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1. Introduction

With a view towards extending the results of block theory and towards rationaliz-
ing the many cohomological calculations for finite groups of Lie type, we have been
studying projective modules [1-4]. An unexpected and recurring theme in this work
and that of others has been the use of tensor products of irreducible modules. In this
paper we shall establish a few simple results which hopefully shed some light on this
phenomenon.

We now fix a finite group G and an algebraically closed field F of prime charac-
teristic p. All FG-modules are assumed to be right modules and to be finitely generated
Recall [3] that an indecomposable FG-module is said to be irreducibly generated if
it is isomorphic with a direct summand of a tensor product of a finite number of
irreducible FG-modules.

Theorem 1. If G has no non-identity normal p-<v:bgroup then every indecomposable
projective FG-module is irreducibly generated.

In other words, if we can determine the structure of all the irreducibly generated
modules in this case then we have also dealt with the projective modules. Usually
much less is required; in fact, as we shall see below, if S is an irreducible and projec-
tive FG-module then it suffices to decompose the tensor products of S with each of
the irreducible FG-modules.

More generally, let S be any non-zero projective FG-module. Let x;, ..., x; be
representatives of the conjugacy classes of p'-elements of G. Let ¥V, ..., ¥ be irre-
ducible FG-modules, one of each isomorphism type. Let Py, ..., P be their projective
covers so these are indecomposable projective FG-modules, one of each isomorphism
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type, with ¥; a homomorphic image of P;. Let @ be the Brauer character of S.

Since S is projective the tensor product of V; with § is also projective and is there-
fore a direct sum of indecomposable projective FG-modules. We can therefore write,
schematically,

I/1®S’%ailpl Qai2P2®”' Ga,-sPs

where the g;; are non-negative integers. Thus, 4 = (a,-]-) is an s by s matrix determined
by S.

Theorem 2. With the above notation, the following assertions hold:

1) No column of A is zero;

2) The rank of A equals the number of conjugacy classes of G where ® does not
vanish;

3) The determinant ¢of A equals the product H f=1 Dx;)/100ep! p

4) If S is self dual ther A is symmetric.

The term |C(x;)l, is the order of the Sylow p-subgroup of the centralizer of x;.
The dual of an FG-module M is the dual vector space with the usual right module
structure. Notice also that the first statement is simply a concise way of saying that
every module P] is isomorphic with a summand of some tensor product V;®S.

The above result holds equally well for “virtual” projective modules. Therefore,
since Ko(FG) has a basis consisting of the isomorphism types of indecomposable
projective FG-modules [11], G((FG) has a basis consisting of the isomorphism
types of irreducible FG-modules and tensor products yield a Go(FG)-module struc-
ture for K(FG), we can deduce a consequence:

Corollary. Ky(FG) is a free Gy(FG J)-module.

Early work in this direction was done by Jeyakumar [9] and Ballard [5]. This
result was obtained for finite Chevalley groups, with the Steinberg module as
generator, by Lusztig [10] and in full generality independently by Feit [8].

We shall apply these ideas to finite groups of Lie type and do so here for the
rank one case. For our purposes, we shaii define G to be of Lie type, rank one and
characteristic p provided the following assertions hold:

(a) Uis a Sylow p-subgroup of G;

(b) B is the normalizer of U;

(c) His a p'-group with B = HU,

(d) wis an element of N(H) with G=BU BwB and H=B N BY.

For such a group there is a natural choice for the module S. We have the usual
result:

Lemma. The induced module F® g FG is the direct sum F® S, where S is an ir-
reducible and projective FG-module of dimension the order of U.
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For such a group we shall introduce some further s by s matrices. We set 7= ()
where

t;; = dimg Hompg(V;1B, Vj1B),
M= (m;;) where

my; = dimg; Hompy (Vi H, V| H) ,
and C= (c,-]-), the Cartan matrix, so

¢;j = dimp Homp(P;, P) .

Here, the vertical bars denote restrictions.

Theorem 3. If G is of Lie type, rank one and characteristic p then
A+I=T

ACA+A=M.

