travel 
distances, =0.2 means that the overlaps should be at least 80% of their travel distances, and so on. The parameter 
MinTrs controls the number of trajectories that a core trajectory is overlapped with during its journey.  

The smaller  and the larger MinTrs, the stricter the clustering criteria are and thus the more difficult it is to form 
a cluster. If a cluster is formed under the combination of a small  and a large MinTrs, it is likely that core 
trajectories in that cluster are either (i) relatively long so that they can be overlapped with many other short 
trajectories along their journeys or (ii) relatively short but passing through busy road segments so that they can be 
easily overlapped by other trajectories passing through those segments. With an understanding of the roles of  and 
MinTrs, one can indirectly control the number of final clusters and also their characteristics by finding a balance 
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between these two parameters. The numbers of clusters produced under the combination of a small  and a small 
MinTrs and the combination of a large  and a large MinTrs can be similar, but the characteristics of the resulting 
clusters would be very different. Intuitively, the combination of large  and MinTrs values will produce loosely 
connected big traffic stream clusters. A cluster obtained under this setting tends to have a large spatial coverage and 
can provide insight into how far a chain of connected trajectories can reach. On the other hand, the combination of 
small  and MinTrs values will produce tightly connected (i.e., heavily overlapped) small traffic stream clusters. The 
clusters produced under this setting tend to be more locally concentrated and can provide information about 
trajectories that are truly close in space in terms of their route similarity. As such, the choice of the clustering 
parameters might be based on intended use of the results. 

Fig. 8 provides an example of the effects of  and MinTrs on the clustering results. Three cases were tested: (a,b) 
=0.2 and MinTrs=10, (c,d) =0.4 and MinTrs=14, and (e,f) =0.9 and MinTrs=27. For each row, the left plot shows 

vehicle trajectories for different clusters (highlighted by different colors) and the right plot shows the associated 
CRSs. In all three cases, the number of generated clusters is five. In fact, we chose MinTrs in a way that the number 
of clusters remains the same as five for a given . We can see that each cluster expands significantly by relaxing (i.e., 
increasing the value of)  (from top to bottom in Fig. 8) as discussed above. We use the clusters obtained under the 
combination of =0.4 and MinTrs=14 for the subsequent analyses. 

Trajectory Classification: Given the five clusters obtained under =0.4 and MinTrs=14, we tested 1000 new 
trajectories for classification.  Fig. 9 shows the clustering and classification results by cluster. The direction of each 
flow stream cluster is depicted by red arrows. The five traffic stream clusters in Fig. 9 (a)-(e) show distinct 
characteristics in terms of directions and geographical locations. Cluster 1 and Cluster 2 are formed on the roadways 
connecting Manhattan and Western Long Island, representing traffic streams from the southwest to the northeast and 
those from the northeast to the southwest, respectively. Cluster 3 and Cluster 4 are formed on the roadways adjacent 
to John F. Kennedy (JFK) International Airport, which is located at the intersection of Interstate Highway 678 and 
Belt Parkway in Queens, New York City, representing traffic streams to and from the airport, respectively. Cluster 5 
represents traffic streams on the Long Island Expressway (LIE) in the westbound direction toward Manhattan. All 
the five clusters effectively capture major traffic streams in the area, revealing the most commonly used roads and 
routes. By plotting these five clusters together on the network as shown in Fig.9 (f), we observe that the clusters 
heavily overlap one another, which suggest that the clustering patterns in Fig.9 (a)-(e) could not have been easily 
identified using visual inspection or spatial clustering based geographical locations. The proposed flow-based 
clustering approach, thus, provides an effective way to decompose the overall network traffic flows into different 
traffic stream layers, which can be used to perform traffic analysis at a cluster-level, adding a new dimension to the 
traditional traffic analysis conducted at link, path, OD, or network-levels. 

3.3. Comparing Temporal Characteristics of Spatial Flow Clusters 

In this section, we demonstrate how we can use the identified spatial traffic stream clusters in discovering 
patterns in other dimensions such as daily traffic patterns in a more effective way. As mentioned earlier, the 
rationale behind the proposed spatial flow clustering is to reduce spatial dimensions in performing overall spatio-
temporal pattern analysis in traffic flow and reliability analysis and discover temporal patterns more effectively by 
focusing on a particular spatial traffic stream group. The experiment demonstrated here is motivated by our previous 
work concerning identifying different daily scenarios in performing scenario-based travel time reliability analysis 
(Kim et al., 2013; Kim and Mahmassani, 2014; Mahmassani et al., 2013). We are interested in identifying different 
daily traffic patterns to construct a few representative daily scenarios to investigate possible variations in travel time 
and estimate the overall long-term travel time distribution. With this application in mind, we designed a simple 
experiment to investigate how the spatial clusters identified in this study can help in discovering temporal network 
traffic patterns.  

