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SUMMARY

A striking feature of the CNS is the precise wiring
of its neuronal connections. During vertebrate visual
system development, different subtypes of retinal
ganglion cells (RGCs) form specific connections
with their corresponding synaptic partners. How-
ever, the underlying molecular mechanisms remain
to be fully elucidated. Here, we report that the
cell-adhesive transmembrane protein Teneurin-3
(Tenm3) is required by zebrafishRGCs for acquisition
of their correct morphological and functional con-
nectivity in vivo. Teneurin-3 is expressed by RGCs
and their presynaptic amacrine and postsynaptic
tectal cell targets. Knockdown of Teneurin-3 leads
to RGC dendrite stratification defects within the inner
plexiform layer, as well as mistargeting of dendritic
processes into outer portions of the retina.Moreover,
a subset of RGC axons exhibits tectal laminar arbor-
ization errors. Finally, functional analysis of RGCs
targeting the tectum reveals a selective deficit
in the development of orientation selectivity after
Teneurin-3 knockdown. These results suggest that
Teneurin-3 plays an instructive role in the functional
wiring of the vertebrate visual system.
INTRODUCTION

In the vertebrate retina, retinal ganglion cells (RGCs) develop

stereotypic dendritic arborization patterns and make specific

synaptic connections with amacrine and bipolar cells in the inner

plexiform layer (IPL) (Masland, 2012). The formation of such pre-

cise connections is critical for the processing of visual informa-

tion and the generation of feature selectivity in RGCs (Gollisch

and Meister, 2010; Wässle, 2004). A key structural characteristic

of visual circuits is the organization of connections into precise

laminae (Roska and Werblin, 2001; Sanes and Zipursky, 2010).

Recent studies have shown that the assembly of neuropil strata

in the IPL is regulated by both adhesive (Yamagata and Sanes,

2008) and repulsive transmembrane proteins (Matsuoka et al.,
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2011). Similarly, such attractive and repulsive cues are also

crucial in establishing specific connectivity between RGC axons

and their targets in the brain (Osterhout et al., 2011; Xiao et al.,

2011). Our understanding of the molecular mechanisms that

specify connections within the retina and between the retina

and retinorecipient nuclei in the brain, however, is still far from

complete.

Teneurins (Ten-m/Odz) are a phylogenetically conserved fam-

ily of type II transmembrane proteins (Tucker et al., 2012; Tucker

and Chiquet-Ehrismann, 2006). Their large extracellular domain

contains eight epidermal growth factor (EGF)-like repeats, multi-

ple tyrosine and aspartate (YD) repeats and five NHL (NCL-1,

HT2A, and Lin-41) repeats, which mediate homophilic recogni-

tion and adhesion (Beckmann et al., 2013). In vertebrates, these

proteins are encoded by four genes, teneurin 1–4 (also called

odz1–4), expressed in distinct and often interconnected regions

of the nervous system (Tucker and Chiquet-Ehrismann, 2006). In

Drosophila, the role of teneurins in synaptic partner matching

and target choice has been elegantly shown in the olfactory sys-

tem (Hong et al., 2012) and at the neuromuscular junction

(Mosca et al., 2012). In mice, teneurins regulate the generation

of binocular visual circuits by controlling the development of ipsi-

laterally projecting RGCs (Dharmaratne et al., 2012; Leamey

et al., 2007; Young et al., 2013). However, a role for teneurins

in mediating synapse-specific functional wiring in the vertebrate

visual system has yet to be demonstrated.

Here, we investigate the role of teneurin-3 (hereafter referred

to as tenm3) in shaping the morphological and functional con-

nectivity of RGCs in vivo using zebrafish. We report that tenm3

is expressed in RGCs, amacrine cells, and the main retinoreci-

pient target in the brain, the optic tectum. We show that tenm3

knockdown induces stratification and targeting errors of both

dendrites and axons in a subset of RGCs. In support of this,

we provide evidence showing that orientation-selective, but

not direction-selective, responses are impaired in tenm3 mor-

phants, suggesting that tenm3 is involved in wiring subsets of

functionally defined visual circuits.
RESULTS

Our study focused on time points between 2 days postfertiliza-

tion (dpf) and 5 dpf, a period during which RGCs undergo a rapid
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Figure 1. Teneurin-3 Is Expressed in Interconnected Regions of the Zebrafish Visual System

(A–C) Retinal cryosections of whole-mount in situ hybridizations showing tenm3 mRNA expression at 2, 3, and 5 dpf.