The matrix 4 is as above. As we shall see Theorem 2 implies that A is non-singular
so we have a formula for C: C= (T — I)"YM(T — I~ — (T — I)~!. This shows C
is determined if we “know” the restrictions of the irreducible FG-modules to B. A
similar but more complicated result holds for all groups of Lie type relating the
Cartan matrix and the restrictions of the irreducible modules to the parabolic sub-
groups.

2. Proofs

We first establish Theorem 1. Since G has no non-identity normal p-subgroup, it
follows that the direct sum

V=V,0eV,e oV,
is a faithful FG-module. Hence, by a result of Bryant and Kovacs [6], there is a
positive integer n such that

U=vlerlievie - ar”

contains a free submodule, where V0= Fand Vi=V Ve - ® Vis the ith tensor
power of V for positive integers i. However, free modules are projective and hence
injective so U contains a free summand. Thgrefore, each indecomposable projective
FG-module is isomorphic with a summand of U. But U is also a direct sum of tensor
products of irreducible FG-modules so our claim holds.

We now turn to the second theorem and prove each statement in turn. If 1 <j <
and S* is the dual of S then $* ® V; has a non-zero socle and so there is i, 1 <i<s,
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with Homgg(V;, §* ® V;) # 0. Hence, Homp(V;® S, V;) #0 as these two vector
spaces are naturally 1somorph1c But P; is the only one of the Py, which has a non-
zero homomorphism to V. Thus, V;® S has a summand isomorphic with P;, a;; #0
and the jth column of 4 i 1s not zero.

Let R be the complex algebra of all complex-valued functions from the set of p'-
elements of G to the complex numbers wiiich are constant on conjugacy classes.
There are several natural bases for R: the Brauer characters ¢, , ..., p; of ¥y, ..., ¥
are a basis; the Brauer characters ®,, ..., ®; of Py, ..., P are a basis; ife;, 1 <i<s,
is the function that is one on conjugates of x; and zero elsewhere thene,, ..., € is
a basis.

The definition of the matrix A4 implies that forall i, 1 <i<s,

@Eatb

ij =

so that the rank of A4 equals the rank of the linear transformation of R given by
multiplication by ®. But this equals the dimension of the ideal of R generated by ®.
However, e;® = ®(x;)e; so this ideal has dimension equal to the number of conjugacy
classes where & does not vanish. Therefore, A has the stated rank.

Since ®; = Z; cjzpy we deduce from above that

¢ P = 2 jCik Vi
Jk
so that
0i(,) Blx,) = ]_Zk)ai]-c,-k o (x;)
for every t, 1 < ¢ <s. Hence, if ¢ = (¢;(x,)) is an s by s matrix and K is the diagonal
matrix with entries ®(x,), ..., ®(x,) then
K =ACyp.

But ¢ is invertible, C has determinant H,- | Clx;)I p by a theorem of Brauer 17] so
our assertion about the determinant of 4 is true.

Since Hom FG(P]-, V]-) = F while HomFG(Pj, Pp)=0if j #k it follows that
a;; = dimp Hompg(V;® S, V;). But, if S is self dual then

HomFG(V,- @S, l’}:' = HOmFG(Viﬁ S*e V’)

=~ Homgg(Vi. S8 V).

However, the socle of Py is isomorphic with V. so Homge (Vy, Pp) = F while

Homg;(Vy, P,) = 3 ik % t. Thus, dimg Homgg(V;, S ® V]-) = aj; and so A is sym-
metric.

We consider the corollary next. The group K(FG) can be identified with the
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Abelian group of all integral linear combinations of ®. .... &;. while the ring Go(FG)
can be identified with the ring of all integral linear combinations of @}« - P With
these identifications the module structure is given by multiplication of functions.

To each @ in Ko(FG) there is a matrix A, associated. just as above, and all the re-
sults of Theorem 2 hold by the very same arguments. It suffices to show that there

is ® in Ko(FG) with the determinant of A4, equal to 1 (or —1). For then the map

of Go(FG) to Ky(FG) which sends each v in Go(FG) to Y is a module isomorphism.
But there is an element § of K((FG) with §(x;) = |C{x;)i pforeachi 1 <i<s. bya
theorem of Brauer [7]. Hence. A has determinant l'l' i Bx )1 Clx . by Theorem 2,
which is just one. This proves the corollary.