First, we sampled five sets of 1000 new vehicle trajectories from each of 16 days (i.e., a total of 80 samples with 
size 1000). For each 1000 daily trajectory sample, we classified them into five clusters. For each cluster, we divided 
the sampling time window (6AM-8PM) into a series of 1-hr intervals and measured the number of vehicle 
trajectories for each time interval based on their departure times. As a result, for each cluster, we have 80 time series 
of cluster size, each of which represents the number of vehicles in the given traffic stream cluster over time on a 
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given day and thus each time series accounts for one daily traffic pattern of the given traffic cluster. Then, we 
performed another clustering analysis to cluster these 80 daily time series into two distinct day groups. This is to 
observe temporal (day-to-day) patterns of a given spatial traffic cluster. For each traffic stream cluster, we 
performed simple K-means clustering to group the associated 80 daily time series into two day groups. The results 
of this temporal K-means clustering are presented in Fig. 10—(a) Cluster 1 and (b) Cluster 2—, where each 
subfigure shows the entire 80 daily time series for the given traffic stream cluster, categorized by their day-of-week. 
The temporal clustering results are indicated by different line styles: the green solid line represents Day group A and 
the purple dotted line represents Day group B, based on K-means clustering. The result shows that, for Cluster 1, the 
time-dependent traffic stream size on Sunday is clearly different from that on the other weekdays (Day group 2 in 
(a) is mainly composed of time series from Sundays), while a distinct daily pattern is observed on Monday for 
Cluster 2 (Day group 2 in (b) is mainly composed of time series from Mondays). This clearly reveals that different 
spatial clusters can have different daily traffic patterns and identifying distinct spatial traffic stream clusters using 
the proposed clustering approach can help the discovery of the underlying temporal patterns for different parts of the 
network. 
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Fig. 7. Similarity measure s between two trajectories Tri and Trj, i.e., ),( ji TrTrsimSeqs : (a) s=0.63, (b) s=0.30, (c) s=0.99, (d) s=0.29, 

(e) s=0.12, and (f) s=0.00. 
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Fig. 8 The effect of DBSCAN parameters on clustering results, i.e., member trajectories (left) and the associated cluster-representative 
subsequences (right); three cases are tested and the number of final clusters is five in all cases: (a,b) =0.2 and MinTrs=10, (c,d) =0.4 and 

MinTrs=14, and (e,f) =0.9 and MinTrs=27. 
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Fig. 9. Five traffic flow clusters obtained from DBSCAN clustering with =0.4 and MinTrs=14: (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) 
Cluster 4, (e) Cluster 5, and (f) all of 5 clusters. 
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Fig. 10. Temporal clustering of daily traffic patterns of a selected spatial traffic stream cluster: (a) Cluster 1 and (b) Cluster 2; 80 daily time series 
of cluster size evolution are grouped into two day groups, basedon time series clustering using a K-means method: Day group A (green solid line)  

and Day group B (purple dotted line). 

 

4. Conclusion 

The goal of a cluster analysis to find and visualize natural groupings and patterns in a data set in an unsupervised 
manner. Traditionally, traffic analysis is performed for a particular link, segment, OD-pair, and network, where the 
associated spatial boundaries are typically chosen by analysts based on geographical regions and/or pre-defined 
traffic analysis zones (TAZ). With the availability of vehicle trajectory data, combined with advanced data-mining 
techniques, however, it is now possible to detect traffic stream clusters in a more automatic and data-driven manner 
and perform traffic analysis within and across those clusters. This study proposes a trajectory clustering approach to 
revealing such patterns and providing the basis for performing cluster-level traffic analysis. 

The paper focuses on identifying spatially distinct traffic flow groups using trajectory clustering and investigating 
temporal traffic patterns of each spatial group. The main contribution of this paper is the development of a 
systematic framework for clustering and classifying vehicle trajectory data, which does not require a pre-processing 
step known as map-matching and directly applies to trajectory data without requiring the information on the 
underlying road network. The framework consists of four steps: similarity measurement, trajectory clustering, 
generating cluster representative subsequences, and classifying trajectories. First, we propose the use of the Longest 
Common Subsequence (LCS) between two vehicle trajectories as their similarity measure, assuming that the extent 
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to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as potential interactions 
between these vehicles. We then extend a density-based clustering algorithm, DBSCAN, to incorporate the LCS-
based distance in our trajectory clustering problem. The output of the proposed clustering approach is a few spatially 
distinct traffic flow clusters, which together provide an informative and succinct representation of major network 
traffic streams. Next, we introduce the notion of cluster representative subsequence (CRS), which reflects dense 
road segments shared by trajectories belonging to a given traffic stream cluster, and present the procedure of 
generating a set of CRSs by merging the pairwise LCSs via hierarchical agglomerative clustering. The CRSs are 
then used in the trajectory classification step to measure the similarity between a new trajectory and a cluster. The 
proposed framework is demonstrated using actual vehicle trajectory data collected from New York City, USA. A 
simple experiment was performed to illustrate the use of the proposed spatial traffic stream clustering in application 
areas such as network-level traffic flow pattern analysis and travel time reliability analysis. 
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