(D and H) Control in situ hybridizations using sense tenm3 riboprobe.

(E–G) Tectal cryosections of whole-mount in situ hybridizations showing tenm3mRNA expression at 2, 3, and 5 dpf. All images are in transverse plane. Scale bar,

40 mm. N, neuropil; M, medial; V, ventral.

(I) Schematic showing the expression pattern of tenm3 in the retina. Tenm3-positive cells are represented as blue circles. Neuropil layers are indicated in gray.

Anatomical reference is reported on the right. IPL, inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer.

(J) Schematic showing the expression pattern of tenm3 in the optic tectum.

(K) Schematic detailing the targeting site of splice-blocking tenm3 morpholino (MO), which is shown in red. Exons are represented in cyan. Solid lines indicate

introns. The dashed line indicates exon 3 deletion caused by tenm3 MO injections. Primers used for RT-PCR (L) are reported as blue arrows.

(legend continued on next page)

Cell Reports 5, 582–592, November 14, 2013 ª2013 The Authors 583



phase of morphological and functional development (Lowe et al.,

2013; Meyer and Smith, 2006; Mumm et al., 2006).

Teneurin-3 Is Expressed in Interconnected Regions of
the Developing Visual System
To reveal the expression pattern of tenm3 in the developing

zebrafish visual system, we carried out in situ hybridization ana-

lyses using a specific digoxigenin-labeled antisense riboprobe

against tenm3. In the retina, tenm3 is expressed in the ganglion

cell layer (GCL) and the inner third of the inner nuclear layer (INL),

where amacrine cells are located (Figures 1A–1C). Since in

zebrafish only a very small number of displaced amacrine cells

reside in the GCL (Connaughton et al., 1999), the majority of

signal detected in this layer can be attributed to RGCs. At

2 dpf, tenm3 is expressed more strongly in the ventral part of

the retina (Figure 1A). At 3 and 5 dpf, tenm3 acquires a sparse

expression pattern, suggesting that at these stages of develop-

ment only a subset of cells are tenm3-positive (Figures 1B and

1C). Tenm3 is also expressed in the main target of RGC axons,

the optic tectum (Figures 1E–1G). At 2 dpf, tenm3 is highly

expressed in the medial portion of the stratum periventriculare

(SPV), where cell bodies of most tectal cells are located (Fig-

ure 1E). Between 3 and 5 dpf, this medial-to-lateral gradient

gradually decreases (Figures 1F and 1G) and, at 5 dpf, tenm3

shows a salt-and-pepper expression pattern (Figure 1G). In sum-

mary, tenm3 is expressed by RGCs, amacrine cells, and tectal

neurons (Figures 1I and 1J), consistent with a possible role of

tenm3 in instructing connectivity along the visual pathway.

Teneurin-3 Regulates RGC Dendritic Stratification
in the IPL
To investigate the function of tenm3 within the developing visual

system, we used antisense morpholino oligonucleotides (MOs)

to knock down tenm3 expression levels. We designed a splice-

blocking MO (Draper et al., 2001) targeting the boundary be-

tween intron 2 and exon 3 (hereafter referred to as tenm3 MO;

Figure 1K). Injection of tenm3 MO into one-cell-stage zebrafish

embryos produces the deletion of exon 3 (Figure 1L), which en-

codes part of the intracellular domain. This leads to a frameshift

in exon 4 (transmembrane domain) and a subsequent early stop

codon in exon 5, resulting in deletion of the transmembrane and

extracellular domains (Figure 1M). To confirm results obtained

with this tenm3 MO, a second splice-blocking MO targeting a

nonoverlapping region of tenm3 mRNA (i.e., the boundary

between exon 4 and intron 4) was also used (tenm3 MO 2; see

Figure S1). Tenm3 morphants are viable and do not show any

obvious morphological defect. However, 4 dpf tenm3 MO-in-

jected larvae fail to show a normal visually mediated background

adaptation (VBA) and therefore appear darker compared to wild-

type (WT) and control MO-injected larvae (Figures 1N–1P). Since

the VBA is a neuroendocrine response dependent on the func-
(L) RT-PCR analysis of tenm3mRNA structure in controlMO- and tenm3MO-injec

cDNA sequence comparison revealed that the shortest splice variant lacks exon

(M) Schematic detailing the effect of exon 3 deletion caused by the splice-blocking

domains. The full-length protein is represented on the left. The N terminus is loc

(N–P) At 4 dpf, tenm3 morphant larvae fail to visually adapt their skin pigmentati

See also Figure S1.
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tion of RGCs (Kay et al., 2001), we deduced that the knockdown

of tenm3 somehow impairs the normal development of the visual

system.