For the rest of this section we assume that our group G is of Lic type, rank one
and characteristic p and we use all the notation given above. First, we prove the
lemma. We begin by noting that |G : Bl = 1 + |Ul. Indeed. there are | B : H cosets
of B in the double coset BwB since B N B¥ = H by assumption. Hence, |G : Bl =
1 +|B : H|. But B = UH and the subgroups U and H have coprime orders so that
{B:Hl=|Uland |G : B| is as claimed.

By assumption, G is doubly transitive on the cosets of B in G. Hence, if C denotes
the complex numbers, it follows that C®cp CG = C X, where X is an irreducible
CG-module. Since dim¢ X = |U] = |G, X is the unique irreducible CG-module in a
p-block of defect zero. Therefore, “reducing X modulo p™ yields an irreducible and
projective module. In particular, F® g FG has the stated structure.

Before proceeding, we note, as promised. that the matrix A. determined by S. is
invertible. Let m be the character of the permutation representation of G on the
cc.ie.: of B. Since w is in N(H) and not in B, it follows that (/1) = 2 for any clement
of . Moreover, if x is a p’-element of G not conjugate to an element of H then
m(x) = 0. Therefore, ®(h) > 1 and &¥(x) = - 1, so A has a non-zero determinant by
Theorem 2.

(We digress here for a moment. Suppose, as is most often the case. that if 7 # |
then h€ € B, g€ G only if g € B U Bw. It follows that n(i1) = 2 so &(/1) = 1. Now A
is an invertible integral matrix with determinant +1 or -1.)

This leaves only Theorem 3 to deal with. We first introduce some notation and
remind the reader of a few elementary facts. Let L be a subgroup of G and let Uand
¥ be FG and FL modules, respectively. Denote the induced module V& .y FG by
VG and the restriction of U to L by U|L. Recall that U VG and (UIL 2@ V) are
naturally isomorphic as are Homgg(VC. U) and Homg; (V. UIL). Also, as is well
known, since G is finite, Homg (U, V¢) and Homg; (UIL. V) are isomorphic [12].
If L = B then VG|B = V o (VIH)P by Mackey's theorem [7].

Also recall from above that

“ij = dlmi;‘ HomFG( Vi & S~ V})
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and that since Py, has socle isomorphic with V). we also have
aij = dimF HOIT]FG(V]', Vi® S) .
If 8;; is the usual Kronecker delta, then

ai]- + 611 = dlmF HomFG(Vi® S, V) + dlmF HomFG(Vis V)
= dimg Homp(V; @ (FIB)C, V)
= dimy: Hompg((V;1B)®, V)

= dlmF HomFB(V,-lB, VlB) = tl'f

so A + I =T as claimed.
Our construction of S forces S to be self dual so that A is symmetric, by
Thereom 2. Thus,

dimp Homp(V; 85, V;@5) = z:a,-k ;¢ dim Homp(Py., Py)
s

= th)aik Ckt a,]- = (ACA)U ,

the ij entry of ACA. Hence,
dimg Homp(V; @ (FI1B)?, V; @ (FIB)®)

= dimg Homgg(V; ©(V;®S), V; &(V;®5))
= 61] +aij + aji + (ACA)’]

=(I+24 +ACA),-]- .
But also

dimy: Homp(V; ® (FIB)C, V; ® (F1B)%)
= dimy Hompg((V;1B)Y, (V,-IB)G)
= dimy. Homyp(V;1B, (V;1B)%{B)
= dimy Hom(V;1B, V1B & (VIH)?)
= dimg Homgp(V;|B, V;| B) + dimy Hompy (V1 H, V;|H)

= IU + m,-]- .



J.L. Alperin/Projective modules and tensor produgts 241

Hence, T+ M=1+2A4 + ACA,sosince A + I = T it follows that M= 4 + ACA. All
the results are now established.
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