In order to examine IPL organization in vivo, we used the

Tg(Isl2b:Gal4;UAS:Kaede) transgenic zebrafish line (see Experi-

mental Procedures), where the fluorescent protein Kaede is ex-

pressed in the majority of RGCs. At 5 dpf, when RGC dendrites

exhibit clear stratification, four Kaede-positive strata are visible

in the IPL of WT and control MO-injected larvae (Figures 2A and

2B). Fluorescence intensity measurements across the IPL of

multiple larvae show that these strata are positioned at 5%,

33%, 66%, and 95% depth of the IPL (with 0% corresponding

to GCL/IPL border and 100% to IPL/INL border), and thus

were named S5, S33, S66, and S95, respectively (Figure 2E;

WT n = 7 larvae, control MO n = 7). The presence of four den-

dritic strata in the IPL of 5 dpf zebrafish larvae is consistent

with previous work using the Tg(Brn3c:MGFP) transgenic line,

where approximately 50% of RGCs are labeled (Mumm et al.,

2006). In 5 dpf tenm3 morphants, by contrast, strata within the

IPL are poorly defined (Figures 2C and 2D). The average fluores-

cence intensity profile reveals that only three Kaede-positive

strata are present in the IPL of tenm3 morphants (Figure 2E;

n = 10 larvae). Specifically, only one irregularly laminated stra-

tum is visible in the medial portion of the IPL, instead of the

two middle strata (S33 and S66) found in WT and control MO

retinae. Furthermore, the outermost stratum (S95) is not tightly

stratified and appears thicker compared to control groups. No

significant difference in IPL width was observed among the

three groups (WT 15.2 ± 0.2 mm; control MO 15.0 ± 0.1 mm;

tenm3 MO 15.1 ± 0.2 mm; F2,21 = 0.08, p = 0.92, n = 24 larvae).

In addition to these stratification abnormalities in the IPL, we de-

tected ectopic RGC processes in the INL of tenm3 morphants

(Figures 2C0 and 2D0, cyan arrowheads; n = 19 out of 20 larvae),

a phenomenon never observed in WT and control MO larvae,

where all RGC dendrites are confined within the IPL (Figures

2A0 and 2B0; n = 10 larvae per group). Strikingly, in some cases,

these processes reach the outer plexiform layer (OPL; Fig-

ure 2C0, yellow arrow). Ectopic RGC processes extending into

the INL were also seen in tenm3 morphant retinae at 3 dpf,

when RGCs start to develop stratified dendritic arbors within

the IPL (data not shown).

To resolve the changes in RGC dendritic morphology in

greater detail, we mosaically labeled individual RGCs by coin-

jectingAth5:Gal4,UAS:GFP andUAS:tdTomatoDNA constructs

into one-cell-stage embryos. The combinatorial expression of

different fluorescent reporters in RGCs enabled us to distinguish

between occasionally overlapping dendritic arbors of different

cells. Using this approach, we were able to determine that the

neurites mistargeting into outer layers of the retina observed in

tenm3 morphants originate from RGC dendrites (Figure 3A,

cyan arrowheads) and that this phenotype is restricted to a
ted embryos. Two shorter splice variants are distinguished in tenm3morphants.

3.

tenm3MO, resulting in the deletion of Tenm3 transmembrane and extracellular

ated intracellularly, whereas the C terminus is in the extracellular space.

on to the level of background illumination.



Figure 2. Teneurin-3 Is Required for Correct Stratification of RGC Dendrites

(A–D) Kaede-expressing RGCs in the retina of 5 dpf WT, control MO-injected, and tenm3 MO-injected larvae.

(A0–D0) Insets in (A)–(D) showing thedendritic stratificationpatternof Kaede-positiveRGCs.All images representmaximum intensity projectionsof�20mmconfocal

z stacks. Scale bars, 40 mm (A–D) and 20 mm in (A0–D0). GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; OPL, outer plexiform layer.

(legend continued on next page)
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Figure 3. Higher Proportion of RGCs with

Diffuse Dendritic Arbors in teneurin-3 Mor-

phants

(A) Lateral view of mosaically labeled RGCs in the

retina of a 5 dpf tenm3 MO-injected larva. Scale

bar, 20 mm. GCL, ganglion cell layer; INL, inner

nuclear layer; IPL, inner plexiform layer.

(B) Bar graph showing the proportions of 5 dpf

RGCs possessing monostratified (cyan, C), bis-

tratified (green, D), multistratified (yellow, E), and

diffuse (magenta, F) dendritic arbors relative to the

total number mosaically labeled RGCs within each

animal group (WT n = 89 cells in 34 larvae; control

MO n = 92 cells in 39 larvae; tenm3MOn = 98 cells

in 49 larvae).

(C–F) Representative RGCs with monostratified

(C), bistratified (D), multistratified (E), and diffuse

(F) dendritic arbors. All images represent

maximum intensity projections of �30 mm

confocal z stacks that have been pseudocolored

and rotated to best show dendritic arborizations.

Scale bars, 20 mm.

(G) Summary table showing the morphological

classification and frequency of the 11 RGC types

within each group (number of cells found per each

type are reported in brackets). In tenm3 mor-

phants, four diffuse RGCs (4.1% of cells) showed

dendritic arborization patterns that could not be

classified in any of the 11 types and, hence, were

not included in the table.
subset of cells (n = 5 cells out of 98 in 49 larvae). Moreover,

mosaic labeling allowed us to visualize the precise IPL dendritic

stratification patterns of single RGCs (Figures 3C–3F). Interest-

ingly, 5 dpf tenm3morphants show a significantly higher propor-

tion of RGCs possessing diffuse dendritic arbors (tenm3 MO 25

diffuse versus 73 stratified cells in 49 larvae; WT 12 diffuse

versus 77 stratified cells in 34 larvae; control MO 12 diffuse
(E) Fluorescence profiles of IPL stratification in 5 dpf WT (blue), control MO-injected (gray), and tenm3 MO-in

profiles of IPLs of single larvae. Thick traces indicate average profiles (WT, n = 7 larvae; control MO, n = 7; te

boundary between GCL and IPL, whereas 100% corresponds to the boundary between IPL and INL.

(F) Schematic summarizing the defects observed in tenm3 morphant retinae. RGCs are indicated in blue. Ne

See also Figure S4.
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versus 80 stratified cells in 39 larvae;

c2 = 6.596, df = 2, p = 0.037). Looking at

the relative proportions between mono-

stratified, bistratified, multistratified, and

diffuse RGCs, it appears that the increase

in number of RGCs with diffuse dendritic

arbors is exclusively at the expense

of monostratified RGCs (Figure 3B; WT

55.1%monostratified, 24.7% bistratified,

6.7% multistratified, 13.5% diffuse; con-

trol MO 55.5% monostratified, 22.8%

bistratified, 8.7% multistratified, 13%

diffuse; tenm3MO 40.8%monostratified,

25.5% bistratified, 8.2% multistratified,

25.5% diffuse). Further identification and

classification of the 11 RGC types previ-
ously reported in the adult zebrafish retina (Mangrum et al.,

2002) revealed that the monostratified RGC types are not indis-

criminately affected by tenm3 knockdown. In fact, some RGC

monostratified types decrease in frequency in tenm3morphants

whereas others show frequencies comparable to those found in

control animals (Figure 3G). Overall, these data show that tenm3

knockdown causes structural irregularities in the developing
jected (red) larvae. Thin traces represent intensity

nm3 MO, n = 10). Zero percent corresponds to the

uropil layers are in gray. ONL, outer nuclear layer.



(legend on next page)
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retina (Figure 2F) and that changes in RGC dendritic stratification

appear to be limited to specific RGC types.

Laminar TargetingErrors in a Subset of RGCAxonsUpon
Teneurin-3 Knockdown
We next examined RGC axonal arborization in the tectal neuro-

pil. Similar to the IPL in the retina, this structure is characterized

by a stereotypic lamination pattern (Xiao et al., 2011). Using the

Tg(Isl2b:Gal4;UAS:Kaede) zebrafish line, we visualized the four

main retinorecipient laminae of the tectum that, from the most

superficial to the deepest, are named stratumopticum (SO), stra-

tum fibrosum et griseum superficiale (SFGS), stratum griseum

centrale (SGC), and lamina at the interface between the stratum

album centrale and the stratum periventriculare (SAC/SPV; Fig-

ure 4A) (Nevin et al., 2010). In 3 dpf WT and control MO larvae,

all RGC axons are restricted to these four laminae and no axons

are found outside the neuropil region (Figures 4A and 4B; n = 15

larvae per group). In tenm3morphants, by contrast, we observed

neurites projecting aberrantly into the SPV (Figures 4C and 4D,

cyan arrowheads; n = 18 out of 23 larvae). 3D reconstruction

and neurite tracing revealed that these processes arise princi-

pally from the deepest lamina (SAC/SPV) and, in some cases,

are up to 30–40 mm long and possess several branches (Fig-

ure 4D0, cyan arrowheads). In addition, tectal laminae of tenm3

morphants are less precisely delimited and axons aberrantly

cross lamina borders (Figure 4C, yellow arrow).

To examine in more detail how the lamination defects seen at

the population level arise, we labeled individual RGCs through

mosaic expression of either GFP or tdTomato driven by the

ath5 promoter. As a rule, individual RGC axons arborize in a

planar fashion within a single tectal lamina or sublamina (the

SO and SFGS are further subdivided into 2 and 6 sublaminae,

respectively) (Robles et al., 2013). This behavior was confirmed

in 4 dpf control groups, where 100% of labeled axons (WT n =

102 axons in 50 larvae; control MO n = 94 axons in 45 larvae)

showed planar arborization patterns (Figures 4E, 4F, 4I, and

4J; arbor thickness WT 5.1 ± 0.1 mm; control MO 5.3 ± 0.1 mm;

n = 20 axons per group). In contrast, we found RGCs with abnor-

mally laminated axonal arbors in tenm3 morphants (Figures 4G

and 4H). Intriguingly, these axons represent only a fraction of

the total number of labeled RGCs (Figure 4I; 12.7%, n = 20 axons

out of 157 in 80 larvae). They are characterized by possessing

axonal processes projecting toward adjacent laminae (Figure 4H,

cyan arrowhead) and significantly broader cross-sectional pro-

files (arbor thickness tenm3 MO 16.9 ± 1.4 mm; F2,57 = 57.97,
Figure 4. Axon Laminar Targeting Errors in a Subset of RGCs in teneu

(A–D) The four main retinorecipient laminae of the tectum are visible in the Tg(Isl2b

fibrosum et griseum superficiale; SGC, stratum griseum centrale; SAC, stratum a

(A0–D0) Insets in (A)–(D) showing RGC axon lamination in deep laminae of the tec

(E–H) Lateral view of mosaically labeled RGC axons at 4 dpf. Dashed lines indi

projections of�50 mmconfocal z stacks that have been rotated around the longitu

(A0–D0). A, anterior; D, dorsal.
(I) Quantification of axon laminar targeting behaviors in mosaically labeled RGCs (

n = 157 axons in 80 larvae).

(J–L) Bar graphs showing the measurements for arbor thickness (J), total arbor len

group). All graphs show mean values ± SEM. ***p < 0.001; ns, not significant by

(M) Schematic summarizing the defects observed in the optic tecta of tenm3morp

See also Figure S4.
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p < 0.0001, n = 20 axons) than those observed in control animals

(Figures 4G and 4J). The total arbor length of aberrant axons is

comparable to that of control groups (Figure 4K; tenm3 MO

165.1 ± 17.4 mm; WT 173.8 ± 7.7 mm; control MO 180.5 ±

9.7 mm; F2,57 = 0.33, p = 0.72, n = 20 axons per group) but their

number of branch points is significantly lower (Figure 4L; tenm3

MO 5.9 ± 0.4; WT 11.5 ± 0.3; control MO 12.4 ± 0.5; F2,57 =

48.86, p < 0.0001, n = 60), suggesting that tenm3 knockdown

impairs their capacity to either form or stabilize new branches,

without affecting overall arbor length. Taken together, these re-

sults indicate that tenm3 is required for the correct laminar tar-

geting and arborization of a subset of RGC axons (Figure 4M).

Teneurin-3 Is Required for Functional Development of
Orientation-Selective RGCs
To investigate the functional consequences of tenm3 knock-

down, we analyzed direction-selective (DS) and orientation-

selective (OS) responses of RGC axon terminals innervating

the tectal neuropil. Light or dark drifting bars moving in 12 direc-

tions were presented to one eye of 5 dpf Tg(Isl2b:Gal4;UAS:

SyGCaMP3) transgenic larvae while functionally imaging the

contralateral tectum (Figure 5A) (Nikolaou et al., 2012). Since

SyGCaMP3 is based on the fusion between the synaptic vesicle

protein synaptophysin and the genetically encoded calcium indi-

cator GCaMP3, this transgenic line enables the targeting of the

probe specifically to RGC presynaptic terminals and hence the

functional analysis of RGCs within the tectal target. RGCs of all

three animal groups respond to drifting bars (Movies S1, S2,

and S3) and exhibit complex patterns of stimulus responses (Fig-

ure S2). In order to characterize and map visual response prop-

erties (i.e., direction and orientation selectivity) present in the

retinal input to the tectum, we used a voxel-wise analysis strat-

egy that is independent of cellular and neuropil morphology

(Nikolaou et al., 2012). Only visually responsive voxels were sub-

jected to further characterization. Direction- and orientation-se-

lective indices (DSI and OSI) based on fitted von Mises profiles

were calculated together with an estimate for their goodness of

fit, R2 (Lowe et al., 2013) (see Supplemental Experimental Proce-

dures). For a voxel to be regarded as DS or OS, mutually exclu-

sive criteria were employed: DS if R2 > 0.8, DSI > 0.5, and OSI <

0.5; andOS if R2 > 0.8, OSI > 0.5, andDSI < 0.5 (Figure 5B). Func-

tional maps in which DS and OS voxels are color-coded,

obtained from individual larvae, were spatially coregistered to

generate parametric composite maps (Figures 5C–5E; WT n =

8 larvae; control MO n = 11; tenm3 MO n = 20). Analyzing the
rin-3 Morphants

:Gal4;UAS:Kaede) zebrafish line at 3 dpf. SO, stratum opticum; SFGS, stratum

lbum centrale; SPV, stratum periventriculare.

tal neuropil.

cate the skin overlaying the tectum. All images represent maximum intensity

dinal axis to best show axonal lamination. Scale bars, 20 mm (A–H) and 10 mm in

WT n = 102 axons in 50 larvae; control MO n = 94 axons in 45 larvae; tenm3MO

gth (K), and branching point number (L) of single RGC axons (n = 20 axons per

one-way ANOVA followed by Tukey’s HSD test.

hants. RGC axons are indicated in blue. Neuropil layers are in gray. N, neuropil.



Figure 5. Impaired Development of Orientation-Selective RGCs Following teneurin-3 Knockdown

(A) Schematic describing the experimental setup. Larvae were immobilized in agarose and placed with one eye facing a screen, where drifting bars moving in 12

directions were projected. Visually evoked SyGCaMP3 responses were recorded in the contralateral tectal neuropil.

(B) Polar plots of representative direction-selective (DS, magenta) and orientation-selective (OS, green) voxels showing relative integral responses to moving

bars. Criteria employed to characterize the two classes of voxels are reported at the bottom.

(C–E) Composite parametric maps across multiple 5 dpf Tg(Isl2b:Gal4;UAS:SyGCaMP3) larvae representing the spatial distribution of DS (magenta) and OS

(green) voxels within each group (WT n = 8 larvae; control MO n = 11; tenm3MOn = 20). Within individual parametric maps, voxel brightness is proportional to the

summed incidence of each functional response across all larvae imaged. The standard space template image derived for each group (grayscale) provides an

anatomical reference. Dashed lines indicate the skin overlaying the tectum. Scale bar, 20 mm. A, anterior; L, lateral.

(legend continued on next page)
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DS RGC input to the tectum, we observed that in all three exper-

imental groups DS responses are present (Figures 5C0–5E0).
Moreover, the normal laminar organization of DS voxels within

the superficial region of SFGS (Nikolaou et al., 2012) is preserved

in tenm3 morphants (Figures 5C0–5E0). Further analysis of DS

RGC subtypes revealed that all three DS RGC populations—

tuned to anterior (�260�), dorsoposterior (�40�), and ventropos-

terior (�150�) motion—found in control groups (Nikolaou et al.,

2012) are also present in tenm3 morphants (Figure S3). Overall,

no difference between tenm3 morphants and control groups

was observed in the DS RGC input to the tectum.

In contrast, we found that the OS RGC input to the tectum is

severely impaired upon tenm3 knockdown. Specifically, the

overall number of OS voxels is decreased in tenm3 morphants

(Figures 5C00–5E00). In addition, the OS RGC voxels that are typi-

cally found in deeper sublaminae of SFGSwith little or no overlap

with DS RGCs in control animals (Figures 5C and 5D) (Nikolaou

et al., 2012) show a substantial degree of overlap with DS voxels

in tenm3 morphants (Figure 5E). To further confirm the OS RGC

impairment, we analyzed the relative proportions of functional

response classes within each experimental group. In tenm3mor-

phants, we found a significant decrease in the ratio between OS

voxels and the total population of visually responsive voxels

(Figure 5F; OS/tot tenm3 MO 0.022 ± 0.004, n = 20 larvae; WT

0.111 ± 0.012, n = 8; control MO 0.112 ± 0.016, n = 11; F2,36 =

24.61, p < 0.0001), so the OS input becomes the smallest popu-

lation of RGCs responding to drifting bars in this group (Fig-

ure 5G). The relative proportions of DS and non-DS/non-OS

(classified as ‘‘others’’) voxel populations, however, were similar

among the three animal groups (Figures 5F and 5G; DS/tot WT

0.105 ± 0.015, control MO 0.101 ± 0.018, tenm3 MO 0.121 ±

0.016, F2,36 = 0.42, p = 0.66; others/tot WT 0.783 ± 0.016, control

MO 0.817 ± 0.019, tenm3 MO 0.856 ± 0.016, F2,36 = 3.06, p =

0.059, n = 39 larvae), suggesting no impairment by tenm3 knock-

down. These functional results indicate that visual responses of

OS RGCs are affected by tenm3 knockdown whereas DS RGCs

develop normally, therefore reinforcing the possible role of

tenm3 in the assembly of specific visual circuits. All structural

and functional phenotypes observed using tenm3 MO were

confirmed in larvae injected with a second splice-blocking MO

against tenm3 (tenm3 MO 2; Figure S4), supporting the speci-

ficity of gene knockdown.

DISCUSSION

Recent studies in Drosophila showed that teneurins are involved

in establishing specific synaptic circuits (Hong et al., 2012;

Mosca et al., 2012). However, a similar role in vertebrate neural

circuit wiring has not yet been demonstrated. Here, we report

that Teneurin-3 is required for the correct structural and func-
(C0–E0 ) Parametric maps for DS voxels only.

(C00–E00) Parametric maps for OS voxels only.

(F) Bar graphs showing the ratios between defined voxel classes and total visually

tenm3 MO n = 20). Non-DS and non-OS voxels are classified as ‘‘others.’’ All g

ANOVA followed by Tukey’s HSD test.

(G) Bar graph showing the proportions of DS and OS voxel classes relative to vis

See also Figures S2–S4 and Movies S1, S2, and S3.

590 Cell Reports 5, 582–592, November 14, 2013 ª2013 The Authors
tional development of RGCs in zebrafish. RGCs and their pre-

and postsynaptic cellular targets (i.e., amacrine cells and tectal

neurons, respectively) express tenm3 during the period of

intense synapse formation (2–5 dpf), suggesting an instructive

role in synaptic matching through homophilic interactions

between neuronal partners along the visual pathway. Tenm3

knockdown produces laminar targeting errors of RGC dendrites

and axons, indicating that Tenm3 acts in both the IPL of the

retina and the tectal neuropil. Intriguingly, these errors appear

to be restricted to a subset of RGCs, hinting that Tenm3 acts

in specific RGC subtypes and that Tenm3-negative cells are un-

affected. Consistent with this hypothesis, whenwe examined the

functional development of visual response properties conveyed

by RGCs, we observed that the OS retinal input to the tectum is

strongly impaired whereas direction selectivity is not affected in

tenm3 morphant larvae. This does not exclude, however, that

additional RGC functional subtypes may be affected in tenm3

morphants. Previous studies in mice showed that Teneurin-3

regulates the development of topography in the retinogeniculate

(Leamey et al., 2007) and retinocollicular pathways (Dharmar-

atne et al., 2012), specifically for the ipsilaterally projecting

RGC population. However, the fact that teneurin-3 is not exclu-

sively expressed in ipsilaterally projecting RGCs (Leamey et al.,

2007) and is also found in the visual system of species where

RGCs project contralaterally only, like chick (Kenzelmann-Broz

et al., 2010) and zebrafish (Mieda et al., 1999; this study), clearly

suggests additional functions in vertebrate visual system

development.

Taken together, our findings support a role for Tenm3 in the

establishment of functional cell subtype-specific wiring in verte-

brates.What developmental mechanisms does Tenm3 regulate?

It is generally accepted that molecules mediating homophilic

cell-cell adhesion instruct the recognition between pre- and

postsynaptic elements by triggering specific synapse forma-

tion/stabilization (Sanes and Yamagata, 2009; Williams et al.,

2010). In addition, teneurin-mediated homophilic recognition

and subsequent formation of cell-adhesion partners leads to

inhibition of neurite outgrowth (Beckmann et al., 2013). Thus,

the simplest hypothesis is that tenm3 (by being expressed in

RGCs, amacrine cells, and tectal neurons) controls the lamina-

tion of RGC neurites through stabilization of branches contacting

neurites of tenm3-expressing cells. Homophilic adhesion has

been extensively studied in the IPL of the chick retina, where

different immunoglobulin superfamily adhesion molecules are

expressed by specific subsets of cells and control the precise

sublaminar matching of their neurites (Yamagata and Sanes,

2008, 2012). Interestingly, this matching mechanism appears

to be conserved in higher visual targets. For example, evidence

in mouse showed that Cadherin-6 mediates the axon-target

recognition between a specific subset of RGCs and their target
responsive voxels (Tot) within each group (WT n = 8 larvae; control MO n = 11;

raphs show mean values ± SEM. ***p < 0.001; ns, not significant by one-way

ually responsive voxels within each group.



nuclei in the brain (Osterhout et al., 2011). An alternative

mechanism that might regulate RGC neurite arborization is the

neurite costratification betweenmorphologically and functionally

related cells expressing the same combination of adhesive

proteins. This kind of interaction certainly occurs during IPL

development. In studies where single or multiple retinal cell clas-

ses were selectively eliminated, the remaining cellular compo-

nents could forma stratified IPL, therefore suggesting that no sin-

glepre-or postsynaptic retinal cell class is strictly essential for IPL

formation (Kay et al., 2004; Randlett et al., 2013). Further experi-

ments are needed to determine the exact mechanisms of action

of Tenm3 and in which cell subtypes it is expressed. Meanwhile,

our results presented here point toward an important role for ten-

eurins in the development of vertebrate neural circuit specificity.

EXPERIMENTAL PROCEDURES

Transgenic Lines and Constructs

Transgenic lines Tg(Isl2b:Gal4) and Tg(UAS:SyGCaMP3) have been described

previously (Ben Fredj et al., 2010; Nikolaou et al., 2012). Transgenic line

Tg(UAS:Kaede) was a gift of Prof. Chi Bin-Chien. The UAS:GFP and UAS:

tdTomato DNA constructs were described previously (Ben Fredj et al.,

2010), and the Ath5:Gal4 plasmid was a gift of Prof. Steve Wilson (UCL, UK).

All animal procedures were approved by the local Animal Welfare and Ethics

Review Body (King’s College London) and were carried out in accordance

with the Animals (Scientific Procedures) Act 1986, under license from the

United Kingdom Home Office.

Functional Imaging

Confocal imaging was performed using an LSM 710 confocal microscope

equipped with a spectral detection scan head and a 203/1.0 NAwater-immer-

sionobjective (Carl Zeiss). Functional timeseriesof visually evokedSyGCaMP3

responses were acquired at a rate of 4.1 Hz and 0.415 3 0.415 mm resolution

(256 3 256 pixels) and 1 AU pinhole aperture. Visual stimulation and voxel-

wise analysis of functional data were performed as described previously

(Nikolaou et al., 2012) (see Supplemental Experimental Procedures).

Statistical Analyses

The statistical significance of the differences between mean values and in the

proportion of diffuse RGCs among groups was determined by one-way

ANOVA followed by Tukey’s HSD test and chi-square test, respectively, using

SigmaPlot (Systat Software). The criterion for statistical significance was set at

p < 0.05 and results are represented as mean ± SEM.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and three movies and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2013.09.045.
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Leamey, C.A. (2013). Ten-m2 is required for the generation of binocular visual

circuits. J. Neurosci. 33, 12490–12509.


	Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System
	Introduction
	Results
	Teneurin-3 Is Expressed in Interconnected Regions of the Developing Visual System
	Teneurin-3 Regulates RGC Dendritic Stratification in the IPL
	Laminar Targeting Errors in a Subset of RGC Axons Upon Teneurin-3 Knockdown
	Teneurin-3 Is Required for Functional Development of Orientation-Selective RGCs

	Discussion
	Experimental Procedures
	Transgenic Lines and Constructs
	Functional Imaging
	Statistical Analyses

	Supplemental Information
	Acknowledgments
	References


